
ALMA MATER STUDIORUM – UNIVERSITA’ DI BOLOGNA

 Cybersecurity:
Authentication and
Digital Signatures

Ozalp Babaoglu

© Babaoglu 2001-2022 Cybersecurity

Prologue

■ In the beginning, the main goal of cryptography was
confidentiality

■ In modern usage, especially over public networks like the
Internet, we need to add new properties
■ Integrity
■ Authentication
■ Digital signatures

2

© Babaoglu 2001-2022 Cybersecurity

Prologue

■ Integrity: the receiver of a message must be able to verify that
the content of the received message corresponds to that of
the sent message

■ Authentication: the receiver of a message must be able to
verify the identity of the sender

■ Digital signature: composite property that is necessary when
the sender and receiver of a message are mutually non
trusting — property that is similar to a paper-and-pen
signature

3 © Babaoglu 2001-2022 Cybersecurity

Hash functions

■ f: hash function
■ x: pre-digest
■ y: hash value (also known as digest)
■ X: domain of f
■ Y: range of f
■ Used in programming to implement the “dictionary” data

structure for fast lookups
4

f: X ⟼ Y
| X | = n, | Y | = m, n≫m

given x ∈ X, y = f(x) ∈ Y

© Babaoglu 2001-2022 Cybersecurity

Properties of hash functions

Balanced

■ f has to be “many-to-one” but it is “balanced”

5

X Y

Xi = {x ∈ X : f(x) = yi}, 1 ≤ i ≤ m

| X1 | ≈| X2 | ≈ � ≈ | Xm |

© Babaoglu 2001-2022 Cybersecurity

Properties of hash functions

Dispersal

■ f is such that values very close together in X are mapped to
values far apart in Y

6

X Y

© Babaoglu 2001-2022 Cybersecurity

Cryptographic hash functions

A cryptographic (or one-way) hash function is a hash function
that satisfies also the following properties:
1. For any x ∈ X, it is easy to compute f(x)
2. For any y ∈ Y, it is computationally infeasible to find x ∈ X

such that f(x) = y
3. Given any x1, it is computationally infeasible to find an x2

different from x1 such that f(x1) = f(x2)

7 © Babaoglu 2001-2022 Cybersecurity

Cryptographic hash functions

8

Consider the 8-bit block parity hash function:
m=1101001010001001111001010001010010100010000101

b1=11010010
b2=10001001
b3=11100101
b4=00010100
b5=10100010
b6=00010100

digest=00011100 (column-wise ⊕)

© Babaoglu 2001-2022 Cybersecurity

Cryptographic hash functions

9

■ 8-bit block parity satisfies the balanced and dispersal
properties of hash functions

■ But does not satisfy the second and third properties of
cryptographic hash functions

■ Example (violation of property 2):
■ Given a digest, it is trivial to find a pre-digest that maps to it

digest(m)=10011100
m=0101001011001001111001010101010010100010000101

© Babaoglu 2001-2022 Cybersecurity
00110100

11110010

11000101
00110000

10001101

10100010

m2

11010010
10001001
11100101
00010100
10100010
00010100

m1

Cryptographic hash functions

10

Example (violation of property 3):

Find an m2 (different from m1) that has the same digest as m1
We know what the digest of m1 is:

m1=1101001010001001111001010001010010100010000101

digest(m1)=00011100
We can invert any even number of bits in m1 that are in the
same column and the parity will not change:

digest(m2)=00011100

© Babaoglu 2001-2022 Cybersecurity

Cryptographic hash functions:
Summary

Hash function properties:
■ Arbitrary size input / Fixed-size output
■ Efficiently computable
■ Balanced / Dispersal
Security properties:
■ (Hiding) For any y ∈ Y, it is computationally infeasible to find

x ∈ X such that f(x) = y
■ (Collision-freedom) Given any x1, it is computationally

infeasible to find another x2 different from x1 such that
f(x1) = f(x2)

11 © Babaoglu 2001-2022 Cybersecurity

Comments

■ Collision freedom and hiding can be violated trivially through
brute force

■ Compute the hash of all possible values for pre-digest until
you find one that produces the desired digest

■ Has to be rendered computationally infeasible by making sure
that domain X is very large

■ Implication of collision freedom:
■ Given two digests f(x1) and f(x2) that are equal, then it is

safe to assume that the pre-digests are equal: x1 = x2
■ In other words, the digest of an object can serve as a proxy

for the object
12

© Babaoglu 2001-2022 Cybersecurity

Practical Cryptographic hash functions

■ Practical examples:
■ MD2, MD4, MD5 — 128 bits
■ Snefru — 128 bits, 256 bits
■ HAVAL — Variable-size digest
■ SHA-0, SHA-1, SHA-2 — Variable-size digest
■ SHA-3 (won NIST competition in 2012 as the Keccak algorithm)

13 © Babaoglu 2001-2022 Cybersecurity

Cryptographic hash functions: MD5

■ One of a series of algorithms originally designed by Ron Rivest
■ 128-bit digest as defined in IETF RFC 132
■ Example:

14

MD5("The quick brown fox jumps over the lazy fog")
 = f0f0996b26d7e959fe3652b4976fc62d

MD5("The quick brown fox jumps over the lazy dog")
 = 9e107d9d372bb6826bd81d3542a419d6

http://onlinemd5.com

© Babaoglu 2001-2022 Cybersecurity

Cryptographic hash functions: MD5

■ Known to be vulnerable to certain collision attacks
■ CERT Vulnerability Note VU#836068:

■ “Cryptanalytic research published in 1996 described a weakness in
the MD5 algorithm that could result in collision attacks, at least in
principle. Further research published in 2004 demonstrated the
practical ability for an attacker to generate collisions and in 2005 the
ability for an attacker to generate colliding x.509 certificates was
demonstrated.”

15 ALMA MATER STUDIORUM – UNIVERSITA’ DI BOLOGNA

Digital Signatures

© Babaoglu 2001-2022 Cybersecurity

Paper-and-pen Signatures

■ Only one individual can generate it
■ Cannot be falsified by others
■ Cannot be reused (on different documents)
■ The signed document cannot be modified (after signing)
■ Cannot be repudiated by the signer

17 © Babaoglu 2001-2022 Cybersecurity

Digital Signatures

■ Must guarantee the same properties as a paper-and-pen
signature

■ Since any implementation of a digital signature after all is a
string of bits, it can be copied/duplicated perfectly (while a
paper-and-pen signature cannot)

18

© Babaoglu 2001-2022 Cybersecurity

Digital Signatures: Properties

■ Authentic: Proof that the signer, and no one else, deliberately
signed the document

■ Not reusable: Signature part of a single document and
cannot be moved to another document

■ Unalterable: After it is signed, the document cannot be
altered

■ Cannot be repudiated: The signer cannot claim to not have
signed the document

19 © Babaoglu 2001-2022 Cybersecurity

Digital Signatures: Operations

Two operations
■ Sign: Generate the signature for message m by A

■ Sign(m, A) ⟼ σ

■ Verify: Verify the signature σ as belonging to A
■ Verify(σ, A) ⟼ {true, false}

20

© Babaoglu 2001-2022 Cybersecurity

Protocol 1:
Public-key (Asymmetric) Cryptography

21

A: Sign
s=D(m,kA[priv])
send <A,m,s>

B: Verify
receive <A,m,s>
m*=C(s,kA[pub])

if m*= m
then true else false

■ A wants to send B the message m signed with its signature

© Babaoglu 2001-2022 Cybersecurity

Observations

■ The cipher must be commutative
D(C(m)) = C(D(m)) = m

■ RSA is commutative
■ The signed message is not addressed to any specific receiver
■ Anyone can verify the signed message
■ The message is not confidential since the act of verification

reveals its content
■ The length of the sent message is double the length of the

original message

22

© Babaoglu 2001-2022 Cybersecurity

Properties of Protocol 1

■ Authentic?
■ The signature can be generated by only one party — the one who

knows kA[priv], in other words A
■ Not reusable?

■ The signature cannot be copied/reused since it is a function of the
corresponding message

■ Unalterable?
■ The corresponding message cannot be modified (by anyone other

than A) since doing so would require regenerating the signature
■ Cannot be repudiated?

■ Cannot be repudiated by A since only it could have generated the
signature (since only it knows kA[priv])

23 © Babaoglu 2001-2022 Cybersecurity

Protocol 2:

Add confidentiality and specific destination

24

A: Sign
c=C(m,kB[pub]) //encrypt
s=D(c,kA[priv]) //sign
send <A,c,s>

B: Verify
c*=C(s,kA[pub]) //verify

m*=D(c*,kB[priv]) //decrypt

if m* makes sense  
then true else false

© Babaoglu 2001-2022 Cybersecurity

Shortcomings

■ Requires the recipient to decide if the decrypted
message “makes sense”

25 © Babaoglu 2001-2022 Cybersecurity

Protocol 3:
Based on Cryptographic Hash Functions

26

Sign:
s=D(f(m),kA[priv]) // sign the digest
c=C(m,kB[pub]) // encrypt
send <A,c,s>

Verify:
m*=D(c,kB[priv]) // decrypt
if f(m*)=C(s,kA[pub]) // verify

then true else false

Let f() be a cryptographic hash function

© Babaoglu 2001-2022 Cybersecurity

Remaining Issues

■ A signed message can be replayed at a later time:
“Transfer $100 from A to B’s account”

■ Need to add timestamps
■ How do A and B obtain each other’s public keys?
■ Simple minded message exchange subject to “man-in-the-

middle” attack
■ More about man-in-the-middle later

27 © Babaoglu 2001-2022 Cybersecurity

Message Authentication Codes (MAC)

■ A short, fixed-length digest of the message that can be
generated only by one specific sender

■ Can be used to authenticate the sender and verify the
integrity of the message

■ Obtained through a cryptographic hash function together with
a secret key that is shared between the sender and receiver

28

© Babaoglu 2001-2022 Cybersecurity

MAC: Example

■ Given a cryptographic hash function f() , we can generate the
MAC of message m by applying f() to the concatenation of m
with a secret key k

MAC(m) = f(m | k)
■ Sender sends the tuple: (m,MAC(m))
■ The receiver computes the MAC of the received message m

and compares it to the MAC contained in the message
■ If they coincide, the receiver has authenticated the sender and

verified the integrity of the message since no other party could
have sent the matching tuple and the contents of the
message could not have been altered

29 © Babaoglu 2001-2022 Cybersecurity

MAC using symmetric cryptography

■ A and B share a secret key k
1. A sends (m, f(m | k)) to B
2. B receives (µ, ω)
3. B knows k thus can compute f(µ | k)
4. B compares f(µ | k) to ω

5. If f(µ | k)= ω, then B concludes that µ=m (integrity) and
that the sender of m was indeed A (authentication)

30

© Babaoglu 2001-2022 Cybersecurity

MAC: Comments

■ It is easy to compute the MAC of a message but it is difficult
to compute the message given its MAC

■ Example of a “Keyed Hash Function”
■ Similar to digital signatures but weaker since non repudiation

is not satisfied (the destination can claim to have received any
message it likes)

■ Based on a shared secret key with all of its associated
shortcomings

31

