	Steganography
Cybersecurity: A (Brief) History of Cryptography Ozalp Babaoglu	 From the Greek steganós (στεγανός) — "covered", "concealed", and - graphein (γραφή) — "writing" The art of concealing information within other information Form of "security through obscurity" Can be made "keyless" Real world examples: Message written in secret ink on paper Message written on the scalp of messenger
ALMA MATER STUDIORUM – UNIVERSITA DI BOLOGNA	© Babaoglu 2001-2022 Cybersecurity 2
 Different steganography techniques depending on the type of "container" object: Text steganography Image steganography Audio steganography Video steganography Network steganography Printer steganography 	 A substitution cipher Each letter of the plaintext is replaced by a unique letter in the ciphertext Which letter? In the case of Caesar Cipher, the relation between the letter in the plaintext and that in the ciphertext is obtained through a cyclic left shift Decryption is obtained through a cyclic right shift Example: shift 3
© Babaoglu 2001-2022 Cybersecurity 3	© Babaoglu 2001-2022 Cybersecurity 4

 ignavi coram morte quidem animam trahunt, audaces autem illam non saltem advertunt LJQDYLCFRUDPCPRUWHCTXLGHPCDQLPDPCWUDKXQWCCDX GDFHVCDXWHPCLOODPCQRQCVDOWHPCDGYHUWXQW Number of positions to shift becomes the secret key of the cipher Let <i>pos</i>(<i>a</i>) be the position of letter <i>a</i> in the alphabet, Let <i>chr</i>(<i>j</i>) be the character in the <i>j</i>-th position of the alphabet, Let <i>k</i> be the key, Let <i>m</i>_i and c_i the <i>i</i>-th characters in the plaintext and ciphertext, respectively 	 Trivial to carry out a brute-force attack because: The encryption and decryption algorithms are known The number of possible keys is very small (only 25 different keys) The language of the plaintext is known and easily recognizable Example: Cryptanalysis of "AJSN ANIN ANHN"
$C(m_i) = chr (pos(m_i) + k) \mod 26$ $D(c_i) = chr (pos(c_i) - k) \mod 26$ © Babaoglu 2001-2022 Cybersecurity 5	© Babaoglu 2001-2022 Cybersecurity 6
Caesar Cipher Brute-force cryptanalysis of ciphertext "AJSN ANIN ANHN"	Substitution Ciphers
Caesar(1) = zirm zmhm zmgm Caesar(2) = yhql ylgl ylfl Caesar(3) = xgpk xkfk xkek Caesar(4) = wfoj wjej wjdj Caesar(5) = veni vidi vici Caesar(6) = udmh uhch uhbh Caesar(7) = tclg tgbg tgag Caesar(8) = sbkf sfaf sfzf Caesar(9) = raje reze reye Caesar(10) = qzid qdyd qdxd 	 Instead of substituting letters through a cyclic shift, we can substitute them through a permutation of the alphabet, which becomes the key: abcdefghijklmnopqrstuvwxyz BFRULMZQWJEASOVKHXPGDTIYCN For an alphabet of 26 letters, there are 26! possible keys since there are 26! possible permutations of 26 letters Cryptanalysis through "brute force" becomes non practical However, <i>statistical</i> cryptanalysis is still possible
© Babaoglu 2001-2022 Cybersecurity 7	© Babaoglu 2001-2022 Cybersecurity 8

Polyalfabetic Ciphers	Secret-Key Cryptography Polyalfabetic Ciphers		
 Use multiple substitution ciphers depending on the position of the letter in the plaintext 			
abcdefghijklmno a ABCDEFGHIJKLMNO b BCDEFGHIJKLMNO c CDEFGHIJKLMNO d DEFGHIJKLMNO y YZABCDEFGHIJK z ABCDEFGHIJ b BCDEFGHIJKLMNO c CDEFGHIJKLMNO c C CDEFGHIJKLMNO c C C C C C C C C C C C C C C C C C C C	 Instead of substituting single letters of the plaintext, substitute blocks of letters Example (blocks of 3) AAA → SOM AAB → PLW ABA → RTQ ABB → SLL 		
 Monoalfabetic for every k characters 	 Doing so hides information regarding the frequency of single letters and pairs of 		
Statistical attack still possible but becomes more difficult	letters		
 Basis for "rotor machines" like Enigma and Purple that were used during world war 2 			
© Babaoglu 2001-2022 Cybersecurity 13	© Babaoglu 2001-2022 Cybersecurity 14		
Secret-Key Cryptography Permutation Ciphers	Secret-Key Cryptography Permutation Ciphers		
 Maintain the same letters in the ciphertext as in the plaintext, but change their 	Can be repeated multiple times		
order			
 For example, 	4312567 key		
4312567 key	ttneapt		
attackp	etsurao plaintext		
duntilt plaintext	dhcoipk nlmpetx		
hreepmx			
	output: nscmeuoptthltednariepapttokx		
Ciphertext: ttne apte tsur aodh coip knlm petx			
© Babaoglu 2001-2022 Cybersecurity 15	© Babaoglu 2001-2022 Cybersecurity 16		

How Enigma Worked Breaking Enigma Enigma M3 Code Book (UKW-B Reflector) - April 1940 The plugboard and the rotors define the "key" with 158,962,555,217,826,360,000 (~10²¹) possible settings • By the early 1940's, a team of British cryptologists led by Alan Turing assembled at Bletchley Park, Buckinghamshire UK were able to decode thousands of intercepted GC JU KE MF OD X "Code Book" contains the settings to be used for messages per day AF BK OJ VO XH Y each day of the month Relied on earlier work by Polish cryptologists, Marian Rejewski, Jerzy Różycki and Written in soluble ink so that if a submarine sank, the CO GV IH KD MI PR Henryk Zygalski book would self-destruct A DZ HK LP RQ • Fundamental weakness of Enigma was the fact that no letter ever mapped to itself This weakness could be exploited in "known plaintext attacks" OT HE JLOK OF UZ • The Germans always started their daily transmission with a weather report and BJ HC PI RF UO ZQ AV KZ MS QP XF YU ET LD NP QS RA UW ended it with "Heil Hitler"" © Babaoglu 2001-2022 Cybersecurity 21 © Babaoglu 2001-2022 Cybersecurity

Breaking Enigma

- The British and the US Navy built electro-mechanical devices called "Bombes" to speed their search of the key space by eliminating incorrect guesses
- Breaking Enigma is widely considered to have been decisive to the Allied victory of WW2

23

"Perfect" Ciphers: One-Time Pad

22

ALMA MATER STUDIORUM – UNIVERSITA' DI BOLOGNA

© Babaoglu 2001-2022

Cybersecurity

One-time pad	One-time pad: example
 Symmetric cipher that achieves "perfect computational" secrecy Stream cipher in that each bit of the ciphertext is determined solely by the corresponding bit of the plaintext and the key Based on random strings and modular arithmetic operations More of a theoretical concept than a practical solution 	Plaintext: $1 1 0 1 0 0 1$ Key (Pad): $1 0 0 1 1 1 0$ O 0 1 1 1 1 0 O 0 1 0 1 1 1 1 1 O 0 1 0 1 0 0 1 Plaintext Based on modular arithmetic: $c_i = m_i + k_i \mod 2$ (also called "exclusive or") For textual messages: $c_i = m_i + k_i \mod 26$
© Babaoglu 2001-2022 Cybersecurity 25	© Babaoglu 2001-2022 Cybersecurity 26
Advantages and Defects	
 Advantages: Since each bit of the key is generated at random, knowing one bit of the ciphertext does not provide any information beyond guessing regarding the corresponding bit of the plaintext: guarantees <i>computational secrecy</i> Defects: The key is as long as the plaintext message, Self destructs (one-time), Needs to be agreed upon 	DES Data Encryption Standard
© Babaoglu 2001-2022 Cybersecurity 27	ALMA MATER STUDIORUM – UNIVERSITA DI BOLOGNA

 In 1973, the National Bureau of Standards (now called the National Institute of Standards and Technology) publishes a "call for proposals" IBM submits a proposal for a system similar to an internal product called "Lucifer" Soon after, the National Security Agency (NSA) adopts Lucifer under the name 	Characteristics of DES Symmetric cipher (secret-key cryptography)	
 DES After further studies, DES is certified and made public in 1977 First example of a robust cipher (with NSA certification) that the research community can study Thereafter certified every 5 years 	 Works in 64-bit <i>blocks (not</i> a stream cipher) 64-bit keys, of which only 56 bits are used (other 8 serve as parity checks) 	
Basic Operations	Permutation	
 Permutation Substitution Expansion Choice (contraction) Circular shift (left or right) 	P=(5,1,6,3,2,4)	
	One bit of input determines one bit of output	
© Babaoglu 2001-2022 Oybersecurity 31	© Babaoglu 2001-2022 Cybersecurity 32	

DES Replacements

Brute-Force Attacks on Symmetric Ciphers

• Average time required for exhaustive key search as a function of key size

- As of 1999, DES is considered *insecure* due to its short key
- More-recent symmetric ciphers that have replaced DES:
 - Triple-DES effectively triples the DES key size
 - Blowfish variable key sizes from 32 bits up to 448 bits
 - International Data Encryption Algorithm (IDEA) 128-bit keys
 - Advanced Encryption Standard (AES) key sizes of 128, 192 or 256 bits

Cybersecurity

Key Size (bits)	Number of Alternative Keys	Time Required at 1 Decryption/µs	Time Required at 10 ⁶ Decryptions/µs
32	$2^{32} = 4.3 \times 10^9$	$2^{31}\mu s = 35.8$ minutes	2.15 milliseconds
56	$2^{56} = 7.2 \times 10^{16}$	$2^{55}\mu s = 1142$ years	10.01 hours
128	$2^{128} = 3.4 \times 10^{38}$	$2^{127}\mu s = 5.4 \times 10^{24} \text{ years}$	$5.4 imes10^{18}\mathrm{years}$
168	$2^{168} = 3.7 \times 10^{50}$	$2^{167}\mu s = 5.9 \times 10^{36} years$	5.9×10^{30} years
26 characters (permutation)	$26! = 4 \times 10^{26}$	$2 \times 10^{26} \mu s = 6.4 \times 10^{12} \text{ years}$	$6.4 imes 10^6$ years

45 © Babaoglu 2001-2022

47

Cybersecurity

46

Brute-Force Attacks on Symmetric Ciphers

• A password-cracking expert has unveiled a computer cluster that can cycle through as many as 350 billion guesses per second

© Babaoglu 2001-2022

© Babaoglu 2001-2022

Cybersecurity