

Cybersecurity:

A (Brief) History of Cryptography

Ozalp Babaoglu

alma mater studiorum - universita' di bologna

Steganography

- Different steganography techniques depending on the type of "container" object:
- Text steganography
- Image steganography
- Audio steganography
- Video steganography
- Network steganography
- Printer steganography

auf d auf d Testc Testa

- From the Greek steganós (oteyavóc) - "covered", "concealed", and graphein (ypaфণ́) - "writing"
- The art of concealing information within other information
- Form of "security through obscurity"
- Can be made "keyless"
- Real world examples:
- Message written in secret ink on paper
- Message written on the scalp of messenger
© Babaoglu 2001-2022
Cybersecurity
- A substitution cipher
- Each letter of the plaintext is replaced by a unique letter in the ciphertext
- Which letter?
- In the case of Caesar Cipher, the relation between the letter in the plaintext and that in the ciphertext is obtained through a cyclic left shift
- Decryption is obtained through a cyclic right shift
- Example: shift 3

ignavi coram morte quidem animam trahunt, audaces autem illam non saltem advertunt LJQDYLCFRUDPCPRUWHCTXLGHPCDQLPDPCWUDKXQWCCDX GDFHVCDXWHPCLOODPCQRQCVDOWHPCDGYHUWXQW
- Number of positions to shift becomes the secret key of the cipher
- Let $\operatorname{pos}(\alpha)$ be the position of letter α in the alphabet,
- Let $\operatorname{chr}(j)$ be the character in the j-th position of the alphabet
- Let k be the key,
- Let m_{i} and c_{i} the i-th characters in the plaintext and ciphertext, respectively
$C\left(m_{i}\right)=\operatorname{chr}\left(\operatorname{pos}\left(m_{i}\right)+k\right) \bmod 26$
$D\left(c_{i}\right)=\operatorname{chr}\left(\operatorname{pos}\left(c_{i}\right)-k\right) \bmod 26$

- Brute-force cryptanalysis of ciphertext "AJSN ANIN ANHN"

> Caesar $(1)=$ zirm zmhm zmgm Caesar $(2)=$ yhql ylgl ylfl Caesar $(3)=$ xgpk xkfk xkek Caesar $(4)=$ wfoj wjej wjdj Caesar 5$)=$ veni vidi vici Caesar $(6)=$ udmh uhch uhbh Caesar 7$)=$ tclg tgbg tgag Caesar $(8)=$ sbkf sfaf sfzf Caesar $(9)=$ raje reze reye Caesar $(10)=$ qzid qdyd qdxd ...

- Trivial to carry out a brute-force attack because:
- The encryption and decryption algorithms are known
- The number of possible keys is very small (only 25 different keys)
- The language of the plaintext is known and easily recognizable
- Example: Cryptanalysis of

"AJSN ANIN ANHN"

© Babaoglu 2001-2022 Cybersecurity

Substitution ciphers

- Instead of substituting letters through a cyclic shift, we can substitute them through a permutation of the alphabet, which becomes the key:

abcdefghijklmnopqrstuvwxyz

BFRULMZQWJEASOVKHXPGDTIYCN

- For an alphabet of 26 letters, there are 26! possible keys since there are 26! possible permutations of 26 letters
" Cryptanalysis through "brute force" becomes non practical
- However, statistical cryptanalysis is still possible

Polyalfabetic Ciphers

- Use multiple substitution ciphers depending on the position of the letter in the plaintext

- Monoalfabetic for every $|k|$ characters
- Statistical attack still possible but becomes more difficult
- Basis for "rotor machines" like Enigma and Purple that were used during world war 2
© Babaoglu 2001-2022
Cybersecurity

- Maintain the same letters in the ciphertext as in the plaintext, but change their order
- For example,

4312567	key
attackp	
ostpone	
duntilt	plaintext
hreepmx	

- Instead of substituting single letters of the plaintext, substitute blocks of letters
- Example (blocks of 3)
- AAA \rightarrow SOM
- AAB \rightarrow PLW
- ABA \rightarrow RTQ
- ABB \rightarrow SLL
-
- Doing so hides information regarding the frequency of single letters and pairs of letters
© Babaoglu 2001-2022 Cybersecurity

Secret-Key Oryptography Permutation Ciphers

- Can be repeated multiple times

4312567 k

ttneapt
etsurao plaintext
dhcoipk
nlmpetx
output: nscmeuoptthltednariepapttokx

Ciphertext: ttne apte tsur aodh coip knlm petx

How Enigma Worked

- "Code Book" contains the settings to be used for each day of the month
- Written in soluble ink so that if a submarine sank, the book would self-destruct

Breaking Enigma

- The British and the US Navy built electro-mechanical devices called "Bombes" to speed their search of the key space by eliminating incorrect guesses
- Breaking Enigma is widely considered to have been decisive to the Allied victory of WW2

" The plugboard and the rotors define the "key" with 158,962,555,217,826,360,000 (~1021) possible settings
- By the early 1940's, a team of British cryptologists led by Alan Turing assembled at Bletchley Park, Buckinghamshire UK were able to decode thousands of intercepted messages per day
- Relied on earlier work by Polish cryptologists, Marian Rejewski, Jerzy Różycki and Henryk Zygalski
- Fundamental weakness of Enigma was the fact that no letter ever mapped to itself
" This weakness could be exploited in "known plaintext attacks"
- The Germans always started their daily transmission with a weather report and ended it with "Heil Hitler""
© Babaoglu 2001-2022

"Perfect" Ciphers: One-Time Pad

- Symmetric cipher that achieves "perfect computational" secrecy
- Stream cipher in that each bit of the ciphertext is determined solely by the corresponding bit of the plaintext and the key
- Based on random strings and modular arithmetic operations
- More of a theoretical concept than a practical solution

- Advantages:
- Since each bit of the key is generated at random, knowing one bit of the ciphertext does not provide any information beyond guessing regarding the corresponding bit of the plaintext: guarantees computational secrecy
- Defects
- The key is as long as the plaintext message,
- Self destructs (one-time),
- Needs to be agreed upon

Plaintext:
Key (Pad): \qquad Ciphertext
Plaintext

Based on modular arithmetic:
$c_{i}=m_{i}+k_{i} \bmod 2$ (also called "exclusive or")
For textual messages: $c_{i}=m_{i}+k_{i} \bmod 26$

- In 1973, the National Bureau of Standards (now called the National Institute of Standards and Technology) publishes a "call for proposals"
- IBM submits a proposal for a system similar to an internal product called "Lucifer"
- Soon after, the National Security Agency (NSA) adopts Lucifer under the name DES
- After further studies, DES is certified and made public in 1977
- First example of a robust cipher (with NSA certification) that the research community can study
- Thereafter certified every 5 years

- Permutation
- Substitution
- Expansion
- Choice (contraction)
- Circular shift (left or right)

- Symmetric cipher (secret-key cryptography)
- Works in 64-bit blocks (not a stream cipher)
- 64-bit keys, of which only 56 bits are used (other 8 serve as parity checks)

$P=(5,1,6,3,2,4)$

One bit of input determines one bit of output

DES Replacements

- As of 1999, DES is considered insecure due to its short key
- More-recent symmetric ciphers that have replaced DES:
- Triple-DES - effectively triples the DES key size
- Blowfish - variable key sizes from 32 bits up to 448 bits
- International Data Encryption Algorithm (IDEA) - 128-bit keys
- Advanced Encryption Standard (AES) - key sizes of 128, 192 or 256 bits

