

Cybersecurity: Cloud, IoT, Wireless Networks

Ozalp Babaoglu

ALMA MATER STUDIORUM – UNIVERSITA' DI BOLOGN

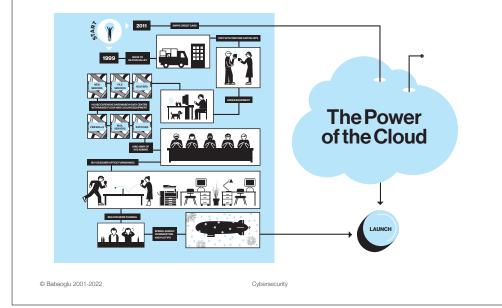
What is Cloud Computing?

- Clouds are the *utilities* for computing, just like conventional utilities for water, gas and electricity
- Cloud computing is a remote virtual pool of on-demand shared resources offering compute, storage, database and network services that can be rapidly deployed at scale
- Cloud computing is on-demand delivery of IT resources over the Internet with pay-as-you-go pricing
- Cloud computing allows hardware to be treated (licensed, installed, configured, initialized, sized) just like software

 Many organizations have an economic and technological incentive to move a portion or all of their IT operations to an Internet-connected infrastructure known as *cloud computing*

© Babaoglu 2001-2022

Cybersecurity


Why the Cloud?

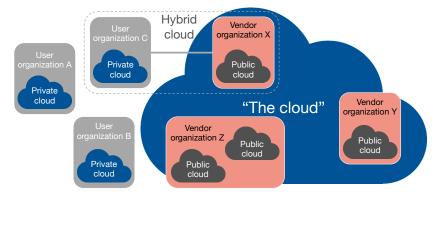
Cloud Computing

- According to one estimate, by 2021 94% of all workloads and computing tasks will run in some form of cloud environment
- By adopting cloud computing, a business is transformed from a *capital expenditure* (CapEx) to *operating expenditure* (OpEx) model
- Allows an organization to focus on its *core business* instead of IT operations
- Business built on *standardized*, *up-to-date* and consolidated
 IT
- Transfers *investment*, *risk* and *human resources* to the cloud provider

© Babaoglu 2001-2022

Why Cloud Computing?

Cloud Deployment Models


Cloud Computing Characteristics

- Broad network access: capabilities available over the network and accessed through standard mechanisms
- On-demand self-service: cloud customers can unilaterally provision computing resources without operator interaction
- Rapid elasticity: ability to dynamically expand and reduce resources according to demand
- Shared infrastructure and resource pooling: cloud provider's resources are pooled to service multiple cloud customers

Cybersecurity

 Measured service: transparent, fine-grained metering capability for billing — pay-per-usage

- Based on the identities of the *provider* and *user* roles
 - Private cloud
 - Public cloud
 - Hybrid cloud

© Babaoglu 2001-2022

© Babaoglu 2001-2022

Private Cloud

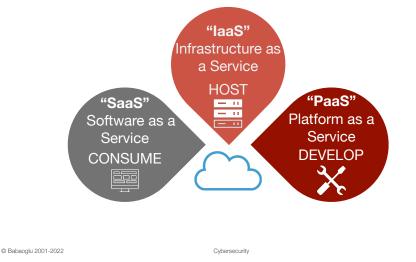
- Provider and users belong to the *same organization*
- Services built to be *compatible* with generic cloud interfaces (private or public)
- No risk of vendor lock-in
- Security and data protection in the hands of the user
- Costs for hardware, space and administration similar to onpremise non-cloud architectures
- Private cloud may be suitable for those applications that have strict *security* or *regulatory compliances* for data and computations needs or where the *migration costs* are excessive

Cybersecurity

Public Cloud

- Provider and users belong to *different organizations*
- Providers pursue *commercial interests*
- Users *do not invest* in procurement, operation and maintenance of hardware
- Possible risk of vendor lock-in

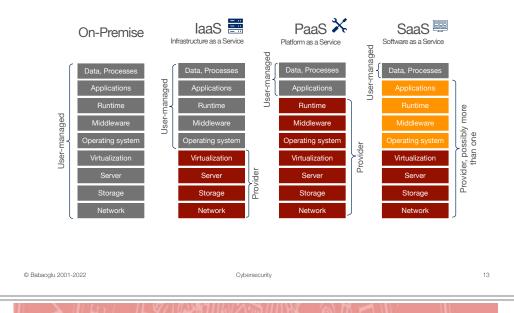
© Babaoglu 2001-2022


• Security and data protection guarantees largely dependent on the cloud provider and may be determining factors

Cybersecurity

Hybrid Cloud

- Services from *public and private clouds* are used together within the *same organization*
- Usage examples
 - Augment private cloud capacity with public clouds at times of *peak demand*
 - Delegate certain functions such as *data backup* to public clouds
 - Leverage the security of private clouds together with the scale of public clouds



© Babaoglu 2001-2022

11

laaS vs. PaaS vs. SaaS

Cloud Computing Security Threats

- Abuse and malicious use of cloud computing
- Insecure interfaces and APIs
- Malicious insiders
- Shared technology issues
- Data loss or leakage
- Account or service hijacking

Security Issues for Cloud Computing

- Many of the security issues are similar to those for centralized data centers
- In cloud computing, responsibility for assuring security is shared among users, vendors and third-party providers
- Increased risk due to sharing vendor resources with other cloud users — users need to be protected from one another
- Virtualization is an effective technology for cloud infrastructures but buggy or incorrectly-configured visualization may allow user code to access sensitive portions of the cloud infrastructure or resources of other users

© Babaoglu 2001-2022

© Babaoglu 2001-2022

Cybersecurity

Security Issues for Cloud Computing

- Cloud users need to be protected against the cloud provider, in particular against *inadvertent data loss* or *data leakage*
- How does the cloud provider dispose of hardware that is retired or replaced?
- What are the political and legal implications of placing data at specific geographic locations?

Cybersecurity

User-level encryption is an essential tool

15

16

Cloud Security

- There are *conflicting views* of security in a cloud computing setting
- Some believe that moving to a cloud *frees* an organization from all concerns related to computer security and *eliminates* a wide range of threats to their data
- By placing cloud security in the *hands of experts* (cloud provider), they believe that they are *better protected* than when using *on-premise* computing systems

Cybersecurity

X III I. III

© Babaoglu 2001-2022

Cloud Computing Security Concerns

- Security concerns associated with cloud computing derive from *two sources*:
 - Issues faced by cloud providers,
 - Issues faced by their customers
- Yet, the responsibility is *shared*: the provider must ensure that their *infrastructure is secure* and that their clients' data and applications are protected, while users must take measures to *fortify their applications*, use *strong passwords* and other *authentication measures*

Others believe that handing over data and programs to a cloud provider inherently *reduces the security* of an organization's IT operations

- Cloud users accustomed to operating *inside a secure perimeter* protected by corporate firewalls now have to extend their *trust* to the *cloud service provider* if they wish to benefit from the economical advantages of utility computing
- The transition away from a model where users have *full* control over where their sensitive information is stored and processed is a difficult one
- Virtually all surveys report that security is the top concern of cloud users

Cybersecurity

© Babaoglu 2001-2022

© Babaoglu 2001-2022

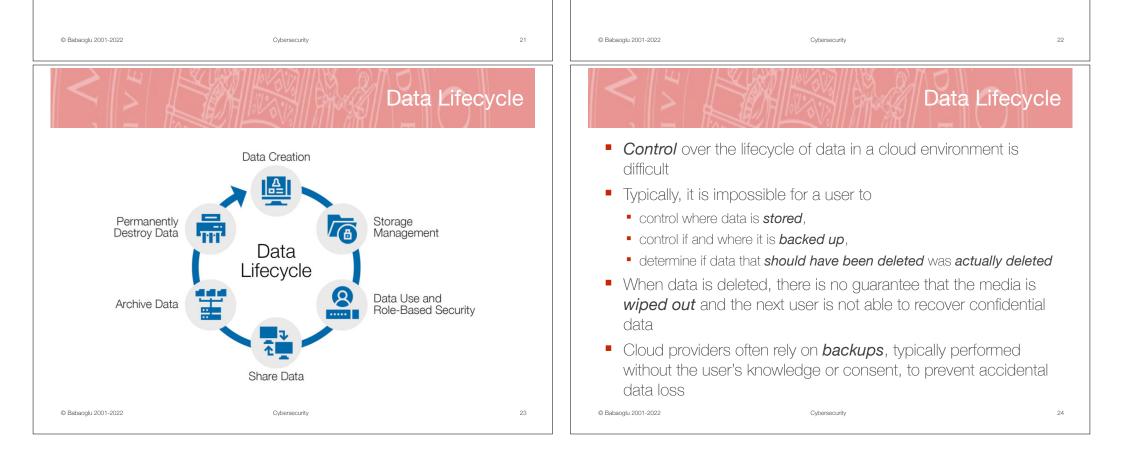
Cloud Computing Security Concerns Cloud Provider

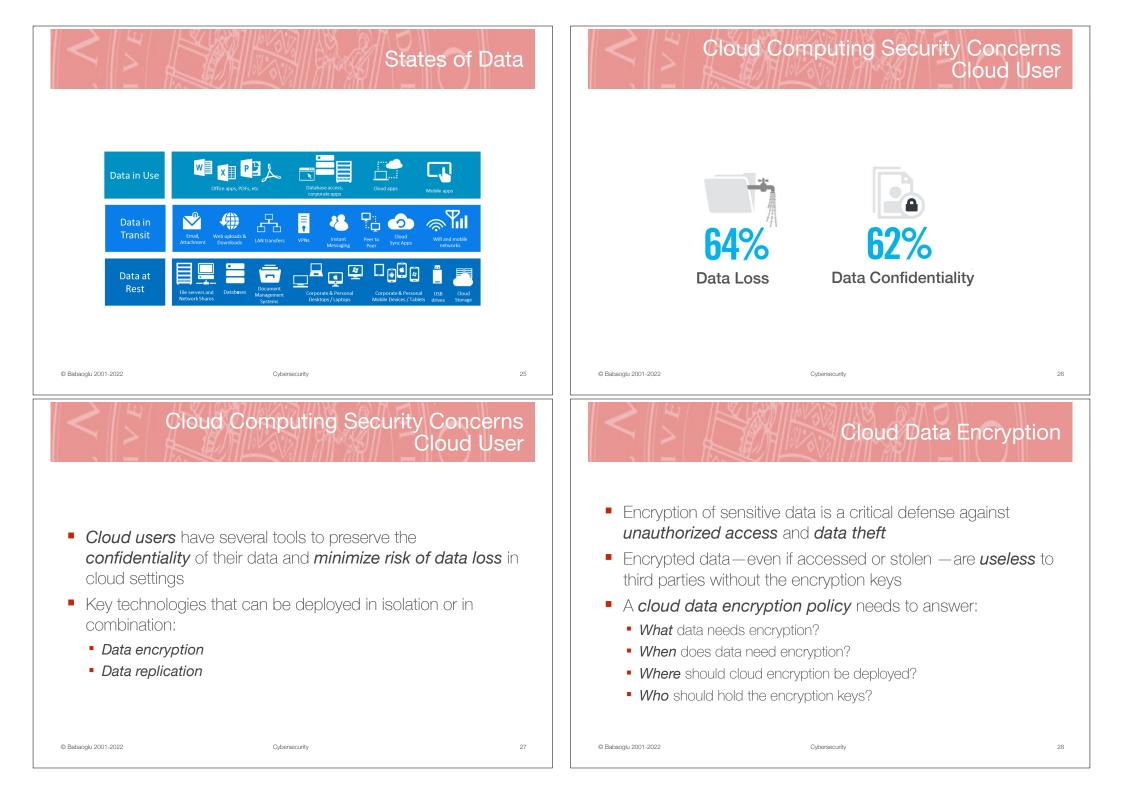
Cloud Security

- The cloud provider is responsible for
 - Physical security: hardware infrastructure guarded against unauthorized access, theft, fires, floods, power outages and other catastrophic events
 - Personnel security: security screening of potential employees, security awareness and training programs
 - *Identity management*: integrate customer's identity management system with the provider's own infrastructure, use a federation or single-sign-on technology, biometric-based identification system
 - Up-to-date infrastructure: hardware and software systems free of all known vulnerabilities

19

Cybersecurity




Cloud Computing Security Concerns Cloud Provider

Cloud Computing Security Concerns Cloud Provider

- The *cloud provider* is also responsible for
 - Integrity and availability of user's data user data is not corrupted and continues to be available despite unforeseen events (disk crashes)
 - Availability of services cloud applications deployed by users continue to be available despite various disruptions (power outage, fire, flooding) and cyberattacks (denial-of-service attacks)

- The *pooled* nature of the *shared infrastructure* resources that are necessary to facilitate elasticity can be a source for additional security concerns (data leakage)
- Software virtualization technologies that are necessary to provide the isolation among users introduce an additional layer that itself must be properly configured, managed and secured

Cloud Data Encryption

Cloud Data Encryption

Cloud Data Encryption

- What data needs encryption? Need to consider
 - Do the data fall under *regulatory compliance requirements*, such as health records (HIPAA), financial data (PCI, SOX), privacy acts (GDPR), or other legal or contractual obligations?
 - Are the data *personally identifiable* information?
 - Do the data contain sensitive *intellectual property*?
 - Are the data *essential* to the operation of the organization?

Cybersecurity

- When does data need encryption?
 - Encrypting data at-rest data saved on disk or other media is essential
 - Data that moves between the user organization and the cloud provider or between different clouds — data in-transit — is also vulnerable
 - Communication protocols such as SSL, TLS, IPSec, virtual private network (VPN) should be used to secure data in-transit

```
© Babaoglu 2001-2022
```

© Babaoglu 2001-2022

Cybersecurity

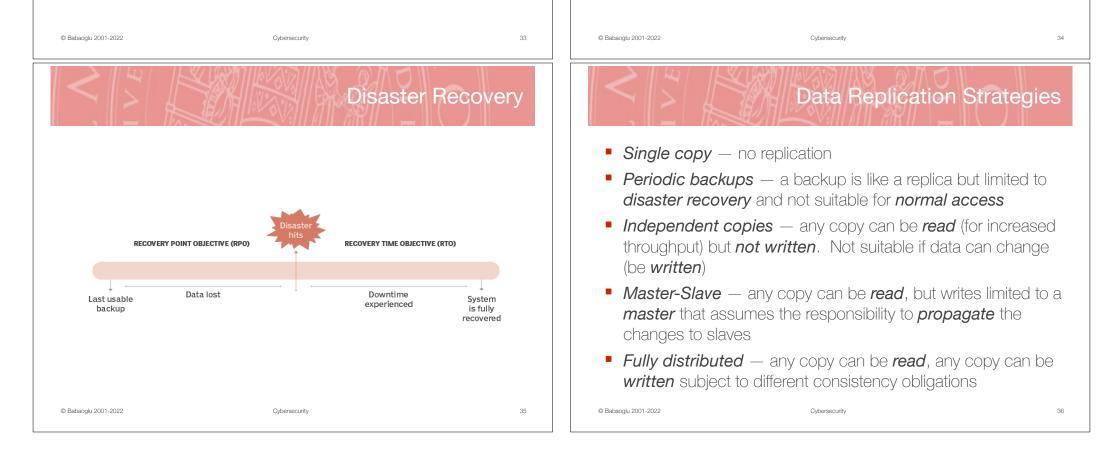
30

Cloud Data Encryption

- Where should cloud encryption be deployed?
 - Client-Side Encryption Encrypt data client-side before uploading them to the cloud
 - Server-Side Encryption Request cloud provider to encrypt your data before saving them on disks in its data centers. Most major cloud providers offer data-at-rest encryption (Amazon S3 with AES-256)
 - Cloud Application Encryption Many software-as-a-service (SaaS) application vendors provide de facto or optional encryption of data. Risk of vendor lock-in
 - Cloud Security Service Software Encryption As a part of their protection services, third-party security software companies offer encryption technologies (Gemalto SafeNet ProtectV)

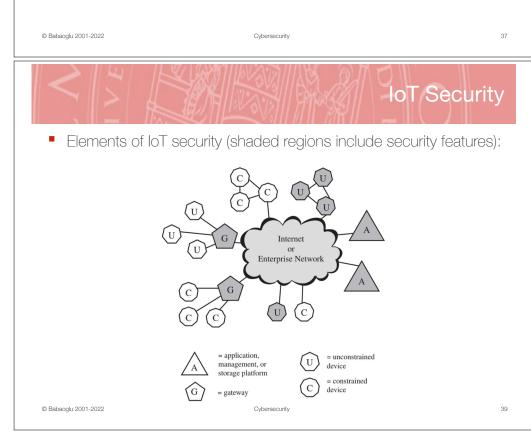
• Who should hold the encryption keys?

- Encryption keys can be *managed* either by the *cloud provider* or by the *users*
- Regulatory compliance considerations may come into factor
- Regardless of who holds the keys, organizations should make certain that key access is through *multi-factor authentication* and that key storage is itself secure and backed
- Moreover, organizations should keep their keys on storage media separate from their data


© Babaoglu 2001-2022

31

Cloud Data Encryption


Disaster Recovery

- Sensitive data is safe while at-rest, provided that it is encrypted with strong encryption
- To be *processed*, encrypted data must be *decrypted* and this opens a *window of vulnerability*
- Processing data in its *encrypted state* without decrypting is a long-time goal of cryptography and several attempts such as *homomorphic encryption*, *searchable symmetric encryption* and *order-preserving encryption* exist
- Recovery Time Objective (RTO) is the duration of time within which a business process must be restored after a disaster in order to avoid unacceptable consequences associated with a break in continuity
- Recovery Point Objective (RPO) describes the interval of time that might pass between your last data backup and a disaster before the *quantity of data lost* during that period causes *serious damage* to your business

Data Consistency Models

- How should the replicated version of data behave when compared to its non-replicated counterpart?
 - Strict consistency all updates to an item are seen by all copies in the same order (copies always return the value of the last update)
 - Sequential consistency updates to an item by any given writer is seen by all copies in the same order
 - Causal consistency only updates that are causally related are seen by all copies in the same order
 - Eventual consistency if no new updates are made to a given data item, eventually all copies of that item will return the last update value

From Cloud Computing to Internet of Things

- Edge: extremity of a typical enterprise network of IoT-enabled devices — sensors, actuators (millions)
- Fog: computing devices close to the edge of the IoT network to process the large amounts of volumes of generated data (tens of thousands)
- Core: backbone network connecting geographically dispersed fog networks (thousands)
- Cloud: provides the storage and processing capabilities for the massive amounts of aggregated data originating at the edge, hosts applications to interact with and manage the IoTenabled devices (hundreds)

Cybersecurity

IoT Security

- Typically, gateways implement secure functions, such as TLS and IPsec
- Unconstrained devices may or may not implement some security capability
- *Constrained* devices generally have limited or no security features
- Gateway devices can provide secure communication between the gateway and the devices at the center
- Unconstrained devices can communicate directly with the center and support security functions
- Constrained devices that are not connected to gateways have no secure communications with central devices

© Babaoglu 2001-2022

© Babaoglu 2001-2022

Cybersecurity

IoT and Embedded Systems

- IoT devices that are embedded systems (video surveillance cameras, home alarms, baby monitors, thermostats, etc.) represent increased security risks
- Embedded devices are riddled with vulnerabilities and there is no good way to patch them
- Chip manufacturers have strong incentives to produce their product as quickly and cheaply as possible
- Device manufacturers choose a chip based on price and features and not on the ease of firmware updates
- The end user may have no means of patching the system and, if so, little information about when and how to patch
- The result is hundreds of millions of Internet-connected devices that are vulnerable to attack

© Babaoglu 2001-2022

Cybersecurity

Security of Wireless Networks

- Wireless networks present increased security risks because
 - Unlike a wired LAN which requires a physical connection, with a wireless LAN any station within radio range of other devices can transmit and receive
 - Communication is typically through *broadcasting* (not point-to-point) which is more susceptible to eavesdropping and jamming
 - They are more vulnerable to active attacks
 - Wireless devices are often mobile
 - Wireless devices often have limited resources
 - Wireless devices often easier to access physically

-IoT Security

- Key development in IoT security is ITU-T Recommendation Y.2067 (Common Requirements and Capabilities of a Gateway for Internet of Things Applications, June 2014) which defines specific security functions:
 - Support identification of each access to the connected devices
 - Support mutual or one-way authentication with devices
 - Support mutual authentication with applications
 - Support the security of the data that are stored in devices and the gateway
 - Support mechanisms to protect privacy for devices and the gateway
 - Support self-diagnosis and self-repair as well as remote maintenance
 - Support firmware and software update

© Babaoglu 2001-2022

© Babaoglu 2001-2022

Cybersecurity

Wireless Network Standards — IEEE 802.11

- IEEE 802: a committee that has developed standards for a wide range of local area networks (LANs)
- In 1990 the IEEE 802.11 working group is formed to develop a protocol and transmission specifications for wireless LANs (WLANs)
- 802.11b the first 802.11 standard to gain broad industry acceptance
- In 1999 the "Wi-Fi Alliance" formed to hold the "Wi-Fi" trademark
 - The term used for certified 802.11b products
 - Extended to 802.11g, 802.11ac, 802.11n products

© Babaoglu 2001-2022

43

41

Cybersecurity

Wireless LAN Security Standards

- For privacy, the original 802.11 defined the Wired Equivalent Privacy (WEP) algorithm which was shown to contain major weaknesses
- The Wi-Fi Alliance defined the Wi-Fi Protected Access (WPA) to address the insecurities in WEP
- WEP and WAP based on the RC4 stream cipher
- 802.11i task group charged with developing a set of capabilities to address the WLAN security issues
- The final form of the 802.11i standard is WPA2 also known as Robust Security Network (RSN)

Cybersecurity

RSN based on the AES block cipher

Wireless Network Threats

- Accidental association WLANs in close proximity
- Malicious association fake access points
- Ad hoc networks p2p networks between devices
- Nontraditional networks Bluetooth or other technologies
- Identity theft MAC spoofing
- Man-in-the-middle attack between user and access point
- Denial of service particularly easy to direct wireless messages to a target
- Network injection access points that are exposed to routing protocol or network management messages
- Sniffing particularly easy to eavesdrop on packets

© Babaoglu 2001-2022

© Babaoglu 2001-2022

47

IEEE 802.11i Services

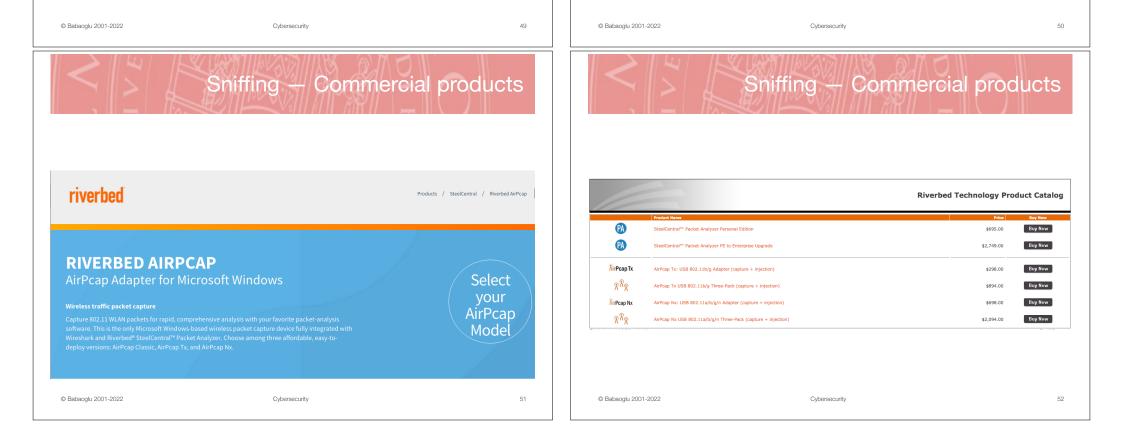
- Authentication: provides mutual authentication between a user and an Authentication Server and generates temporary keys to be used between the client and the AP over the wireless link
- Access Control: enforces the use of the authentication function, routes the messages properly, and facilitates key exchange
- Privacy with message integrity: MAC-level data (e.g., an LLC PDU) are encrypted along with a message integrity code that ensures that the data have not been altered

Cybersecurity

Securing Wireless Network

- Principal threats eavesdropping, altering, injection, disruption
- Signal hiding techniques
 - Turn off SSID broadcasting by access point
 - Assign cryptic names to SSID
 - Reduce signal strength
 - Locate access points inside buildings, away from windows and exterior walls

© Babaoglu 2001-2022


Cybersecurity

Securing Wireless Network

Securing Wireless Access Points

- Other techniques
 - Use encryption
 - Use antivirus, anti spyware software and firewall
 - Change your access point's default admin password
 - Turn on MAC filtering in the access point to allow only specific computers to access the wireless network

- Limiting access to the network
- Port-Based Network Access Control (PNAC) provides an authentication mechanism to devices wishing to attach to a LAN
- 802.1X is an IEEE standard for PNAC based on the Extensible Authentication Protocol (EAP)
- 802.1X can prevent rogue access points and other unauthorized devices from becoming insecure backdoors

Sniffing — Mac OS X Commands and Tools

Risks of "Open Networks"

Scan available networks

cd /System/Library/PrivateFrameworks/ Apple80211.framework/Versions/Current/Resources

./airport en0 --scan

- "Wireless Diagnostics" tool (Option-click WiFi icon in menu)
- Builtin "Packet Sniffer"

cd ~/Desktop

/usr/sbin/tcpdump -i en0 -w xxx

/usr/local/bin/wireshark xxx

© Babaoglu 2001-2022	Cybersecurity
	Google Street View Scanda

- 15 May 2010, The Guardian: "Google admits collecting Wi-Fi data through Street View cars"
 - In a post on its European Public Policy blog on 27 April, Google stated that it does gather wi-fi network names (SSIDs) and identifiers (Mac addresses) for devices like network routers, it has been mistakenly collecting samples of payload data from open wi-fi networks (in addition to SSIDs and Mac addresses for devices like network routers)

- "Open networks" allow access without supplying a password
- Render access "convenient" but at great risk, particularly in public networks
- Wi-Fi password is used to encrypt data between client and access point
- Without it, data is transmitted in clear, making sniffing trivial

© Babaoglu 2001-2022

Cybersecurity

54

Public Wi-Fi Usage Advice

- Don't use public Wi-Fi to shop online, log in to your financial institution, or access other sensitive sites - ever
- Use a Virtual Private Network
- Implement two-factor authentication when logging into sensitive sites
- Only visit websites with HTTPS encryption
- Turn off file sharing
- Turn off automatic Wi-Fi connectivity feature
- Monitor your Bluetooth connection when in public places to ensure others are not intercepting your transfer of data

55

53

a

© Babaoglu 2001-2022