
ALMA MATER STUDIORUM – UNIVERSITA’ DI BOLOGNA

 Cybersecurity:
Public-key Cryptography
and the RSA Algorithm

Ozalp Babaoglu

© Babaoglu 2001-2022 Cybersecurity 2

Public-Key Cryptography

■ “Is it possible to exchange information confidentially without
having to first agree on a key?”

■ Breakthrough idea due to Diffie, Hellman and Merkle in their
1976 works

■ Respond “yes” to the interrogative as long if the “one-way
trap-door” concept can be implemented mathematically

© Babaoglu 2001-2022 Cybersecurity 3

RSA Algorithm

■ One of the first practical responses to the challenge
posed by Diffie-Hellman was developed by Ron Rivest,
Adi Shamir, and Len Adleman of MIT in 1977

■ Resulting algorithm is known as RSA
■ Based on properties of prime numbers and results from

number theory

© Babaoglu 2001-2022 Cybersecurity 4

Notation

Let

ℤ = { . . . , − 3, − 2, − 1, 0, 1, 2, 3, . . . } denote the set of integers

ℤn = {0, 1, 2, 3, . . . , n − 1} denote the set of integers modulo n

φ(n) = |ℤ*n | denote Euler’s totient function

GCD(m,n) denote the greatest common divisor of m and n

ℤ*n denote the integers relatively prime with n

© Babaoglu 2001-2022 Cybersecurity 5

Some Facts

If p and q are two primes, then
φ(p) = (p − 1)
φ(pq) = (p − 1)(q − 1)

If GCD(n, m) = 1 (n and m are relatively prime or coprime) then

φ(nm) = φ(n)φ(m)

© Babaoglu 2001-2022 Cybersecurity

Example

■ Let n=15
■ What is !(15)=?
■ Integers relatively prime with 15: {1, 2, 4, 7, 8, 11, 13, 14}
■ Therefore, !(15)=8
■ Observe that 15=3×5
■ Therefore, !(n)=!(3×5)

 =!(3)×!(5)
 =(3−1)×(5−1)
 =2×4
 =8

6

© Babaoglu 2001-2022 Cybersecurity 7

RSA

■ To define RSA, we need to specify the following operations:
■ How to generate the keys
■ How to encrypt: C(m)
■ How to decrypt: D(c)

© Babaoglu 2001-2022 Cybersecurity 8

■ Choose two very large primes p, q
■ Compute n = p×q
■ Compute !(n) = (p−1)(q−1)
■ Choose 1< e < !(n) such that GCD(e, !(n)) = 1 (e and !(n)

are coprime)
■ Compute d as the multiplicative inverse of e:

d×e mod !(n) = 1

■ Public key = (e,n)
■ Private key = (d,n)

RSA: Generation of the keys

© Babaoglu 2001-2022 Cybersecurity 9

C(m) = me mod n

RSA: Encryption

© Babaoglu 2001-2022 Cybersecurity 10

D(c) = cd mod n

RSA: Decryption

© Babaoglu 2001-2022 Cybersecurity 11

■ Assume we choose p=5, q=11 (not realistic!!)
■ Therefore n = 5×11 = 55, !(n) = (5 − 1)(11 − 1) = 40
■ Choose e = 7 (verify that GCD(e, !(n)) = GCD(7, 40) = 1)
■ Compute d as the multiplicative inverse of e:

 d×e mod !(n) = 1
 d×7 mod 40 = 1

RSA: Example 1

© Babaoglu 2001-2022 Cybersecurity

RSA: Example 1

■ d can be computed using the extended Euclidean algorithm
■ Euclidean algorithm computes GCD(e, !(n))
■ Extended Euclidean algorithm expresses GCD(e, !(n)) as a

linear combination of e and !(n)

12

© Babaoglu 2001-2022 Cybersecurity

RSA: Example 1

■ Extended Euclidean algorithm for GCD(7,40)
40 =
7 = ()5 + ()
5 = ()2 + ()
■ Back substitution: Start with last equation in terms of 1
1 = 5 − 2(2)
1 = 5 − 2(7 − (1)5)
1 = 3(5) − 2(7)
1 = 3(40 − 5(7)) − 2(7)
1 = 3(40) − 17(7)
■ The answer is the coefficient 17
■ Because it is negative, we have to subtract it from #(n)

d = 40 − 17 = 23
13

()7 + ()5 5
1 2
2 1 Stop when we reach 1 (GCD(7,40))

Substitute for 2

Substitute for 5
Distribute the 2 and collect terms

Stop when we reach e (7)

© Babaoglu 2001-2022 Cybersecurity

RSA: Example 1

■ Verify:
with d=23 e=7, 23×7 mod 40 = 1 (23×7=161=40×4+1)

■ Therefore, the private-public key pair becomes:
 K[priv] = (23,40) K[pub] = (7,40)

14

© Babaoglu 2001-2022 Cybersecurity 15

■ Assume we choose p=53, q=61 (still not realistic!!)
■ Therefore n=53×61=3233, !(n)=(53 − 1)(61 − 1)=3120
■ Choose e=17 (verify that GCD(e, !(n))=1)
■ Compute d=2753 and verify that e×d mod !(n) = 1
 e×d = 2753 × 17 = 46801
 e×d mod !(n) = 46801 mod 3120 = 1
 since 15 × 3120 + 1 = 46801
■ Therefore, the private-public key pair becomes:
 K[priv] = (2753,3233) K[pub] = (17,3233)

RSA: Example 2

© Babaoglu 2001-2022 Cybersecurity 16

■ Let the plaintext message be “hi”
■ Encode message as a numeric value using the

position of the letters in the alphabet: m = 0809
■ Encryption: 80917 mod 3233 = 1171 = c
■ Decryption: 11712753 mod 3233 = 809 = m
■ Decode numeric value as text: 08 = h 09 = i

RSA: Example 2

© Babaoglu 2001-2022 Cybersecurity 17

Remaining Questions

■ How to encode the plaintext message as an integer m such
that 0 < m < n ? (Need to divide long messages into blocks)

■ How can we guarantee that encryption and decryption are
indeed inverses; in other words, D(C(m)) = m?

■ How can we argue that RSA is secure?
■ What about the efficiency of RSA?
■ How to carry out the various steps in the algorithm?

ALMA MATER STUDIORUM – UNIVERSITA’ DI BOLOGNA

Correctness, Security
and Efficiency of

RSA

© Babaoglu 2001-2022 Cybersecurity

Correctness of RSA

■ Need to show

19

∀m: D(C(m)) = m

© Babaoglu 2001-2022 Cybersecurity

■ Classical results from number theory
■ Euler’s Theorem:

if GCD(m,n) = 1 then m#(n) mod n = 1

20

Correctness of RSA

© Babaoglu 2001-2022 Cybersecurity 21

Correctness of RSA

■ Properties of modular arithmetic:
■ if x mod n = 1, then for any integer y, we have xy mod n = 1
■ if x mod n = 0, then for any integer y, we have xy mod n = 0
■ (mx mod n)y = (mx)y mod n

■ Let m be an integer encoding of the original message such
that 0 < m < n

■ By definition, we have
D(C(m)) = D(me mod n)

= (me mod n)d mod n
= (me)d mod n

 = med mod n
© Babaoglu 2001-2022 Cybersecurity

■ By construction, we know that ed mod #(n) = 1
■ Therefore, there must exist a positive integer k such that

ed = k#(n) +1
■ Substituting, we obtain

D(C(m)) = med mod n = mk#(n) +1 mod n

 = mmk#(n) mod n
 = m·1 = m

■ follows by Euler’s Theorem when m is relatively prime to n
(but can be extended to hold for all m) and properties of
modular arithmetic

22

Correctness of RSA

© Babaoglu 2001-2022 Cybersecurity

Security of RSA

■ How can the confidentiality (secrecy) property of RSA be
compromised?

■ Brute force attack
■ Try all possible private keys

■ Defense (as for any other crypto-system)
■ Use large enough key space

23 © Babaoglu 2001-2022 Cybersecurity

Security of RSA

■ Mathematical attacks:
■ Factorize n into its prime factors p and q, compute #(n) and then

compute d=e−1(mod #(n))
■ Compute #(n) without factorizing n, and then compute

d=e−1(mod #(n))

■ Both approaches are characterized by the difficulty of
factoring n

24

© Babaoglu 2001-2022 Cybersecurity

The Factoring Problem

■ No theorems or lower-bound results
■ Only empirical evidence about its difficulty
■ No guarantee that what is secure today will remain secure

tomorrow

25 © Babaoglu 2001-2022 Cybersecurity

The Factoring Problem

■ 1GHz Pentium is about a 250-MIPS machine
26

Number of
decimal digits

Number of
bits Date achieved MIPS-years Algorithm

100 332 April 1991 7 Quadratic Sieve

110 365 April 1992 75 Quadratic Sieve

120 398 June 1993 830 Quadratic Sieve

129 428 April 1994 5000 Quadratic Sieve

130 431 April 1996 1000 Generalized number field sieve

140 465 February 1999 2000 Generalized number field sieve

155 512 August 1999 8000 Generalized number field sieve

160 530 April 2003 - Lattice sieve

174 576 December 2003 - Lattice sieve

200 663 May 2005 37500
Lattice sieve

(18 months using 80 Opteron
processors)

© Babaoglu 2001-2022 Cybersecurity

RSA Factoring Challenge

■ Launched by RSA Laboratories in 1991 to motivate research
in computational number theory

■ Published semi-primes (numbers with exactly two prime
factors) with 100 to 617 decimal digits

■ Offered cash prizes for factoring them
■ Declared inactive in 2007

27 © Babaoglu 2001-2022 Cybersecurity

Some RSA Numbers
■ RSA-155=109417386415705274218097073220403576120037329454492059909138421314763499842889

34784717997257891267332497625752899781833797076537244027146743531593354333897

=102639592829741105772054196573991675900716567808038066803341933521790711307779 ×
106603488380168454820927220360012878679207958575989291522270608237193062808643

■ RSA-160=215274110271888970189601520131282542925777358884567598017049767677813314521885
9135673011059773491059602497907111585214302079314665202840140619946994927570407753

= 45427892858481394071686190649738831656137145778469793250959984709250004157335359 ×
47388090603832016196633832303788951973268922921040957944741354648812028493909367

■ RSA-174=188198812920607963838697239461650439807163563379417382700763356422988859715234
66548531906060650474304531738801130339671619969232120573403187955065699622130516875930
7650257059

=398075086424064937397125500550386491199064362342526708406385189575946388957261768583
317 ×
472772146107435302536223071973048224632914695302097116459852171130520711256363590397527

■ RSA-200=279978339112213278708294676387226016210704467869554285375600099293261284001076
09345671052955360856061822351910951365788637105954482006576775098580557613579098734950
144178863178946295187237869221823983

=353246193440277012127260497819846436867119740019762502364930346877612125367942320005
8547956528088349 ×
7925869954478333033347085841480059687737975857364219960734330341455767872818152135381
409304740185467

28

© Babaoglu 2001-2022 Cybersecurity

The Factoring Problem
State-of-the-art

■ As of November 2010, the 15 semi-primes from RSA-100 to
RSA-200 plus RSA-768 had been factored

■ As of the end of 2007, special-form numbers of up to 750
bits and general-form numbers of up to about 520 bits can be
factored in a few months on a few PCs by a single person
without any special mathematical experience

29 © Babaoglu 2001-2022 Cybersecurity

Breaking News!!!

30

© Babaoglu 2001-2022 Cybersecurity

Breaking News!!!

■ “A crippling flaw in a widely used code library has fatally undermined the
security of millions of encryption keys used in some of the highest-
stakes settings, including national identity cards, software- and
application-signing, and trusted platform modules protecting government
and corporate computers”

■ “The weakness allows attackers to calculate the private portion of any
vulnerable key using nothing more than the corresponding public
portion”

■ “The flaw resides in the Infineon-developed RSA Library version
v1.02.013, specifically within an algorithm it implements for RSA primes
generation”

■ Factoring a 2048-bit RSA key generated with the faulty Infineon library
takes a maximum of 100 years (on average only half that) and keys with
1024 bits take a maximum of only three months

31 © Babaoglu 2001-2022 Cybersecurity

Efficiency of RSA

■ How to compute (xz mod n) efficiently:

32

x32

x → x2 → x4 → x8 → x16 → x32

5 multiplications total since 5 = log2(32)

© Babaoglu 2001-2022 Cybersecurity

Efficiency of RSA

■ What if z is not a power of two?
■ Note that from xy we can obtain x2y and x2y+1 with at most

two additional multiplications:
x2y = (xy)2 = xy ⋅xy

x2y+1 = x2y ⋅x = xy ⋅xy ⋅x
■ How to decompose z as a linear combination of x2y and x2y+1

33 © Babaoglu 2001-2022 Cybersecurity

Efficiency of RSA

■ Suppose we need to compute 128454 mod 3233
■ Write the exponent 54 as a binary number: 1101102
■ Now we need to compute 12841101102 mod 3233

34

© Babaoglu 2001-2022 Cybersecurity

Efficiency of RSA

35

■ Thus, we can compute xy doing only 2⌈log2(y)⌉ multiplications

■ For the time being, ignore mod and consider the exponent
one bit at a time from msb to lsb

■ Example: 12841101102
128412 1284
1284112 12842 ⋅ 1284
12841102 (12842 ⋅ 1284)2
128411012 ((12842 ⋅ 1284)2)2 ⋅ 1284

12841101102

© Babaoglu 2001-2022 Cybersecurity

Efficiency of RSA

■ Property of modular arithmetic:
(a × b) mod n = [(a mod n) × (b mod n)] mod n

■ Therefore, each of the intermediate results can be reduced by
modulo n

36

© Babaoglu 2001-2022 Cybersecurity

Efficiency of RSA

37

■ This makes the computation practical and avoids overflows

■ Example: 12841101102 mod 3233

128412 (1284) mod 3233
1284112 (12842 ⋅ 1284) mod 3233
12841102 ((12842 ⋅ 1284)2) mod 3233
128411012 (((12842 ⋅ 1284)2)2 ⋅ 1284) mod 3233

ALMA MATER STUDIORUM – UNIVERSITA’ DI BOLOGNA

Generation of Large
Primes

© Babaoglu 2001-2022 Cybersecurity

Generation of Large Primes

■ For small primes, we can look them up in a table
■ But what if we want primes that have hundreds of digits?
■ How are prime numbers distributed?
■ What is the probability that a number n picked at random is

prime?
Pr(n picked at random is prime) ~ 1/log(n)

39 © Babaoglu 2001-2022 Cybersecurity

Generation of Large Primes

■ For example, if n has 10 digits, then Pr(n is prime) ~ 1/23
■ If n has 100 digits, then Pr(n is prime) ~ 1/230
■ These probabilities are too small for us to use the randomly

generated number as if it were prime
■ If we had a test for primality, p_test(n), we could use it to

reject the randomly generated number if the test fails and
generate a new one until the test succeeds

40

n=rand() #generate a large random number
while p_test(n) == false:
 n=rand()

© Babaoglu 2001-2022 Cybersecurity

Primality Testing

■ How to implement p_test(n)such that it responds “true”
if n is prime, “false” otherwise (composite)

■ Naïve method: check wether any integer k from 2 to n−1
divides n

■ Rather than testing all integers up to n−1, if suffices to test
only up to √n

■ Complexity: O(√n) or O(2½m) where m=log(n) is the size of
the input in bits

41 © Babaoglu 2001-2022 Cybersecurity

Primality Testing

■ Until recently, no polynomial (in the size of the input) algorithm
existed for primality testing

■ If we assume the generalized Riemann hypothesis,
an O((log n)4) for primality testing exists

■ In 2002, Agrawal, Kayal and Saxena (AKS) discovered an
O((log n)6) for primality testing

■ Even though these algorithms are polynomial, they are too
expensive to be practical

■ Resort to “probabilistic” primality testing

42

© Babaoglu 2001-2022 Cybersecurity

Probabilistic Primality Testing

■ Fermat’s little theorem:
if n is prime, then for any integer a, 0<a<n

a(n−1) mod n = 1
■ Result of Pomerance (1981):

■ What is the probability that Fermat’s theorem holds even
when n is not a prime?

■ Let n be a large integer (more than 100 digits)
■ For any positive random integer a less than n

Pr[(n is not prime) and (a(n-1) mod n = 1)] ≃ 10−13

43 © Babaoglu 2001-2022 Cybersecurity

Probabilistic Primality Testing

44

def p_test(n):
 a = rand() mod n
 x = a^(n−1) mod n
 if x == 1:
 return “true”
 else:
 return “false”

© Babaoglu 2001-2022 Cybersecurity

Probabilistic Primality Testing

■ If the test “fails”, then n is not prime
■ If the test “passes”, then n may still not be a prime with

probability 10−13
■ This probability is small but may still not be acceptable
■ Idea: repeat the test k times with different values of a

each time

45 © Babaoglu 2001-2022 Cybersecurity

Probabilistic Primality Testing

46

def p_test(n, k):
 repeat k times:
 a = rand() mod n
 x = a^(n−1) mod n
 if x != 1:
 return “false”
 return “true”

© Babaoglu 2001-2022 Cybersecurity

Probabilistic Primality Testing

■ Probability of accepting n that is not prime is reduced to
(10−13)k

■ On the average, how many numbers are tested before
accepting?

log(n)/2
■ Example: for a 200-bit random number, need about

log(2200)/2=70 trials

47 © Babaoglu 2001-2022 Cybersecurity

Other Public-key Schemes

■ While it is relatively easy to calculate exponentials modulo
a prime, it is very difficult to calculate discrete logarithms

■ The discrete logarithm of g base b is the integer k solving
the equation bk=g where b and g are elements of a finite
group

■ Public-key schemes based on discrete logarithms
■ Diffie-Hellman
■ El Gamal

48

