
ALMA MATER STUDIORUM – UNIVERSITA’ DI BOLOGNA

 Cybersecurity:
Key Management

Ozalp Babaoglu

© Babaoglu 2001-2022 Cybersecurity

Key management

■ Issues
■ Distribution of public keys
■ Distributing secret keys through a trusted server
■ Distributing secret keys through public-key protocols

2

© Babaoglu 2001-2022 Cybersecurity

Distribution of public keys

■ Public announcement
■ Public directory
■ Certificates

3 © Babaoglu 2001-2022 Cybersecurity

Public announcement

■ The user renders her public key accessible by placing it in a
public space

■ Examples: the public key is inserted as an attachment to all
outgoing mail, the public key is placed in the user’s home
page or social network profile

■ Anyone can publish their (public) key, anyone can access the
(public) key of others

4

© Babaoglu 2001-2022 Cybersecurity

Public announcement

■ Advantages
■ Simple, fast, does not require any third party intervention

■ Disadvantages
■ No guarantees: the published information can be easily

altered
■ An intruder can publish her own public key as if it belonged

to someone else — “man-in-the-middle attack”

5 © Babaoglu 2001-2022 Cybersecurity

Man-in-the-middle Attack

■ Example of an active attack
■ Takes place during the publication phase of a public key
■ X inserts herself in the communication path between A and B
■ Towards B she pretends to be A
■ Towards A she pretends to be B
■ X makes sure that all communication between A and B

passes through her

6

© Babaoglu 2001-2022 Cybersecurity

Man-in-the-middle Attack

7

A: SenderB: Receiver

Intruder X
kB[pub]
kX[pub]

kX[pub]kB[pub]

kB[pub]

© Babaoglu 2001-2022 Cybersecurity

Man-in-the-middle Attack

■ A asks B to send her public key kB[pub] (for example by
email)

■ X intercepts kB[pub] and substitutes it with her own public key
kX[pub]

■ X intercepts ciphertexts from A to B, decrypts them with
kX[priv], encrypts them with kB[pub] and forwards them to B

■ Works because A and B have no way to distinguish if they are
talking with each other or with the intruder

8

© Babaoglu 2001-2022 Cybersecurity

Back to key distribution:
Public directory

■ The directory is a list of <user, public_key> pairs
■ Directory must be maintained by a trusted party (authority)
■ Publication:

■ A user registers (in person or through some other secure method) her
public key with the authority for insertion into the directory

■ The user can modify her record through the authority after insertion
■ Access:

■ Consult a latest local copy of the directory received (periodically) from
the authority (just like a telephone directory)

■ Consult the copy maintained by the authority remotely (requires
secure and authenticated communication protocols)

9 © Babaoglu 2001-2022 Cybersecurity

Public directory

■ Disadvantages
■ Requires a trusted, impartial party — authority
■ The directory can be compromised
■ Requires communication protocols for securely publishing

and accessing keys

10

© Babaoglu 2001-2022 Cybersecurity

Certificates

■ Authenticity of keys certified by an authority by adding her
signature

■ Guarantees the identity of parties and validity of public keys (in
case they were revoked or had to be regenerated after loss of
private keys)

■ Eliminates man-in-the-middle attacks: an intruder cannot
substitute her own public key for someone else because she
cannot sign the modified certificate (without knowing the
private key of the authority)

■ Requires a trusted, impartial party (the authority)
■ (More on certificates later)

11
ALMA MATER STUDIORUM – UNIVERSITA’ DI BOLOGNA

Management of (Private)
Secret Keys

© Babaoglu 2001-2022 Cybersecurity

Management of secret keys

■ n parties (clients, server, users, processes, etc.) need to
communicate in private

■ Use private-key cryptography to establish secure
communication channels

■ If every pairwise communication is possible and needs to be
private, then we need O(n2) secret keys

■ For large n, this may be impractical since secret keys cannot
be long lived but should be replaced often

■ Can we reduce the number of private keys to O(n)?
■ Yes, if we can rely on a trusted third party

13 © Babaoglu 2001-2022 Cybersecurity

Management of secret keys

■ Assume we have a (trusted) Key Distribution Server (KDS) that
shares a different secret key with each party

■ A and B want to establish a secure communication channel
between themselves

■ One of them asks the KDS to generate a one-time session
key to use for the duration of that communication

■ Future communications between A and B will generate and
use different session keys

14

© Babaoglu 2001-2022 Cybersecurity

Management of secret keys:
Basic Protocol

■ A and KDS share KA
■ B and KDS share KB

1. A sends to KDS: {A, “request session key for B”}
2. KDS generates new session key KS and sends to A:

C(KA, {KS, C(KB, KS)})
3. A stores KS and sends to B: C(KB, KS)
4. B stores KS
5. A and B can exchange confidential messages using KS

15 © Babaoglu 2001-2022 Cybersecurity

Basic Protocol: Comments

■ B does not receive KS directly from the KDS but from A
■ Forms the basis for many other more complex protocols
■ Problems:

■ B cannot know for sure if the message was sent by A
■ Subject to “replay attacks”
■ An intruder can record and resend a ciphertext

C(KA, {KS, C(KB, KS)})
in the future as if it was new

16

© Babaoglu 2001-2022 Cybersecurity

Management of secret keys:
Needham-Schroeder Protocol

■ A and KDS share KA
■ B and KDS share KB

1. A sends to KDS: {A, “request session key for B”, N1}
2. KDS generates new session key KS and sends to A:

C(KA, {KS, A, B, N1, C(KB, {KS, A})})
3. A stores KS and sends to B: C(KB, {KS, A})
4. B stores KS and sends to A: C(KS, N2) (challenge)
5. A replies to B: C(KS, N2 +1) (response)
6. A and B can exchange confidential messages using KS

17 © Babaoglu 2001-2022 Cybersecurity

Management of secret keys:
Needham-Schroeder Protocol

18

■ N1 and N2 are called “nonces” (number used once) and
prevent replay attacks

■ The “challenge-response” handshake in steps 4 and 5 serve
to confirm that both A and B are present and willing to
communicate as well as to synchronize the communication to
using the same session key (messages need not be received
in the order in which they are sent)

■ Basis for the Kerberos authentication protocol

© Babaoglu 2001-2022 Cybersecurity

Needham-Schroeder Protocol:

Comments

■ A trusts KDS and is certain to have received the session key
from KDS because the message is encrypted with KA

■ The nonce N1 serves to match the session key received to the
request made by A in step 1

■ A is certain to reveal KS only to B because it send KS
encrypted with KB, which only B is able to decrypt

■ B trusts KDS and KDS guarantees B that the key can be
used only for communicating with A

■ B can detect replay attacks and is sure to be communicating
with A

19 © Babaoglu 2001-2022 Cybersecurity

Management of secret keys:
Needham-Schroeder Protocol

20

A B

KDS

➀ ➁
➂

➃

➄

KSKA

© Babaoglu 2001-2022 Cybersecurity

Management of secret keys:
Needham-Schroeder Protocol

21

…

A B
KS KS

© Babaoglu 2001-2022 Cybersecurity

Needham-Schroeder Protocol:

Possible Attacks

■ Message 3 (C(KB, {KS, A})) is not protected by a nonce
■ Suppose X cracks the session key KS from last week’s run of

the protocol and saves message 3 from that run
■ X can now replay that message and make A believe it is

talking to B
3. X sends to B: C(KB, {KS, A})
4. B sends to X: C(KS, N2) (challenge)
5. X replies to B: C(KS, N2 +1) (response)
■ There is no way for B to know if the KS it receives in message

3 is current
■ Fix by adding another nonce to message 3

22

© Babaoglu 2001-2022 Cybersecurity

Management of secret keys:
Needham-Schroeder Protocol

■ If A wants to communicate with a different principal C, it has to
restart the protocol with KDS to generate a new session key
KS using its shared secret key KA

■ Since the shared key is based on a secret, this results in an
increased risk that it may be compromised

23 © Babaoglu 2001-2022 Cybersecurity

Kerberos

■ Developed at MIT during the 1980’s to serve as an distributed
authentication service in an academic environment

■ Allows principals (clients running on behalf of users) to prove
their identity to servers in a secure manner

■ Each principal initially shares a secret key (password) with the
KDS

■ To reduce the exposure of the secret key, KDS used only
once per login session

■ All communication within a single session secured through
keys obtained from a Ticket Granting Server (TGS)

24

© Babaoglu 2001-2022 Cybersecurity

Kerberos

25

TGSA

KDS

➀ ➁
➂

➃

Often, co-located

KA KS

KAB

© Babaoglu 2001-2022 Cybersecurity

Kerberos

26

…

B

A
KAB

KAB

© Babaoglu 2001-2022 Cybersecurity

■ If A wants to communicate with a different principal C, it has to
restart the protocol with TGS (not KDS) to generate a new
session key KAC using the key KS (not the shared secret key
KA

Kerberos

27

TGSA

➀

➁
KS

KAC

© Babaoglu 2001-2022 Cybersecurity

Kerberos

28

…

C

A
KAC

KAC

© Babaoglu 2001-2022 Cybersecurity

Kerberos

■ In a very large system, KDS may be a performance and
reliability bottleneck

■ KDS can be replicated to obtain increased performance and
reliability using a master-slave scheme

■ In a very large systems, a single (or replicated) KDS may not
be acceptable for administrative reasons

29 © Babaoglu 2001-2022 Cybersecurity

Management of secret keys:
Kerberos

■ Advantages
■ Guarantees confidentiality and authentication
■ Achieves good performance even in the presence of many parties

and frequent key changes
■ For n parties, reduces the number of necessary secret keys from

O(n2) to O(n)
■ Defects

■ Requires the existence of a trusted (and reliable) KDS

30

© Babaoglu 2001-2022 Cybersecurity 31

Private-Key versus Public-Key Cryptography
272 CHAPTER 9 / PUBLIC-KEY CRYPTOGRAPHY AND RSA

Table 9.2 Conventional and Public-Key Encryption

Conventional Encryption Public-Key Encryption

Needed to Work: Needed to Work:

1. The same algorithm with the same key is used
for encryption and decryption.

2. The sender and receiver must share the
algorithm and the key.

Needed for Security:

1. The key must be kept secret.
2. It must be impossible or at least impractical

to decipher a message if no other information
is available.

3. Knowledge of the algorithm plus samples of
ciphertext must be insufficient to determine
the key.

1. One algorithm is used for encryption and
decryption with a pair of keys, one for encryption
and one for decryption.

2. The sender and receiver must each have one of
the matched pair of keys (not the same one).

Needed for Security:

1. One of the two keys must be kept secret.
2. It must be impossible or at least impractical

to decipher a message if no other information
is available.

3. Knowledge of the algorithm plus one of the keys
plus samples of ciphertext must be insufficient
to determine the other key.

produces a message in plaintext, X = [X1, X2, . . . , XM]. The M elements of X are
letters in some finite alphabet. The message is intended for destination B. B gener-
ates a related pair of keys: a public key, PUb, and a private key, PRb. PRb is known
only to B, whereas PUb is publicly available and therefore accessible by A.

With the message X and the encryption key PUb as input, A forms the
ciphertext Y = [Y1, Y2, . . . , YN]:

Y = E(PUb, X)

Message
source

Cryptanalyst

Key pair
source

Destination
X

^PRb

PUb

Encryption
algorithm

Decryption
algorithm

PRb

^X

Source A Destination B

Y = E[PUb, X] X =
D[PRb, Y]

Figure 9.2 Public-Key Cryptosystem: Secrecy

© Babaoglu 2001-2022 Cybersecurity

Management of secret keys:
Hybrid solutions

■ Public-key cryptography is about 1000 times slower than
private-key cryptography

■ Hybrid solutions:
■ Use asymmetric cryptography once initially to agree on a

secret key
■ Then, switch to symmetric cryptography (using the

agreed upon secret key) for all future communication

32

© Babaoglu 2001-2022 Cybersecurity

Management of secret keys:
Hybrid solution

1. A generates (KA[pub], KA[priv])
2. A sends to B:	 {KA[pub], A}
3. B generates session key KS
4. B sends to A:	 C(KA[pub], KS)
5. A decrypts to obtain KS = D(KA[priv], C(KA[pub], KS))
6. A deletes (KA[pub], KA[priv]), B deletes KA[pub]
7. A and B then switch to symmetric cryptography using

session key KS

33 © Babaoglu 2001-2022 Cybersecurity

Management of secret keys:
Hybrid solution

■ Guarantees confidentiality and authentication
■ Remains subject to man-in-the-middle attacks
■ General solution based on certificates to guarantee mutual

authentication while avoiding man-in-the-middle attacks
■ Basis for SSL

34

