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CyberInsecurity Report 
 

Introduction by 
 

Computer & Communications Industry 
Association 

 
 
No software is perfect. This much is known from academia and every-day experience. 
Yet our industry knows how to design and deploy software so as to minimize security 
risks.  However, when other goals are deemed more important than security, the 
consequences can be dangerous for software users and society at large.  
 
Microsoft’s efforts to design its software in evermore complex ways so as to illegally 
shut out efforts by others to interoperate or compete with their products has succeeded.  
The monopoly product we all now rely on is thus both used by nearly everyone and 
riddled with flaws.  A special burden rests upon Microsoft because of this ubiquity of 
its product, and we all need to be aware of the dangers that result from reliance upon 
such a widely used and essential product.   
 
CCIA warned of the security dangers posed by software monopolies during the US 
antitrust proceeding against Microsoft in the mid and late 1990’s. We later urged the 
European Union to take measures to avoid a software “monoculture” that each day 
becomes more susceptible to computer viruses, Trojan Horses and other digital 
pathogens. 
 
Our conclusions have now been confirmed and amplified by the appearance of this 
important report by leading authorities in the field of cybersecurity:  Dan Geer, Rebecca 
Bace, Peter Gutmann, Perry Metzger, John S. Quarterman, Charles Pfleeger, and Bruce 
Schneier. 
 
CCIA and the report’s authors have arrived at their conclusions independently. Indeed, 
the views of the authors are their views and theirs alone.  However, the growing 
consensus within the computer security community and industry at large is striking, 
and had become obvious: The presence of this single, dominant operating system in the 
hands of nearly all end users is inherently dangerous. The increased migration of that 
same operating system into the server world increases the danger even more.   CCIA is 
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pleased to have served as a catalyst and a publisher of the ideas of these distinguished 
authorities. 
 
Over the years, Microsoft has deliberately added more and more features into its 
operating system in such a way that no end user could easily remove them. Yet, in so 
doing, the world’s PC operating system monopoly has created unacceptable levels of 
complexity to its software, in direct contradiction of the most basic tenets of computer 
security. 
 
Microsoft, as the US trial record and experience has shown, has added these complex 
chunks of code to its operating system not because such programming complexity is 
necessary, but because it all but guarantees that computer makers, users and consumers 
will use Microsoft products rather than a competitor’s. 
 
These competition related security problems have been with us, and getting worse, for 
years. The recent spate of virus attacks on the Internet is one more sign that we must 
realize the danger we are in.  The report CyberInsecurity – The Cost of Monopoly is a 
wake up call that government and industry need to hear. 
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September 24, 2003 
 

CYBERINSECURITY: THE COST OF MONOPOLY 
HOW THE DOMINANCE OF MICROSOFT’S PRODUCTS  

POSES A RISK TO SECURITY 
 
Executive Summary 

Computing is crucial to the infrastructure of advanced countries.  Yet, as fast as the 
worldʹs computing infrastructure is growing, security vulnerabilities within it are 
growing faster still. The security situation is deteriorating, and that deterioration 
compounds when nearly all computers in the hands of end users rely on a single 
operating system subject to the same vulnerabilities the world over. 

Most of the world’s computers run Microsoft’s operating systems, thus most of the 
world’s computers are vulnerable to the same viruses and worms at the same time.  The 
only way to stop this is to avoid monoculture in computer operating systems, and for 
reasons just as reasonable and obvious as avoiding monoculture in farming.  Microsoft 
exacerbates this problem via a wide range of practices that lock users to its platform. 
The impact on security of this lock-in is real and endangers society. 

Because Microsoftʹs near-monopoly status itself magnifies security risk, it is essential 
that society become less dependent on a single operating system from a single vendor if 
our critical infrastructure is not to be disrupted in a single blow.  The goal must be to 
break the monoculture.  Efforts by Microsoft to improve security will fail if their side 
effect is to increase user-level lock-in.  Microsoft must not be allowed to impose new 
restrictions on its customers – imposed in the way only a monopoly can do – and then 
claim that such exercise of monopoly power is somehow a solution to the security 
problems inherent in its products. The prevalence of security flaw in Microsoft’s 
products is an effect of monopoly power; it must not be allowed to become a reinforcer.   

Governments must set an example with their own internal policies and with the 
regulations they impose on industries critical to their societies.  They must confront the 
security effects of monopoly and acknowledge that competition policy is entangled 
with security policy from this point forward. 

====================== 
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The threats to international security posed by Windows are significant, and must be addressed 
quickly. We discuss here in turn the problem in principle, Microsoft and its actions in relation to 
those principles, and the social and economic implications for risk management and policy.  The 
points to be made are enumerated at the outset of each section, and then discussed. 
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1. THE PROBLEM IN PRINCIPLE 
 

To sum up this section: 
 

• Our society’s infrastructure can no longer function without computers and 
networks. 

 
• The sum of the world’s networked computers is a rapidly increasing force 

multiplier. 
 

• A monoculture of networked computers is a convenient and susceptible 
reservoir of platforms from which to launch attacks; these attacks can and do 
cascade. 

 
• This susceptibility cannot be mitigated without addressing the issue of that 

monoculture. 
 

• Risk diversification is a primary defense against aggregated risk when that risk 
cannot otherwise be addressed; monocultures create aggregated risk like nothing 
else. 

 
• The growth in risk is chiefly amongst unsophisticated users and is accelerating. 

 
• Uncorrected market failures can create and perpetuate societal threat; the 

existence of societal threat may indicate the need for corrective intervention. 
 
Discussion 
 
Computing is essential to industrialized societies.  As time passes, all societal functions 
become more deeply dependent on it: power infrastructure, food distribution, air traffic 
control, emergency services, banking, telecommunications, and virtually every other 
large scale endeavor is today coordinated and controlled by networked computers.   
Attacking national infrastructures is also done with computers – often hijacked 
computers.  Thus, threats to computing infrastructures are explicitly and inherently risk 
harm to those very societies in proportion to those society’s dependence on them.  A 
prior history of catastrophe is not required to make such a finding.  You should not 
have to wait until people die to address risks of the scale and scope discussed here. 
 
Regardless of where or how it is used, computing increases the capabilities and the 
power of those who use it. Using strategic or military terminology that means what it 
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sounds like, computing is a “force multiplier” to those who use them – it magnifies their 
power, for good or ill.  The best estimates of the number of network connected 
computers show an increase of 50% per year on a worldwide basis.  By most general 
measures what you can buy for the same amount of money doubles every eighteen 
months (“Mooreʹs Law”).  With a conservative estimate of a four year lifetime for a 
computer – in other words, consumers replace computers every four years on average – 
the total computing power on the Internet therefore increases by a factor of 2.7 per 
annum (or doubles every 10 months).  If a constant fraction of computers are under 
threat of misuse, then the force available to misusers will thus double every 10 months.  
In other words, the power available to misusers – computer hackers, in popular 
parlance – is rising both because what they can buy grows in power per dollar spent 
and because the total number of networked computers grows, too.  Note also that this 
analysis does not even include attacks enabled by storage capacity, which doubles in 
price-performance twice as fast as CPU (doubles every nine months rather than 
eighteen). 
 
Internetworked computing power makes communication feasible. Communication is of 
such high value that it has been the focus of much study and much conjecture and not 
just recently.  For one-way broadcast communication, the value of the network itself 
rises proportionally to N, the potential number of listeners (“Sarnoffʹs Law”). By way of 
example, advertisers pay for television time in rough proportion to the number of 
people viewing a given program. 
 
For two-way interactive communications – such as between fax machines or personal e-
mail – the value of the network rises proportionally to N2, the square of the potential 
number of users (“Metcalfeʹs Law”). Thus, if the number of people on email doubles in 
a given year, the number of possible communications rises by a factor of four. 
 
Growth in communications rises even more when people can organize in groups, so 
that any random group of people can communicate with another. Web pages, electronic 
mailing lists and online newsgroups are good examples of such communications. In 
these cases, the value of the network rises proportionally to 2N, the potential number of 
groups being an exponential growth in N (“Reedʹs Law”). 
 
Assume for now that the Internet is somewhere between the Metcalfe model, where 
communications vary according to the square of the number of participants (N^2), and 
the Reed model, where communications vary according to two raised to the Nth power 
(2^N).  
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If we make this assumption, then the potential value of communications that the 
Internet enables will rise somewhere between 1.52 = 2.3 and 21.5 = 2.8 times per annum. 
These laws are likely not precisely accurate. Nonetheless, their wide acceptance and 
historic record show that they are good indicators of the importance of communication 
technology. 
 
To extend this simple mathematical model one final step, we have assumed so far that 
all communications are good, and assigned to the value of the network a positive 
number. Nonetheless, it is obvious that not all communications (over computer 
networks, at least) are positive. Hackers, crackers, terrorists and garden-variety 
criminals use the network to defraud, spy and generally wreak havoc on a continual 
basis. To these communications we assign a negative value. 
 
The fraction of communications that has positive value is one crucial measure, and the 
absolute number of negative communications is another.  Both are dependent on the 
number of networked devices in total. This growth in the number of networked devices, 
however, is almost entirely at the “edges” of networked computing – the desktop, the 
workstation, the home, the embedded system, the automated apparatus.  In other 
words, the growth in “N” is not in the core infrastructure of the Internet where highly 
trained specialists watch over costly equipment with an eye towards preventing and 
responding to attacks. Growth, rather, is occurring mostly among ordinary consumers 
and non-technical personnel who are the most vulnerable to illegal intrusions, viruses, 
Trojan horse programs and the like. This growth at the periphery, furthermore, is 
accelerating as mobile, wireless devices come into their own and bring with them still 
more vulnerabilities. 
 
Viruses, worms, Trojan horses and the like permit malicious attackers to seize control of 
large numbers of computers at the edge of the network.  Malicious attackers do not, in 
other words, have to invest in these computers themselves – they have only to exploit 
the vulnerabilities in other people’s investments. 
 
Barring such physical events as 9/11, an attack on computing is a set of communications 
that take advantage of latent flaws already then present in those computersʹ software.  
Given enough knowledge of how a piece of software works, an attacker can force it to 
do things for which it was never designed. Such abuse can take many forms; a 
naturalist would say that attacks are a broad genus with many species.  Within this 
genus of attacks, species include everything from denial of service, to escalation of 
authority, to diversion of funds or data, and on.  As in nature, some species are more 
common than others. 
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Similarly, not all attacks are created equal. An annoying message that pops up once a 
year on screen to tell a computer user that he has been infected by Virus XYZ is no more 
than that; an annoyance. Other exploitations cost society many, many dollars in lost 
data, lost productivity and projects destroyed from data crashes. Examples are many 
and familiar including the well known ILOVE YOU, NIMDA, and Slammer attacks not 
to mention taking over users’ machines for spamming, porn distribution, and so forth.  
Still other vulnerabilities, though exploited every day and costing society substantial 
sums of time and money, seldom appear in the popular press. According to London-
based computer security firm, mi2g Ltd., global damage from malicious software 
inflicted as much as $107 billion in global economic damage this year.  It estimates that 
the SoBig worm, which helped make August the costliest month in terms of economic 
damage, was responsible for nearly $30 billion in damage alone.1 
 
For an attack to be a genuine societal-scale threat, either the target must be unique and 
indispensable – a military or government computer, authoritative time lookup, the 
computer handling emergency response (911) calls, airport flight control, say – or the 
attack must be one which once triggered uncontrollably cascades from one machine to 
the next. The NIMDA and Slammer worms that attacked millions of Windows-based 
computers were examples of such “cascade failure” – they spread from one to another 
computer at high rates.  Why?  Because these worms did not have to guess much about 
the target computers because nearly all computers have the same vulnerabilities. 
 
Unique, valuable targets are identifiable so we, as a society, can concentrate force 
around them. Given enough people and training (a tall order to be sure), it is possible to 
protect the unique and core assets. Advanced societies have largely made these 
investments, and unmitigated failures do not generally occur in these systems. 
 
Not so outside this core: As a practical and perhaps obvious fact, the risk of cascade 
failure rises at the edges of the network where end users are far more likely to be 
deceived by a clever virus writer or a random intruder.  To put the problem in military 
terms, we are the most vulnerable when the ratio of available operational skill to 
available force multiplication is minimized and thus effective control is weakest.  Low 
available skill coupled to high potential force multiplication is a fair description of what 
is today accumulating on the periphery of the computing infrastructures of every 
advanced nation.  In plainer terms, the power on the average desktop goes up very fast 
while the spread of computers to new places ensures the average skill of the user goes 
down. The average user is not, does not want to be, and should not need to be a 
computer security expert any more than an airplane passenger wants to or should need 
                                                 
1  “Government Issue,” David Zeiler, The Baltimore Sun/SunSpot.net. September 18, 2003 
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to be an expert in aerodynamics or piloting.  This very lack of sophisticated end users 
renders our society at risk to a threat that is becoming more prevalent and more 
sophisticated. 
 
Regardless of the topic – computing versus electric power generation versus air defense 
– survivability is all about preparing for failure so as to survive it.  Survivability, 
whether as a concept or as a measure, is built on two pillars: replicated provisioning 
and diversified risk.  Replicated (“redundant”) provisioning ensures that any entityʹs 
activities can be duplicated by some other activity; high availability database systems 
are such an example in computing just as backup generators are in electric power.  The 
ability of redundant systems to protect against random faults is cost effective and well 
documented.   
 
By contrast, redundancy has little ability to protect against cascade failure; having more 
computers with the same vulnerabilities cannot help if an attack can reach them all.  
Protection from cascade failure is instead the province of risk diversification – that is, 
using more than one kind of computer or device, more than one brand of operating 
system, which in turns assures that attacks will be limited in their effectiveness. This 
fundamental principle assures that, like farmers who grow more than one crop, those of 
us who depend on computers will not see them all fail when the next blight hits. This 
sort of diversification is widely accepted in almost every sector of society from finance 
to agriculture to telecommunications. In the broadest sense, economic diversification is 
as much the hallmark of free societies as monopoly is the hallmark of central planning. 
 
Governments in free market societies have intervened in market failures – preemptively 
where failure was be intolerable and responsively when failure had become self-
evident. In free market economies as in life, some failure is essential; the “creative 
destruction” of markets builds more than it breaks. Wise governments are those able to 
distinguish that which must be tolerated as it cannot be changed from that which must 
be changed as it cannot be tolerated.  The reapportionment of risk and responsibility 
through regulatory intervention embodies that wisdom in action.  If governments are 
going to be responsible for the survivability of our technological infrastructure, then 
whatever governments do will have to take Microsoft’s dominance into consideration. 
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2. MICROSOFT 
 

To sum up this section: 
 

• Microsoft is a near-monopoly controlling the overwhelming majority of systems. 
 

• Microsoft has a high level of user-level lock-in; there are strong disincentives to 
switching operating systems. 

 
• This inability of consumers to find alternatives to Microsoft products is 

exacerbated by tight integration between applications and operating systems, 
and that integration is a long-standing practice. 

 
• Microsoft’s operating systems are notable for their incredible complexity and 

complexity is the first enemy of security. 
 

• The near universal deployment of Microsoft operating systems is highly 
conducive to cascade failure; these cascades have already been shown to disable 
critical infrastructure. 

 
• After a threshold of complexity is exceeded, fixing one flaw will tend to create 

new flaws; Microsoft has crossed that threshold. 
 

• Even non-Microsoft systems can and do suffer when Microsoft systems are 
infected. 

 
• Security has become a strategic concern at Microsoft but security must not be 

permitted to become a tool of further monopolization. 
 
Discussion: 
 
Near-monopoly dominance of computing by Microsoft is obvious beyond the findings 
of any court. That percentage dominance is at peak in the periphery of the computing 
infrastructure of all industrial societies. According to IDC, Microsoft Windows 
represented 94 percent of the consumer client software sold in the United States in 
2002.2 Online researcher OneStat.com estimates Microsoft Windows’ market share 
exceeds 97 percent.3 Its Internet Explorer and Office Suite applications share similar 
                                                 
2  “Wal-Mart sells more Linux wares online,” Matt Hines, News.com. August 21, 2003. 
3  “Microsoft's Windows OS global market share is more than 97% according to OneStat.com,” OneStat.com press 

release.  September 10, 2002. 
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control of their respective markets. The tight integration of Microsoft application 
programs with Microsoft operating system services is a principal driver of that 
dominance and is at the same time a principal driver of insecurity.  The “tight 
integration” is this: inter-module interfaces so complex, undocumented, and 
inaccessible as to (1) permit Microsoft to change them at will, and thus to (2) preclude 
others from using them such as to compete. 
 
Tight integration of applications and operating system achieves user lock-in by way of 
application lock-in.  It works.  The absence of published, stable exchange interfaces 
necessary to enable exchange of data, documents, structures, etc., enlists such data, 
documents, or structures as enforcers of application lock-in.  Add in the “network 
effects,” such as the need to communicate with others running Microsoft Office, and 
you dissuade even those who wish to leave from doing so.  If everyone else can only 
use Office then so must you. 
 
Tight integration, whether of applications with operating systems or just applications 
with each other, violates the core teaching of software engineering, namely that loosely-
coupled interfaces make maintenance easier and life-cycle costs lower. Academic and 
commercial studies supporting this principle are numerous and long-standing.  
Microsoft well knows this; Microsoft was an early and aggressive promoter of modular 
programming practices within its own development efforts.  What it does, however, is 
to expressly curtail modular programming and loose-coupling in the interfaces it offers 
to others.  For whatever reason, Microsoft has put aside its otherwise good practices 
wherever doing so makes individual modules hard to replace.  This explains the rancor 
over Prof. Ed Feltenʹs Internet Explorer removal gadget just as it explains Microsoftʹs 
recent decision to embed the IE browser so far into their operating system that they are 
dropping support for IE on the Macintosh platform.  Integration of this sort is about 
lock-ins through integration too tight to easily reverse buttressed by network effects 
that effectively discourage even trying to resist. 
 
This integration is not the norm and it is not essential.  Just limiting the discussion to 
the ubiquitous browser, it is clear that Mozilla on Linux or Safari on Macintosh are 
counter-examples:  tight integration has no technical necessity.  Appleʹs use of Safari is 
particularly interesting because it gets them all the same benefits that Microsoft gets 
from IE (including component reuse of the HTML rendering widget), but itʹs just a 
generic library, easy to replace.4 The point is that Microsoft has performed additional, 
unnecessary engineering on their products with the result of making components hard 
to pull out, and thus raising the barrier to entry for competition.  Examples of clean 
                                                 
4   “Apple Releases its own browser,” Joe Wilcox, News.com, January 7, 2003. 
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interfaces are much older than Microsoft: the original UNIX was very clean and before 
that Multics or Dijkstraʹs 1968 “THE” system showed what could be done.  In other 
words, even when Microsoft was very much smaller and very much easier to change 
these ideas were known and proven, therefore what we have before us today is not 
inadvertent, it is on plan. 
 
This tight-integration is a core component of Microsoftʹs monopoly power. It feeds that 
power, and its effectiveness is a measure of that power.  This integration strategy also 
creates risk if for no other reason that modules that must interoperate with other 
modules naturally receive a greater share of security design attention than those that 
expect to speak only to friends.  As proof by demonstration, Microsoftʹs design-level 
commitment to identical library structures for clients and servers, running on protocols 
made explicitly difficult for others to speak (such as Microsoft Exchange), creates 
insecurity as that is precisely the characteristic raw material of cascade failure: a 
universal and identical platform asserted to be safe rather than shown in practice to be 
safe.  That Microsoft is a monopoly makes such an outcome the default outcome. 
 
The natural strategy for a monopoly is user-level lock-in and Microsoft has adopted this 
strategy.  Even if convenience and automaticity for the low-skill/no-skill user were 
formally evaluated to be a praiseworthy social benefit, there is no denying the latent 
costs of that social benefit: lock-in, complexity, and inherent risk. 
 
One must assume that security flaws in Microsoft products are unintentional, that 
security flaws simply represent a fraction of all quality flaws.  On that assumption, the 
quality control literature yields insight. 
 
The central enemy of reliability is complexity. Complex systems tend to not be entirely 
understood by anyone.  If no one can understand more than a fraction of a complex 
system, then, no one can predict all the ways that system could be compromised by an 
attacker. Prevention of insecure operating modes in complex systems is difficult to do 
well and impossible to do cheaply: The defender has to counter all possible attacks; the 
attacker only has to find one unblocked means of attack.  As complexity grows, it 
becomes ever more natural to simply assert that a system or a product is secure as it 
becomes less and less possible to actually provide security in the face of complexity. 
 
Microsoftʹs corporate drive to maximize an automated, convenient user-level experience 
is hard to do – some would say un-doable except at the cost of serious internal 
complexity.  That complexity must necessarily peak wherever the ratio of required 
convenience to available skill peaks, viz., in the massive periphery of the computing 
infrastructure.  Software complexity is difficult to measure but software quality control 
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experts often describe software complexity as proportional to the square of code 
volume. One need look no further than Microsoftʹs own figures:  On rate of growth, 
Windows NT code volume rose 35% per year (implying that its complexity rose 
80%/year) while Internet Explorer code volume rose 220%/year (implying that its 
complexity rose 380%/year). Consensus estimates of accumulated code volume peg 
Microsoft operating systems at 4-6x competitor systems and hence at 15-35x competitor 
systems in the complexity-based costs in quality.  Microsoftʹs accumulated code volume 
and rate of code volume growth are indisputably industry outliers that concentrate 
complexity in the periphery of the computing infrastructure. Because it is the 
complexity that drives the creation of security flaws, the default assumption must be 
that Microsoft’s products would have 15-35x as many flaws as the other operating 
systems.  5 
 
One cannot expect government regulation to cap code size – such a proposal would 
deserve the derision Microsoft would heap upon it. But regulators would do well to 
understand that code “bloat” matters most within modules and that Microsoftʹs 
strategy of tight integration makes effective module size grow because those tightly 
integrated components merge into one.  It is likely that if module sizes were compared 
across the industry that the outlier status of Microsoftʹs code-size-related security 
problems would be even more evident than the total code volume figures indicate. 
 
Above some threshold level of code complexity, fixing a known flaw is likely to 
introduce a new, unknown flaw; therefore the law of diminishing returns eventually 
rules.  The general quality control literature teaches this and it has been the received 
wisdom in software development for a long time (Lehman & Belady at IBM6 and later in 
many papers and at least one book).  The tight integration of Microsoft operating 
systems with Microsoft application products and they with each other comes at a cost of 
complexity and at a cost in code volume.  Patches create new flaws as a regular 
occurrence thus confirming that Microsoftʹs interdependent product base is above that 
critical threshold where repairs create problems.  Some end-users understand this, and 
delay deployment of patches until testing can confirm that the criticality of problems 
fixed are not eclipsed by the criticality of problems created.  With mandatory patches 
arriving at the rate of one every six days (39 through 16 September), it is few users 
indeed who can keep up. 
 
Two different subsets of users effectively bow out of the patching game:  the incapable-
many (end-users who have limited understanding of – and limited desire to understand 
                                                 
5  Microsoft seems at least aware of the problem.  See: http://www.wired.com/wired/archive/3.09/myhrvold.html. 
6  L.A. Belady and M.M. Lehman, “A Model of Large Program Development,” IBM Systems Journal 15(3), 

p.225–252 (1976). 
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– the technology even when it is working correctly) and the critical-infrastructure-few 
(for whom reliability is such a vital requirement that casual patching is unthinkable).  
Un-patched lethal flaws thus accumulate in the user community.  (The Slammer worm 
fully demonstrated that point – the problem and the patch were six months old when 
Slammer hit.)7 Monopoly market dominance is thus only part of the risk story – market 
dominance coupled with accumulating exploitable flaw density yields a fuller picture.  
Not only is nearly every networked computer sufficiently alike to imply that what 
vulnerability one has, so has another, but the absolute number of known-to-be-
exploitable vulnerabilities rises over time.  Attackers of the most consummate skill 
already batch together vulnerabilities thus to ensure cascade failure.  (The NIMDA 
virus fully demonstrated that point – it used any of five separate vulnerabilities to 
propagate itself.) 
 
Microsoft has had a history of shipping software at the earliest conceivable moment.  
Given their market dominance, within days if not hours the installed base of any 
released Microsoft software, however ill thought or implemented, was too large to 
dislodge or ignore.  No more.  Of late Microsoft has indeed been willing to delay 
product shipment for security reasons.  While it is too early to tell if and when this will 
actually result in a healthier installed base, it is an admission that the level of security 
flaw density was a greater threat to the company than the revenue delay from slipping 
ship dates.  It is also an admission that Microsoft holds monopoly power – they and 
they alone no longer need to ship on time.  That this coincides with Microsoftʹs recent 
attempts to switch to annual support contracts to smooth out their revenue streams is, 
at least, opportunistic if not tactical. 
 
On the horizon, we see the co-called Trusted Computing Platform Association (TCPA)8 
and the “Palladium” or “NGSCB” architecture for “trusted computing.”  In the long 
term, the allure of trusted computing can hardly be underestimated and there can be no 
more critical duty of government and governments than to ensure that a spread of 
trusted computers does not blithely create yet more opportunities for lock-in.  Given 
Microsoft’s tendencies, however, one can foresee a Trusted Outlook that will refuse to 
talk to anything but a Trusted Exchange Server, with (Palladiumʹs) strong 
cryptographic mechanisms for enforcement of that limitation.  There can be no greater 
user-level lock-in than that, and it will cover both local applications and distributed 
applications, and all in the name of keeping the user safe from viruses and junk.  In 
other words, security will be the claimed goal of mechanisms that will achieve 
                                                 
7  “ Slammer worm brings patch mgmt. issues to the fore,” Audrey Rasmussen, Network World Fusion, 
Feb. 5, 2003.  
8  See:  http://www.trustedcomputing.org/home 
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unprecedented user-level lock-in.  This verifies the relevance of evaluating the effect of 
user-level lock-in on security. 
 
3. IMPACT ON PUBLIC PROTECTION 
 
 To sum up this section: 
 

• Without change, Microsoftʹs history predicts its future. 
 

• We must take conscious steps to counter the security threat of Microsoft’s 
monopoly dominance of computing.   

 
• Unless Microsoftʹs applications and interfaces are available on non-Microsoft 

platforms it will be impossible to defeat user lock-in. 
 

• Governments by their own example must ensure that nothing they deem 
important is dependent on a monoculture of IT platforms; the further up the tree 
you get the more this dictum must be observed. 

 
• Competition policy is tangled with security policy from this point on. 

 
Discussion: 
 
Microsoft and regulators come to this point with a considerable history of flouted 
regulation behind them, a history which seems unnecessary to recount other than to 
stipulate that it either bears on the solution or history will repeat itself. 
 
Yes, Microsoft has the power to introduce features unilaterally and one might even say 
that the current security situation is sufficiently dire that Microsoft as the head of a 
command structure is therefore somehow desirable.   Yet were it not for Microsoftʹs 
commanding position economics would certainly be different whether it would be a 
rise in independent, competitive, mainstream software development industries (because 
the barriers to entry would be lower), or that todayʹs locked-in Microsoft users would 
no longer pay prices that only a monopoly can extract. For many organizations the only 
thing keeping them with Microsoft in the front office is Office.  If Microsoft was forced 
to support Office on, say, Linux, then organizations would save substantial monies 
better spent on innovation. If Microsoft were forced to interoperate, innovators and 
innovation could not be locked-out because users could not be locked-in. 
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Both short-term impact mitigation and long term competition policy must recognize 
this analysis.  In the short term, governments must decide in unambiguous ways 
whether they are able to meaningfully modify the strategies and tactics of Microsoftʹs 
already-in-place monopoly. 
 
If governments do not dismantle the monopoly but choose instead to modify the 
practices of the monopoly they must concede that that route will, like freedom, require 
eternal vigilance. Appropriate support for addressing the security-related pathologies 
of monopoly would doubtless include the introduction of effective, accessible rights of 
action in a court of law wherever security flaws lead to harm to the end-user. In extreme 
cases, the consequences of poor security may be broad, diffuse, and directly constitute 
an imposition of costs on the user community due to the unfitness of the product. 
Under those circumstances, such failures should surely be deemed “per se” offenses 
upon their first appearance on the network. 
 
Where risk cannot be mitigated it can be transferred via insurance and similar contracts.  
As demonstrated in previous sections, the accumulation of risk in critical infrastructure 
and in government is growing faster than linear, i.e., faster than mere counts of 
computers or networks. As such, any mandated risk transfer must also grow faster than 
linear whether those risk transfer payments are a priori, such as for bonding and 
insurance, or a posteriori, such as for penalties.  If risk transfer payments are to be risk 
sensitive, the price and probability of failure are what matter and thus monopoly status 
is centrally relevant.  For governments and other critical infrastructures, the price of 
failure determines the size of the risk transfer.  Where a software monoculture exists – 
in other words, a computing environment made up of Windows and almost nothing 
else – what remains operational in the event of wholesale failure of that monoculture 
determines the size of the risk transfer.  Where that monoculture is maintained and 
enforced by lock-in, as it is with Windows today, responsibility for failure lies with the 
entity doing the locking-in – in other words, with Microsoft.  It is important that this 
cost be made clear now, rather than waiting until after a catastrophe. 
 
The idea of breaking Microsoft into an operating system company and an applications 
company is of little value – one would just inherit two monopolies rather than one and 
the monocultural, locked-in nature of the user base would still nourish risk. Instead, 
Microsoft should be required to support a long list of applications (Microsoft Office, 
Internet Explorer, plus their server applications and development tools) on a long list of 
platforms.  Microsoft should either be forbidden to release Office for any one platform, 
like Windows, until it releases Linux and Mac OS X versions of the same tools that are 
widely considered to have feature parity, compatibility, and so forth. Alternately, 
Microsoft should be required to document and standardize its Exchange protocols, 
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among other APIs, such that alternatives to its applications could independently exist.   
Better still, split Microsoft Office into its components – noticing that each release of 
Office adds new things to the “bundle”: first Access, the Outlook, then Publisher.  Even 
utilities, such as the grammar checker or clip art manager, might pose less risk of 
compromise and subsequent OS compromise if their interfaces were open (and subject 
to public scrutiny and analysis and validation).  Note that one of the earlier buffer 
overflow exploits involved the phone dialer program, and ordinarily benign and 
uninteresting utility that could have been embedded within dial-up networking, 
Internet Explorer, Outlook and any other program that offered an Internet link. 
 
The rigorous, independent evaluations to which these otherwise tightly integrated 
interfaces would thus be exposed would go a long way towards security hardening 
them while permitting meaningful competition to arise.  Microsoft will doubtless 
counter that its ability to “innovate” would be thus compromised, but in the big picture 
sense everyone else would have a room to innovate that they cannot now enjoy. 
 
Where governments conclude that they are unable to meaningfully modify the 
strategies and tactics of the already-in-place Microsoft monopoly, they must declare a 
market failure and take steps to enforce, by regulation and by their own example, risk 
diversification within those computing plants whose work product they value.  
Specifically, governments must not permit critical or infrastructural sectors of their 
economies to implement the monoculture path, and that includes governmentʹs own 
use of computing.  Governments, and perhaps only governments, are in leadership 
positions to affect how infrastructures develop.  By enforcing diversity of platform to 
thereby blunt the monoculture risk, governments will reap a side benefit of increased 
market reliance on interoperability, which is the only foundation for effective 
incremental competition and the only weapon against end-user lock-in.  A requirement 
that no operating system be more than 50% of the installed based in a critical industry 
or in a government would moot monoculture risk.  Other branches to the risk 
diversification tree can be foliated to a considerable degree, but the trunk of that tree on 
which they hang is a total prohibition of monoculture coupled to a requirement of 
standards-based interoperability. 
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CODA 
 
These comments are specific to Microsoft, but would apply to any entity with similar 
dominance under current circumstances.  Indeed, similar moments of truth have 
occurred, though for different reasons, with IBM or AT&T.  The focus on Microsoft is 
simply that the clear and present danger can be ignored no longer. 
 
While appropriate remedies require significant debate, these three alone would 
engender substantial, lasting improvement if Microsoft were vigorously forced to: 
 

• Publish interface specifications to major functional components of its code, both 
Windows and Office. 

• Foster development of alternative sources of functionality through an approach 
comparable to the highly successful ʹplug and playʹ technology for hardware 
components. 

• Work with consortia of hardware and software vendors to define specifications 
and interfaces for future developments, in a way similar to the Internet Societyʹs 
RFC process to define new protocols for the Internet. 
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