

Introduction

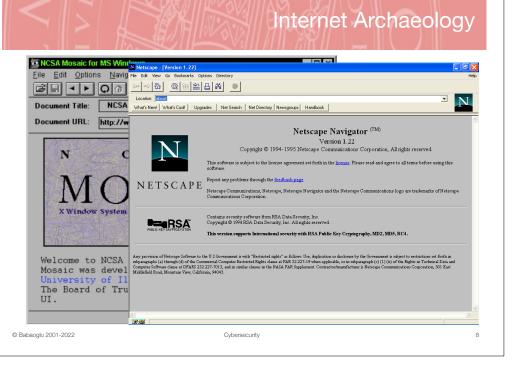
Security at the application level

- S/MIME
- PGP
- Kerberos
- SET Secure Electronic Transfer
- Security at the transport level
 - SSL (Secure Sockets Layer)
- Security at the network level
 - IPSec

© Babaoglu 2001-2022

Cybersecurity

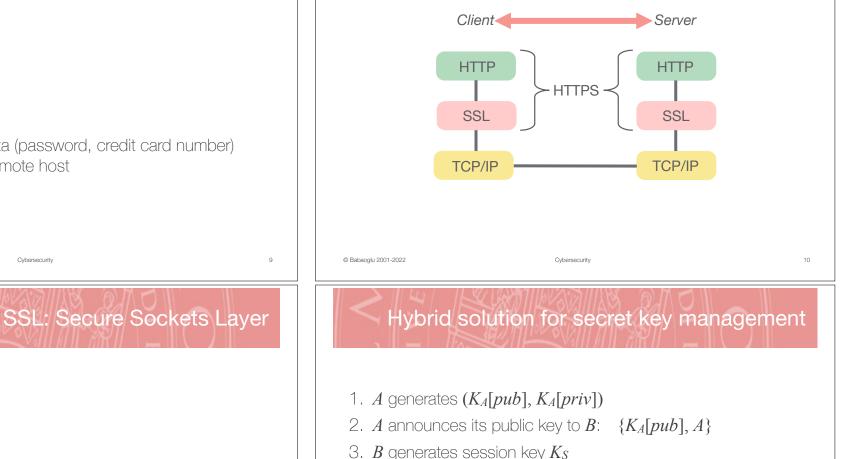
Internet Archaeology


- Pre 1993 Internet was essentially text only: Archie, Gopher, WAIS
- 1993 National Center for Supercomputing Applications at the University of Illinois at Urbana–Champaign releases Mosaic, the first graphic web browser
- 1994 Mosaic Communications Corporation founded
- October 1994 Mosaic Netscape 0.9 released
- November 1994 Company renamed Netscape Communications Corporation and its product renamed Netscape Navigator
- Netscape dominated the browser market until around 2000 until it lost to *Microsoft Internet Explorer*

SSL: Secure Sockets Layer

- Probably the most widely-used security service on the Internet
- A general purpose service implemented as a set of protocols that rely on TCP
- Proposed by Netscape Communications Corporation in 1994 as part of their Navigator browser
- Adopted as a standard by the IETF under the name *Transport* Layer Security (TLS)
- Guarantees confidentiality, integrity and authentication for Internet communications

Cybersecurity


© Babaoglu 2001-2022

© Babaoglu 2001-2022

SSL: Secure Sockets Layer

SSL: Secure Sockets Layer

- 4. B sends session key to A: $C(K_A[pub], K_S)$
- 5. A decrypts to obtain $K_S = D(K_A[priv], C(K_A[pub], K_S))$
- 6. A can delete $(K_A[pub], K_A[priv])$
- 7. A and B switch to symmetric cryptography using the session key K_S

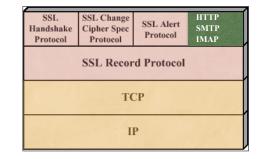
E-commerce

- On-line trading
- Internet banking
- Any time confidential data (password, credit card number) needs to be sent to a remote host

Cybersecurity

Based on

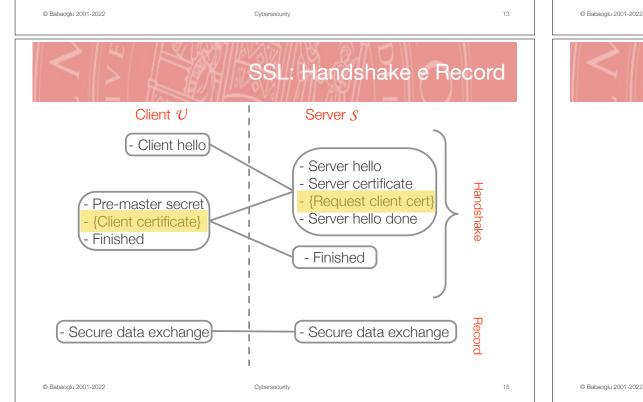
© Babaoglu 2001-2022

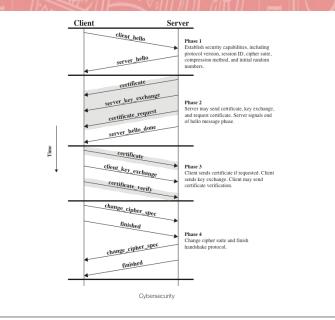

- Symmetric ciphers
- Asymmetric ciphers
- Certificates
- Message Authentication Code (MAC)

11

© Babaoglu 2001-2022

SSL: Implementation


- SSL Handshake protocol creates a channel that is secure, reliable and authenticated between client and server
- SSL *Record protocol* transports messages in encapsulated blocks that are encrypted and authenticated



- Handshake: uses public-key cryptography to establish a secure channel between client and server such that
 - there is mutual *authentication*
 - client and server agree on encryption/decryption algorithms
 - client and server agree on a secret key
- *Record*: uses *private-key cryptography* with the agreed upon algorithms and secret key to confidentially exchange data

Cybersecurity

16

14

SSL – Sessions and Connections

- SSL Session
 - A long-lasting association between a client and a server
 - Created by the Handshake Protocol
 - Associated to a set of security parameters
 - Used to avoid the expensive negotiation of new security parameters

Cybersecurity

- SSL Connection
 - A transport connection between a client and a server
 - Connections are transient
 - Every connection is associated with one session
- Between any pair of parties
 - There may be multiple connections
 - Normally there is a single session

© Babaoglu 2001-2022

SSL – Sessions and Connections

- Connection State
 - Client/Server random: Random byte sequences used as identifier chosen by the client and the server at each connection
 - Client/Server write MAC secret key: Secret key used in Message Authentication Code (MAC) operations on data sent by the client/ server
 - Client/Server write secret key: Encryption key for data encrypted by the client/server and decrypted by the server/client
 - Sequence Numbers

SSL – Sessions and Connections

- Session state
 - Session identifier: arbitrary byte sequence to identify an active session
 - Peer certificate: an X509.v3 certificate of the peer; may be null
 - Compression method: used to compress data prior to encryption
 - *Cipher spec*: specifies the data encryption algorithm
 - Master secret: 48 byte secret shared between client and server

© Babaoglu 2001-2022

© Babaoglu 2001-2022

Cybersecurity

SSL Authentication

- Authentication of the server to the client through a certificate is mandatory
- Authentication of the client to the server is optional
- If requested by the server, the client usually authenticates itself through a mechanism that does *not* require certificates such as login/password
- Because certificates for SSL are usually expensive and clients should not be expected to incur their cost for accessing a secure server

19

SSL Authentication

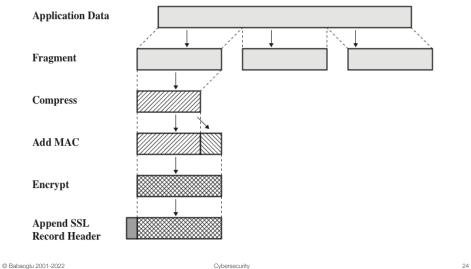
TLS/SSL Certificate prices from Thawte

Issuance Time	Most certificates issued in 1-3 days	Most certificates issued in one day	Most certificates issued in minutes
	Best for: Credit Card Transacting Websites Banks and Financial Institutions	Best for: Enterprise Applications Business Websites	Best for: Securing Internal Servers Private Websites
Price: • 1 Year 2 Years	\$344	\$218	\$149
		add wildcard + \$470	add wildcard + \$596
	BUY NOW RENEW	BUY NOW RENEW	BUY NOW RENEW
Identity validation and customer assurance	Prominent visible assurance to increase trust and boost customer confidence	Visible assurance to customers that your website and domain are tied to your organization.	SSL encryption with padlock icon

SSL – Record Protocol

- The original message is fragmented into 2¹⁴ byte blocks
- Each fragment is numbered, (optionally) compressed, extended with MAC, encrypted with the master secret key and transmitted using TCP
- The receiver reverses the operations and reconstructs the original message which is passed to the upper application layer (HTTP, SMTP, IMAP, etc.)

SSL – Record Protocol


- SSL Record Protocol provides
 - **Confidentiality**: The Handshake Protocol defines a shared secret key that is used to encrypt SSL payloads
 - Integrity: The Handshake Protocol defines a shared secret key that is used to generate Message Authentication Codes attached to payloads

© Babaoglu 2001-2022

Cybersecurity

22

SSL – Record Protocol

© Babaoglu 2001-2022

23

21

MAC in SSL Record Protocol

- Each fragment is numbered and extended with MAC
- MAC is computed as hash (MD5 or SHA-1) of the block (*fragment* | *seq_no* | master secret | *padding*)
- Where seq_no is 64 bits and therefore will not repeat within a single session
- Sequence numbers allow replay attacks within a single session to be detected
- They also serve to detect lost blocks (that need to be regenerated and resent)
- MAC are encrypted together with the data using symmetric cryptography with the master secret

Importance of random bytes

- The "client hello", "server hello" and pre-master secret messages of the handshake protocol contain sequences of random bytes
- The secrecy of the session key, and thus the security of the communication channel created by SSL, depends heavily on the randomness (unpredictability) of these bytes
- Thus, it is crucial that the SSL implementation be based on high-quality pseudo-random generators

Cybersecurity

https://cc.dcsec.uni-hannover.de/

SSL Cipher Suite Details of Your Browser DC Sec						
This websites gives	you information on the SSL cipher suite	s your browser	supports for securing HTTPS connections.			
Cipher Suites	Supported by Your Browse	er (ordered	by preference):			
Spec Cipher	Cipher Suite Name		Description			
(c0,2b) ECDHE			Key exchange: ECDH, encryption: AES, MAC: SHA256.			
(c0,2f) ECDHE			Key exchange: ECDH, encryption: AES, MAC: SHA256.			
(00,9e) DHE-RS	,9e) DHE-RSA-AES128-GCM-SHA256		Key exchange: DH, encryption: AES, MAC: SHA256.			
	(cc,14) ECDHE-ECDSA-CHACHA20-POLY1305- SHA256		Key exchange: ECDH, encryption: ChaCha20 Poly1305, MAC: SHA256.			
(cc,13) ECDHE	ECDHE-RSA-CHACHA20-POLY1305-SHA256		Key exchange: ECDH, encryption: ChaCha20 Poly1305, MAC: SHA256.			
	(15) DHE-RSA-CHACHA20-POLY1305-SHA256		Key exchange: DH, encryption: ChaCha20 Poly1305, MAC: SHA256.			
	0a) ECDHE-ECDSA-AES256-SHA		Key exchange: ECDH, encryption: AES, MAC: SHA1.			
			Key exchange: ECDH, encryption: AES, MAC: SHA1.			
			Key exchange: DH, encryption: AES, MAC: SHA1.			
			Key exchange: ECDH, encryption: AES, MAC: SHA1.			
			Key exchange: ECDH, encryption: AES, MAC: SHA1.			
(00,33) DHE-RSA-AES128-SHA		128 Bit	Key exchange: DH, encryption: AES, MAC: SHA1.			
(00,9c) RSA-AES128-GCM-SHA256		128 Bit 256 Bit	Key exchange: RSA, encryption: AES, MAC: SHA256.			
			Key exchange: RSA, encryption: AES, MAC: SHA1.			
			Key exchange: RSA, encryption: AES, MAC: SHA1.			
(00,0a) RSA-3E	DES-EDE-SHA	168 Bit	Key exchange: RSA, encryption: 3DES, MAC: SHA1.			
Further inform	ation:					
User-Agent: Mozilla/5.0 (Macintosh Chrome/46.0.2490.80			S X 10_11_1) AppleWebKit/537.36 (KHTML, like Gecko)			
Preferred SSL/TLS v		u Galar/037.30				
SNI information:	cc.dcsec.uni-hannov	er de				
SSL stack current tir			tot send a time value.			
OUL STRUK CUITERIT III	no. The file stack of you	n promati ulu n	or some a unite value.			

© Babaoglu 2001-2022 This connection uses TLSv1.2 with ECDHE-RSA-AES128-GCM-SHA256 and a 128 Bit key for encryption

28

26

SSL and browsers

SSL and browsers

https://www.ssllabs.com/ssltest/viewMyClient.html

You are	here: Home > Projects > SSL Client Test
	L/TLS Capabilities of Your Browser Other User Agents 3 gent: Mozille5 0 (Macinton); Intel Marc OS X 10_15_4) AppleWeeKIR005.1.15 (04TML, like Geole) Version/13.1 05.1.15
	Protocol Support
	Your user agent has good protocol support. Your user agent supports TLS 1.2 and TLS 1.3, which are recommended protocol version at the moment.
	CVE-2020-0601 (CurveBall) Vulnerability
	Your user agent is not vulnerable. For more information about the CVE-2020-0601 (CurveBall) Vulnerability, please go to <u>CVE-2020-0601</u> . To test manually, click <u>here</u> . Your user agent is not vulnerable if it fails to connect to the site.
	Logjam Vulnerability
	Your user agent is not vulnerable. For more information about the Logian attack, please go to <u>weakdh org</u> . To test manually, click here. Your user agent is not vulnerable if it fails to connect to the site.

https://badssl.com Inis Connection Is Not Private This Connection Is Not Private This verbails may be impersonaling "untrusted-root.badissl.com" to steal your personal or financial information. You should go back to the previous page. Constant of the previous page.<

Locality San Francisco Organization BadSSL

Common Name BadSSL Untrusted Root Certificate Authority

Common Name *badssl.com Issuer Name Country or Region US State/Province California Locality San Francisco Organization BadSsl.

SSL Certificate Errors

© Babaoglu 2001-2022

29

Safari warns you when a website has a certificate that is not valid. This may happen if the website is misconfigured or an attacker has compromised your connection.

Cybersecurity

30

ОК