

Some Facts

If GCD(n,m) = 1 (*n* and *m* are *relatively prime* or *coprime*) then $\varphi(nm) = \varphi(n)\varphi(m)$

If p and q are two primes, then

 $\varphi(p) = (p-1)$ $\varphi(pq) = (p-1)(q-1)$

© Babaoglu 2001-2022

© Babaoglu 2001-2022

Correctness of RSA

- Properties of modular arithmetic:
 - if $x \mod n = 1$, then for any integer y, we have $x^y \mod n = 1$
 - if $x \mod n = 0$, then for any integer y, we have $x^y \mod n = 0$
 - $(m^x \mod n)^y = (m^x)^y \mod n$
- Let *m* be an integer encoding of the original message such that 0 < m < n
- By definition, we have

 $= (m^e \mod n)^d \mod n$

Cybersecurity

 $= (m^e)^d \mod n$ $= m^{ed} \mod n$

Security of RSA

- How can the confidentiality (secrecy) property of RSA be compromised?
- Brute force attack
 - Try all possible private keys
- Defense (as for any other crypto-system)
 - Use large enough key space

Correctness of RSA

• By construction, we know that $ed \mod \varphi(n) = 1$ • Therefore, there must exist a positive integer k such that $ed = k\varphi(n) + 1$ Substituting, we obtain $D(C(m)) = m^{ed} \mod n = m^{k\varphi(n)+1} \mod n$ $= m m^{k\varphi(n)} \mod n$ $= m \cdot 1 = m$ • follows by Euler's Theorem when m is relatively prime to n(but can be extended to hold for all m) and properties of modular arithmetic © Babaoglu 2001-2022 Cybersecurity 21 22 Security of RSA Mathematical attacks: • Factorize *n* into its prime factors *p* and *q*, compute $\varphi(n)$ and then compute $d = e^{-1} (\mod \varphi(n))$ • Compute $\varphi(n)$ without factorizing *n*, and then compute $d = e^{-1} (\mod \varphi(n))$ Both approaches are characterized by the difficulty of factoring n

© Babaoglu 2001-2022

23

© Babaoglu 2001-2022

The Factoring Problem

The Factoring Problem

- Only empirical evidence about its difficulty
- No guarantee that what is secure today will remain secure tomorrow

© Babaoglu 2001-2022	Cybersecurity	25	 1GHz Pentium is abo Babaoglu 2001-2022
	RSA Factori	ng Challenge	
			RSA-155 =10941738641570 3478471799725789126733
			=102639592829741105772 1066034883801684548209
Launched by I	RSA-160 =21527411027188 9135673011059773491059		
in computation	= 4542789285848139407 4738809060383201619663		
 Published sen factors) with 1 	y two prime	RSA-174 =18819881292060 6654853190606065047430 7650257059	
,	prizes for factoring them		=39807508642406493739 317 × 47277214610743530253622
 Declared inact 	ive in 2007		RSA-200 =27997833911221 0934567105295536085606 1441788631789462951872
			=35324619344027701212' 8547956528088349 × 792586995447833303334' 409304740185467
© Babaoglu 2001-2022	Cybersecurity	27	© Babaoglu 2001-2022

Number of decimal digits	Number of bits	Date achieved	MIPS-years	Algorithm
100	332	April 1991	7	Quadratic Sieve
110	365	April 1992	75	Quadratic Sieve
120	398	June 1993	830	Quadratic Sieve
129	428	April 1994	5000	Quadratic Sieve
130	431	April 1996	1000	Generalized number field sieve
140	465	February 1999	2000	Generalized number field sieve
155	512	August 1999	8000	Generalized number field sieve
160	530	April 2003	-	Lattice sieve
174	576	December 2003	-	Lattice sieve
200	663	May 2005	37500	Lattice sieve (18 months using 80 Opteron processors)

oout a 250-MIPS machine Cybersecurity

26

Some RSA Numbers

705274218097073220403576120037329454492059909138421314763499842889 332497625752899781833797076537244027146743531593354333897

72054196573991675900716567808038066803341933521790711307779 × 0927220360012878679207958575989291522270608237193062808643

- 888970189601520131282542925777358884567598017049767677813314521885 59602497907111585214302079314665202840140619946994927570407753
 - 071686190649738831656137145778469793250959984709250004157335359 × 6633832303788951973268922921040957944741354648812028493909367
- 607963838697239461650439807163563379417382700763356422988859715234304531738801130339671619969232120573403187955065699622130516875930

397125500550386491199064362342526708406385189575946388957261768583

223071973048224632914695302097116459852171130520711256363590397527

213278708294676387226016210704467869554285375600099293261284001076 061822351910951365788637105954482006576775098580557613579098734950 7237869221823983

127260497819846436867119740019762502364930346877612125367942320005

347085841480059687737975857364219960734330341455767872818152135381

The Factoring Problem State-of-the-art

- As of November 2010, the 15 semi-primes from RSA-100 to RSA-200 plus RSA-768 had been factored
- As of the end of 2007, special-form numbers of up to 750 bits and general-form numbers of up to about 520 bits can be factored in a few months on a few PCs by a single person without any special mathematical experience

Cybersecurity

Breaking News!!!

- "A crippling flaw in a widely used code library has fatally undermined the security of millions of encryption keys used in some of the higheststakes settings, including national identity cards, software- and application-signing, and trusted platform modules protecting government and corporate computers"
- "The weakness allows attackers to calculate the private portion of any vulnerable key using nothing more than the corresponding public portion"
- "The flaw resides in the Infineon-developed RSA Library version" v1.02.013, specifically within an algorithm it implements for RSA primes generation"
- Factoring a 2048-bit RSA key generated with the faulty Infineon library takes a maximum of 100 years (on average only half that) and keys with 1024 bits take a maximum of only three months

© Babaoglu 2001-2022

29

Cybersecurity

30

Breaking News!!!

ars technica 🔍 bize it tech science policy cars gaming & culture forums 🚍

Millions of high-security crypto keys crippled by newly discovered flaw

Factorization weakness lets attackers impersonate key holders and decrypt their data. DAN GOODIN - 10/16/2017, 1:00 PM

© Babaoglu 2001-2022

Efficiency of RSA

• How to compute ($x^z \mod n$) efficiently:

© Babaoglu 2001-2022

- $x \rightarrow x^2 \rightarrow x^4 \rightarrow x^8 \rightarrow x^{16} \rightarrow x^{32}$
- 5 multiplications total since $5 = log_2(32)$

 χ^{32}

Efficiency of RSA

• Example: 1284¹¹⁰¹¹⁰₂ mod 3233

1284^{12}	(1284) mod 3233
1284^{112}	$(1284^2 \cdot 1284) \mod 3233$
1284^{1102}	$((1284^2 \cdot 1284)^2) \mod 3233$
1284^{11012}	$(((1284^2 \cdot 1284)^2)^2 \cdot 1284) \mod 3233$

This makes the computation practical and avoids overflows

Cybersecurity

Generation of Large Primes

Generation of Large Primes

- For small primes, we can look them up in a table
- But what if we want primes that have hundreds of digits?
- How are prime numbers distributed?
- What is the probability that a number n picked at random is prime?

 $Pr(n \text{ picked at random is prime}) \sim 1/log(n)$

Generation of Large Primes

• For example, if *n* has 10 digits, then $Pr(n \text{ is prime}) \sim 1/23$

ALMA MATER STUDIORUM – UNIVERSITA DI BOLOG

- If *n* has 100 digits, then $Pr(n \text{ is prime}) \sim 1/230$
- These probabilities are too small for us to use the randomly generated number as if it were prime
- If we had a test for primality, p_test(n), we could use it to reject the randomly generated number if the test fails and generate a new one until the test succeeds

```
n=rand() #generate a large random number
while p_test(n) == false:
    n=rand()
```

© Babaoglu 2001-2022

39

© Babaoglu 2001-2022

37

Primality Testing

- How to implement p_test(n) such that it responds "true" if n is prime, "false" otherwise (composite)
- Naïve method: check wether any integer k from 2 to n-1 divides n
- Rather than testing all integers up to n-1, if suffices to test only up to \sqrt{n}
- Complexity: $O(\sqrt{n})$ or $O(2^{\frac{1}{2}m})$ where m = log(n) is the size of the input in bits

Cybersecurity

Primality Testing

- Until recently, no polynomial (in the size of the input) algorithm existed for primality testing
- If we assume the generalized Riemann hypothesis, an $O((log n)^4)$ for primality testing exists
- In 2002, Agrawal, Kayal and Saxena (AKS) discovered an O((log n)⁶) for primality testing
- Even though these algorithms are polynomial, they are too expensive to be practical

Cybersecurity

Resort to "probabilistic" primality testing

© Babaoglu 2001-2022

© Babaoglu 2001-2022

• Fermat's little theorem: if *n* is prime, then for any integer *a*, 0 < a < n

 $a^{(n-1)} \mod n = 1$

- Result of Pomerance (1981):
 - What is the probability that Fermat's theorem holds even when n is not a prime?
 - Let *n* be a *large integer* (more than 100 digits)
 - For any positive random integer *a* less than *n* $Pr[(n \text{ is not prime}) \text{ and } (a^{(n-1)} \mod n = 1)] \approx 10^{-13}$

Probabilistic Primality Testing

```
def p_test(n):
    a = rand() mod n
    x = a^(n-1) mod n
    if x == 1:
        return "true"
    else:
        return "false"
```

© Babaoglu 2001-2022

43

41

42

Probabilistic Primality Testing

- If the test "fails", then n is not prime
- If the test "passes", then n may still not be a prime with probability 10^{-13}
- This probability is small but may still not be acceptable
- Idea: repeat the test k times with different values of a each time

Cybersecurity

```
def p_test(n, k):
    repeat k times:
    a = rand() mod n
    x = a^(n-1) mod n
    if x != 1:
        return "false"
    return "true"
```

Probabilistic Primality Testing

- Probability of accepting n that is not prime is reduced to $(10^{-13})^k$
- On the average, how many numbers are tested before accepting?

log(n)/2

 Example: for a 200-bit random number, need about log(2²⁰⁰)/2=70 trials

Other Public-key Schemes

 While it is relatively easy to calculate exponentials modulo a prime, it is very difficult to calculate *discrete logarithms*

Cybersecurity

- The discrete logarithm of g base b is the integer k solving the equation b^k=g where b and g are elements of a finite group
- Public-key schemes based on discrete logarithms
 - Diffie-Hellman
 - El Gamal

© Babaoglu 2001-2022

© Babaoglu 2001-2022

© Babaoglu 2001-2022

47

45

Cybersecurity