Cybersecurity: Public-key Cryptography and the RSA Algorithm

Ozalp Babaoglu

alma mater studiorun- universita di bologina

RSA Aigorithm

- One of the first practical responses to the challenge posed by Diffie-Hellman was developed by Ron Rivest, Adi Shamir, and Len Adleman of MIT in 1977
- Resulting algorithm is known as RSA
- Based on properties of prime numbers and results from number theory

[^0]Cybersecurity

- "Is it possible to exchange information confidentially without having to first agree on a key?"
- Breakthrough idea due to Diffie, Hellman and Merkle in their 1976 works
" Respond "yes" to the interrogative as long if the "one-way trap-door" concept can be implemented mathematically

Let
$\mathbb{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}$ denote the set of integers
$\mathbb{Z}_{n}=\{0,1,2,3, \ldots, n-1\}$ denote the set of integers modulo n $\operatorname{GCD}(m, n)$ denote the greatest common divisor of m and n \mathbb{Z}_{n}^{*} denote the integers relatively prime with n $\varphi(n)=\left|\mathbb{Z}_{n}^{*}\right|$ denote Euler's totient function

If $G C D(n, m)=1$ (n and m are relatively prime or coprime) then

$$
\varphi(n m)=\varphi(n) \varphi(m)
$$

If p and q are two primes, then

$$
\begin{aligned}
& \varphi(p)=(p-1) \\
& \varphi(p q)=(p-1)(q-1)
\end{aligned}
$$

- To define RSA, we need to specify the following operations:
- How to generate the keys
- How to encrypt: $C(m)$
- How to decrypt: $D(c)$
- Let $n=15$
- What is $\varphi(15)=$?
- Integers relatively prime with $15:\{1,2,4,7,8,11,13,14\}$
- Therefore, $\varphi(15)=8$
- Observe that $15=3 \times 5$
- Therefore, $\varphi(n)=\varphi(3 \times 5)$

$$
\begin{aligned}
& =\varphi(3) \times \varphi(5) \\
& =(3-1) \times(5-1) \\
& =2 \times 4 \\
& =8
\end{aligned}
$$

© Babaoglu 2001-2022

RSA: Generation of the keys

- Choose two very large primes p, q
- Compute $n=p \times q$
- Compute $\varphi(n)=(p-1)(q-1)$
- Choose $1<e<\varphi(n)$ such that $G C D(e, \varphi(n))=1(e$ and $\varphi(n)$ are coprime)
- Compute d as the multiplicative inverse of e :

$$
d \times e \bmod \varphi(n)=1
$$

- Public key = (e, n)
- Private key = (d, n)

$C(m)=m^{e} \bmod n$

RSA: Example 1

- Assume we choose $p=5, q=11$ (not realistic!!)
- Therefore $n=5 \times 11=55, \varphi(n)=(5-1)(11-1)=40$
- Choose $e=7$ (verify that $\operatorname{GCD}(e, \varphi(n))=\operatorname{GCD}(7,40)=1)$
- Compute d as the multiplicative inverse of e :
$d \times e \bmod \varphi(n)=1$
$d \times 7 \bmod 40=1$

$D(c)=c^{d} \bmod n$

RSA: Example 1

- d can be computed using the extended Euclidean algorithm
- Euclidean algorithm computes $G C D(e, \varphi(n))$
- Extended Euclidean algorithm expresses $G C D(e, \varphi(n))$ as a linear combination of e and $\varphi(n)$
- Extended Euclidean algorithm for $G C D(7,40)$
$40=(5) 7+(5)$
$7=(1) 5+(2)$
$5=(2) 2+(1) \quad$ Stop when we reach $1(G C D(7,40))$
- Back substitution: Start with last equation in terms of 1
$1=5-2(2) \quad$ Substitute for 2
$1=5-2(7-(1) 5) \quad$ Distribute the 2 and collect terms
$1=3(5)-2(7) \quad$ Substitute for 5
$1=3(40-5(7))-2(7)$
$1=3(40)-17(7) \quad$ Stop when we reach $e(7)$
- The answer is the coefficient 17
- Because it is negative, we have to subtract it from $\varphi(n)$ $d=40-17=23$
© Babaoglu 2001-2022

RSA: Example 2

- Assume we choose $p=53, q=61$ (still not realistic!!)
- Therefore $n=53 \times 61=3233, \varphi(n)=(53-1)(61-1)=3120$
- Choose $e=17$ (verify that $G C D(e, \varphi(n))=1)$
- Compute $d=2753$ and verify that $e \times d \bmod \varphi(n)=1$

$$
e \times d=2753 \times 17=46801
$$

$e \times d \bmod \varphi(n)=46801 \bmod 3120=1$
since $15 \times 3120+1=46801$

- Therefore, the private-public key pair becomes:
$K[$ priv $]=(2753,3233) \quad K[p u b]=(17,3233)$
- Verify:
with $d=23 e=7,23 \times 7 \bmod 40=1(23 \times 7=161=40 \times 4+1)$
- Therefore, the private-public key pair becomes:

$$
K[p r i v]=(23,40) \quad K[p u b]=(7,40)
$$

RSA: Example 2

- Let the plaintext message be "hi"
- Encode message as a numeric value using the position of the letters in the alphabet: $m=0809$
- Encryption: $809{ }^{17} \bmod 3233=1171=c$
- Decryption: $1171^{2753} \bmod 3233=809=m$
- Decode numeric value as text: $08=h \quad 09=i$
- How to encode the plaintext message as an integer m such that $0<m<n$? (Need to divide long messages into blocks)
- How can we guarantee that encryption and decryption are indeed inverses; in other words, $D(C(m))=m$?
- How can we argue that RSA is secure?
- What about the efficiency of RSA?
- How to carry out the various steps in the algorithm?

Correctness, Security and Efficiency of RSA

\qquad

- Classical results from number theory
- Euler's Theorem:

$$
\text { if } G C D(m, n)=1 \text { then } m^{\varphi(n)} \bmod n=1
$$

- Properties of modular arithmetic:
- if $x \boldsymbol{\operatorname { m o d }} n=1$, then for any integer y, we have $x^{y} \bmod n=1$
- if $x \bmod n=0$, then for any integer y, we have $x^{y} \bmod n=0$
- $\left(m^{x} \bmod n\right)^{y}=\left(m^{x}\right)^{y} \bmod n$
- Let m be an integer encoding of the original message such that $0<m<n$
- By definition, we have
$D(C(m))=D\left(m^{e} \bmod n\right)$

$$
\begin{aligned}
& =\left(m^{e} \bmod n\right)^{d} \bmod n \\
& =\left(m^{e}\right)^{d} \bmod n \\
& =m^{\text {ed }} \bmod n
\end{aligned}
$$

Security of RSA

- How can the confidentiality (secrecy) property of RSA be compromised?
- Brute force attack
- Try all possible private keys
- Defense (as for any other crypto-system)
- Use large enough key space

- By construction, we know that ed $\bmod \varphi(n)=1$
- Therefore, there must exist a positive integer k such that $e d=k \varphi(n)+1$
- Substituting, we obtain

$$
\begin{aligned}
D(C(m)) & =m^{e d} \bmod n=m^{k \varphi(n)+1} \bmod n \\
& =m m^{k \varphi(n)} \bmod n \\
& =m \cdot 1=m
\end{aligned}
$$

- follows by Euler's Theorem when m is relatively prime to n (but can be extended to hold for all m) and properties of modular arithmetic

Security of RSA

- Mathematical attacks:
- Factorize n into its prime factors p and q, compute $\varphi(n)$ and then compute $d=e^{-1}(\bmod \varphi(n))$
- Compute $\varphi(n)$ without factorizing n, and then compute $d=e^{-1}(\bmod \varphi(n))$
- Both approaches are characterized by the difficulty of factoring n
- No theorems or lower-bound results
- Only empirical evidence about its difficulty
- No guarantee that what is secure today will remain secure tomorrow

RSA Factoring Challenge

- Launched by RSA Laboratories in 1991 to motivate research in computational number theory
- Published semi-primes (numbers with exactly two prime factors) with 100 to 617 decimal digits
- Offered cash prizes for factoring them
- Declared inactive in 2007

Some RSA Numbers

■ RSA-155=109417386415705274218097073220403576120037329454492059909138421314763499842889 34784717997257891267332497625752899781833797076537244027146743531593354333897 $=102639592829741105772054196573991675900716567808038066803341933521790711307779 \times$ 106603488380168454820927220360012878679207958575989291522270608237193062808643

- RSA-160=215274110271888970189601520131282542925777358884567598017049767677813314521885 9135673011059773491059602497907111585214302079314665202840140619946994927570407753
$=45427892858481394071686190649738831656137145778469793250959984709250004157335359 \times$ 47388090603832016196633832303788951973268922921040957944741354648812028493909367
■ RSA-174=188198812920607963838697239461650439807163563379417382700763356422988859715234 66548531906060650474304531738801130339671619969232120573403187955065699622130516875930 7650257059
$=398075086424064937397125500550386491199064362342526708406385189575946388957261768583$ $317 \times$
472772146107435302536223071973048224632914695302097116459852171130520711256363590397527
- RSA-200 $=279978339112213278708294676387226016210704467869554285375600099293261284001076$ 09345671052955360856061822351910951365788637105954482006576775098580557613579098734950 144178863178946295187237869221823983
=353246193440277012127260497819846436867119740019762502364930346877612125367942320005 7925869954478333033347085841480059687737975857364219960734330341455767872818152135381 409304740185467

Millions of high-security crypto keys crippled by newly discovered flaw

Factorization weakness lets attackers impersonate key holders and decrypt their data. DAN GOOOIN- 10/6/62007, 1:00 PM

© Babaoglu $2001-2022$

- "A crippling flaw in a widely used code library has fatally undermined the security of millions of encryption keys used in some of the higheststakes settings, including national identity cards, software- and application-signing, and trusted platform modules protecting govemment and corporate computers"
- "The weakness allows attackers to calculate the private portion of any vulnerable key using nothing more than the corresponding public portion"
- "The flaw resides in the Infineon-developed RSA Library version v1.02.013, specifically within an algorithm it implements for RSA primes generation"
- Factoring a 2048-bit RSA key generated with the faulty Infineon library takes a maximum of 100 years (on average only half that) and keys with 1024 bits take a maximum of only three months
- What if z is not a power of two?
- Note that from x^{y} we can obtain $x^{2 y}$ and $x^{2 y+1}$ with at most two additional multiplications:

$$
\begin{aligned}
& x^{2 y}=\left(x^{y}\right)^{2}=x^{y} \cdot x^{y} \\
& x^{2 y+1}=x^{2 y} \cdot x=x^{y} \cdot x^{y} \cdot x
\end{aligned}
$$

- How to decompose z as a linear combination of $x^{2 y}$ and $x^{2 y+1}$

mfficiency of RSA

- For the time being, ignore mod and consider the exponent one bit at a time from msb to Isb
- Example: $1284^{110110_{2}}$

```
1284\mp@subsup{}{}{12}}128
1284 }\mp@subsup{}{}{112
1284 1102} (12842\cdot1284) 2
1284 11012 ((12842 \cdot1284) 2 )
        \vdots
    1284 1101102
```

- Thus, we can compute x^{y} doing only $2\left\lceil\log _{2}(y)\right\rceil$ multiplications
- Suppose we need to compute $1284^{54} \bmod 3233$
- Write the exponent 54 as a binary number: 110110_{2}
- Now we need to compute $1284{ }^{110110}{ }_{2} \bmod 3233$

Efficiency of RSA

- Property of modular arithmetic:
$(a \times b) \bmod n=[(a \bmod n) \times(b \bmod n)] \bmod n$
- Therefore, each of the intermediate results can be reduced by modulo n
- Example: $1284^{110110_{2}} \bmod 3233$
$1284^{12} \quad(1284) \bmod 3233$
$1284^{11_{2}} \quad\left(1284^{2} \cdot 1284\right) \bmod 3233$
$1284^{110_{2}} \quad\left(\left(1284^{2} \cdot 1284\right)^{2}\right) \bmod 3233$
$1284^{1101_{2}} \quad\left(\left(\left(1284^{2} \cdot 1284\right)^{2}\right)^{2} \cdot 1284\right) \bmod 3233$
- This makes the computation practical and avoids overflows
© Babaoglu 2001-2022
Cybersecunity

Generation of Large Primes

- For small primes, we can look them up in a table
- But what if we want primes that have hundreds of digits?
- How are prime numbers distributed?
- What is the probability that a number n picked at random is prime?

$$
\operatorname{Pr}(n \text { picked at random is prime }) \sim 1 / \log (n)
$$

Generation of Large Primes

alima mater stumorum-univeritr di bologn

Generation of Large Primes

- For example, if n has 10 digits, then $\operatorname{Pr}(n$ is prime $) \sim 1 / 23$
- If n has 100 digits, then $\operatorname{Pr}(n$ is prime $) \sim 1 / 230$
- These probabilities are too small for us to use the randomly generated number as if it were prime
- If we had a test for primality, p_test (n), we could use it to reject the randomly generated number if the test fails and generate a new one until the test succeeds

```
n=rand() #generate a large random number
while p_test(n) == false:
    n=rand()
```

- How to implement p_test (n) such that it responds "true" if n is prime, "false" otherwise (composite)
- Naïve method: check wether any integer k from 2 to $n-1$ divides n
- Rather than testing all integers up to $n-1$, if suffices to test only up to $\sqrt{ } n$
- Complexity: $O(\sqrt{ } n)$ or $O\left(2^{1 / 2 m}\right)$ where $m=\log (n)$ is the size of the input in bits

Probabilistic Primality Testing

- Fermat's little theorem:
if n is prime, then for any integer $a, 0<a<n$

$$
a^{(n-1)} \bmod n=1
$$

- Result of Pomerance (1981):
- What is the probability that Fermat's theorem holds even when n is not a prime?
- Let n be a large integer (more than 100 digits)
- For any positive random integer a less than n
$\operatorname{Pr}\left[(n\right.$ is not prime $)$ and $\left.\left(a^{(n-1)} \bmod n=1\right)\right] \simeq 10^{-13}$

- Until recently, no polynomial (in the size of the input) algorithm existed for primality testing
- If we assume the generalized Riemann hypothesis, an $O\left((\log n)^{4}\right)$ for primality testing exists
- In 2002, Agrawal, Kayal and Saxena (AKS) discovered an $O\left((\log n)^{6}\right)$ for primality testing
- Even though these algorithms are polynomial, they are too expensive to be practical
- Resort to "probabilistic" primality testing

[^1]Cybersecurity

Probabilistic Primality Testing

```
def p_test(n):
    a = rand() mod n
    x = a^(n-1) mod n
    if x == 1:
                            return "true"
        else:
            return "false"
```

- If the test "fails", then n is not prime
- If the test "passes", then n may still not be a prime with probability 10^{-13}
- This probability is small but may still not be acceptable
- Idea: repeat the test k times with different values of a each time

Probabilistic Primality Testing

- Probability of accepting n that is not prime is reduced to $\left(10^{-13}\right)^{k}$
- On the average, how many numbers are tested before accepting?

$$
\log (n) / 2
$$

- Example: for a 200-bit random number, need about $\log \left(2^{200}\right) / 2=70$ trials

```
def p_test(n, k):
repeat k times:
a = rand() mod n
x = a^(n-1) mod n
if x != 1:
return "false"
return "true"
```

© Babaoglu $2001-2022$ \qquad 46

Other Public-key Schemes

- While it is relatively easy to calculate exponentials modulo a prime, it is very difficult to calculate discrete logarithms
- The discrete logarithm of g base b is the integer k solving the equation $b^{k}=g$ where b and g are elements of a finite group
- Public-key schemes based on discrete logarithms
- Diffie-Hellman
- El Gamal

[^0]: © Babaoglu $2001-2022$

[^1]: © Babaoglu 2001-2022

