
Towards a Fault-Tolerant Multi-Agent System Architecture
Sanjeev Kumar

Oregon Graduate Institute
20000 NW Walker Road,

Beaverton, OR 97006, USA
+1-503-748-7803

skumar@cse.ogi.edu

Philip R. Cohen
Oregon Graduate Institute
20000 NW Walker Road,

Beaverton, OR 97006, USA
+1-503-748-1326

pcohen@cse.ogi.edu

ABSTRACT

Multi-agent systems are prone to failures typical of any distributed
system. Agents and resources may become unavailable due to
machine crashes, communication breakdowns, process failures,
and numerous other hardware and software failures. Most of the
work done in fault handling in multi-agent systems deals with
detection and recovery from faults such as state-inconsistencies,
relying on the traditional techniques for recovering from other
distributed systems failure. However, the traditional fault-
tolerance techniques are designed for specific situations and they
require special infrastructural support. We argue for fault-
tolerance techniques that can be readily implemented using a
generic agent shell with minimal or no modification to the agent
infrastructure.

We propose that theories from multi-agent systems literature can
be effectively combined with basic fault-tolerance principles to
design robust multi-agent systems. In particular, we argue that (1)
teamwork may be used to create a robust brokered architecture
that can recover a multi-agent system from broker failures without
incurring undue overheads, (2) teamwork may also be used to
guarantee a specified number of brokers in a large multi-agent
system, and (3) agent autonomy can be used to prevent thrashing
and guarantee acceptable levels of quality of service by an agent.
We also describe the Adaptive Agent Architecture (AAA), a fault-
tolerant brokered multi-agent system architecture, and present
experimental evidence using the AAA to validate our approach.

Keywords

Multi-agent systems, fault-tolerance, teamwork, autonomy.

1. MOTIVATION
Multi-agent systems are prone to the failures that can occur in any
distributed software system. An agent may become unavailable
suddenly due to various reasons. The agent process may die due
to unexpected conditions, improper handling of exceptions and
other bugs in the agent program or in the supporting environment.
The machine on which the agent process is running may crash due
to hardware and software faults. Network partitioning may also
make agents unavailable for unforeseen periods.

Various techniques have been developed in traditional distributed
systems to deal with recovery from such failures. As we shall see
in section three, these techniques are meant for specific failure
situations and they require special infrastructure support. For
instance, the techniques of object group replication [2], virtual
synchrony [2] and N-version voting [3] need prescribed
mechanisms for communication and synchronization among the
replicas. Therefore, a multi-agent system intending to use any of
these techniques must be built using an infrastructure that
provides support for these techniques. It may not be possible for a
multi-agent system to use these powerful fault-tolerant techniques
without extensively modifying the agent architecture. On the other
hand, a technique based on the multi-agent system concept of
teamwork [18], may be implemented by simply adding a plan to
the plan library of a generic agent.

If the broker with whom an agent was registered becomes
unavailable, the agent may look for another broker using transport
level broadcasting or multicasting. However, this mechanism
cannot be relied upon unless reliable multicasting is used. The
reliable multicasting techniques require special protocols and
architectures [22] that must be supported by the agent
infrastructure. On the other hand, a technique based on teamwork
to ensure connectivity with another broker may be readily
implemented using a generic agent shell. Agents with specific
behavior can be created from a generic agent shell by adding
plans and actions to its plan and action libraries respectively.

It is apparent, therefore, that we do need fault-tolerance
techniques designed for multi-agent systems. The focus of this
paper is to investigate fault-tolerance techniques based on multi-
agent system concepts. Thereafter, subsequent research can
investigate the ease of implementing these techniques using
generic agent shells.

Multi-agent systems require brokers1 or middle agents for certain
tasks such as accepting requests, locating capable agents, routing
requests and responses, sharing of information, managing the
system, registering agent capabilities, and for legal purposes as an
independent third party [13]. As a result, a large number of multi-
agent infrastructures such as OAA [5], RETSINA [10], JATLITE
[14], and Infosleuth [21] provide some kind of middle agents or at
least some form of facilitation and routing service. This
observation motivates us towards designing fault-tolerant
brokered multi-agent system architectures. Moreover, our
experiences with Quickset [9], a multi-agent system based on

1 The term broker has a special connotation in multi-agent

systems [20]. However, in this paper we will use the term
broker to be synonymous with middle agent, as the work
described in this paper may be extended to most middle agents.

OAA, reinforces the need for an agent architecture that can
recover quickly from broker failures.

As a brokered multi-agent system becomes more complex and as
the number of agents increases, the number of brokers in the
system will also increase due to reasons such as domain
specialization and efficiency. We note that in a large multi-agent
system with multiple brokers, the brokers could potentially serve
as backups for each other, thus achieving a high level of fault-
tolerance. However, instead of using warm and hot backups, N-
version voting and other traditional techniques that build upon
redundancy, we propose a scheme that uses teamwork as the
distributed interaction protocol among these brokers.

It has been shown that load balancing by brokers in multi-agent
systems improves the performance of the system [10]. However,
we observe that a malicious or faulty agent can still bring down a
brokered multi-agent system by continuously sending requests at a
rate much higher than what the broker can handle. We believe that
autonomous agents should be less susceptible to external
influences and this motivates us to investigate exploiting an
agent’s autonomy to protect against such problems.

The above discussions indicate that we need (1) fault-tolerance
techniques designed for multi-agent systems, (2) robust brokered
architectures that can recover from broker failures, and (3) agents
that are robust from fault-causing influences of other agents.

2. OVERVIEW
We review the work done in the area of fault tolerance in multi-
agent systems in the next section. Two divergent approaches that
have been used to diagnose failures and attempt recovery are (1)
using sentinels, external to the agents, that monitor inter-agent
communication, and (2) using introspection to monitor an agent’s
own run time behavior. We also briefly review some of the
important fault-tolerance techniques used in the database and
traditional distributed systems and observe that redundancy is the
basic principle behind most of those techniques.

In section four, we briefly introduce the Adaptive Agent
Architecture (AAA), a fault-tolerant multi-agent system
architecture that is currently under development and forms the
basis for most of this paper.

Thereafter, in section five, we show that a multi-agent system can
recover from broker failures if the brokers form a team with
certain commitments and the agent architecture enables the
brokers to honor those commitments. This recovery scheme based
on teamwork avoids the overhead of using redundant brokers just
for the purpose of fault-tolerance. We also show that this
technique does not appreciably interfere with the normative
behavior of the multi-agent system and that a multi-agent system
using this technique will continue to function as long as there is at
least one broker left in the system.

We propose an extension to the above teamwork based technique
in section six, wherein it can be specified that the system needs at
least N brokers at all times for its functioning. We discuss our
current implementation where it is possible to have at least two
brokers at all times, irrespective of broker failures, and compare it
with the classical technique of regenerative processes.

Thereafter, in section seven, we argue that autonomous brokers
are more fault-tolerant than non-autonomous brokers. In
particular, we show that brokers should be able to refuse requests

so as to prevent thrashing and buttress our argument with
experimental evidence. We discuss the future work in the
direction of this paper in section eight and finally, in section nine,
we conclude with a summary of the present work.

In this paper, we do not address the detection of unavailability of
an agent (or broker) due to network, machine, and process failures
and rely on TCP mechanism and timeouts for this purpose.

3. REVIEW OF RELATED WORK
Here we review some of the main approaches to fault-tolerance in
multi-agent systems as well as in the traditional distributed and
database systems.

3.1 Fault Handling in Multi-agent systems
Jennings showed that as the world becomes more complex and
variable and plans tend to fail more often, teams as a whole waste
fewer resources and are more robust than self-interested agents
[15]. This approach is similar to ours in that both approaches are
based on the theory of teamwork. However, we explicitly address
the problem of fault-tolerance whereas Jennings work is more
focused towards cooperative problem solving.

Hägg uses external sentinel agents to monitor inter-agent
communication, build models of other agents, and take corrective
actions [12]. The sentinel agents listen to all broadcast
communication, interact with other agents, and use timers to
detect agent crashes and communication link failures. A sentinel
agent copies the world model of other agents and detects
inconsistencies by observing the behavior of other agents as well
as its own internal state. In our teamwork-based approach, the
problem solving agents themselves participate in fault-tolerance as
opposed to the external sentinel agents used in this work. Further,
Hägg’s work does not use middle agents whereas the current work
mainly focuses on recovery from failures of middle agents. Lastly,
the sentinels in this approach analyze the entire communication
going on in the multi-agent system to detect state inconsistencies.
However, this approach is not realistic for systems such as
Quickset [9] that we use due to the high volume and frequency of
messages in these systems.

Klein proposes to use exception-handling service to monitor the
overall progress of a multi-agent system [17]. Agents register a
model of their normative behavior with the exceptional-handling
service that generates sentinels to guard the possible error modes.
The exceptional-handling services use a query and action
language to interact with the problem solving agents to detect and
diagnose faults and take corrective actions. The exception-
handling service is a centralized approach whereas our teamwork-
based approach is essentially a decentralized approach. Moreover,
Klein’s approach relies on being able to communicate with the
agents whereas the current work attempts to restore connectivity
when communication with a broker is not possible.

A social diagnosis approach is used by Kaminka and Tambe
wherein socially similar agents compare their own state with the
state of other agents for detecting possible failures [16]. An
explicit teamwork model is used for failure diagnosis. The agents
use plan recognition from observable actions as well as
communication with other agents to infer and construct a model
of the other agents. This work is similar to the current work in that
the teamwork model is used in both cases. However, we mainly
concentrate on middle agents whereas Kamnika’s work is related
to a system that is not based on middle agents.

Decker, Sycara, and Williamson advocate the use of caching by
individual agents in systems that use matchmakers to improve
robustness in the face of matchmaker failures [10]. They have also
shown that using load balancing by brokers in brokered systems
improves performance and hence provides a degree of robustness
from aggressive agents. These approaches compliment our work
and they can be used along with our teamwork-based techniques.

3.2 Traditional Fault-Tolerance Techniques
A large number of techniques for fault-tolerance can be found in
the traditional database and distributed systems literature. Figure
1 lists some of the techniques that have been developed for
database recovery, for application recovery and recovery of
distributed systems.

Most of these recovery methods primarily focus on replication
techniques that permit critical system data and services to be
duplicated as a way to increase reliability [2]. Active replication
is also used for processes wherein the inputs are duplicated and
the outputs produced are consolidated. Most of the methods used
for application recovery advocate either logging the application
messages or frequently saving the application state and therefore,
require either a database or a recoverable queue [19]. The current
work attempts to recover a multi-agent system without recovering
an inaccessible broker process and so does not require the brokers
to save their state to persistent storage.

Considering the specific problem of recovering a multi-agent
system from broker failure, the closest traditional techniques that
may be applicable are the techniques of warm and hot backups
and the object group replication technique used in conjunction
with virtual synchrony. In the warm backup technique, a process
is replicated and when the main process goes down, the replica
immediately starts recovering to the last known state of the dead
process. A hot backup is similar to a warm backup except that the
input and output of the main process as well as the replica are
synchronized at all times and so the replica can immediately take
over without having to first bring itself to the state of the dead
process [1].

Figure 1: Traditional Fault-Tolerance Techniques

The object group replication used with virtual synchrony is
essentially the same as the hot backup technique except that here
objects are replicated instead of active processes [2]. Groups of
objects are treated as a single object and all objects in a group
receive the same messages in the same sequence. Therefore, if we
form a group of similar objects, there is a high probability that the

different objects in a group will be in possibly different but
correct states. So if one object fails or gets into some unforeseen
problem, another object can take over the responsibility of
responding to messages. A slightly different technique is that of
N-version voting in which N independently developed modules
from the same specification run in parallel and the result is
decided by voting [3].

The above three categories of fault-tolerance require explicit
replication for the purpose of fault-tolerance. These replicas are
overheads in the sense that they exist only as backups and perform
no useful task. These techniques also require infrastructural
support to keep the process replicas synchronized or to implement
object groups and virtual synchrony. The technique that we
propose uses the brokers that are already present in the system and
it uses teamwork to achieve an effect similar to warm backups and
object groups plus virtual synchrony. Moreover, generic agents
that already have reasoning and planning capabilities may be able
to implement a technique based on multi-agent system concepts
with minimal support (for example, by adding a plan and the
corresponding actions to the plan and action libraries respectively)
as opposed to the aforementioned techniques that require specific
infrastructural support.

4. A ROBUST AGENT ARCHITECTURE
The Adaptive Agent Architecture (AAA) is a facilitated multi-
agent system architecture under development and forms the basis
of our research in fault-tolerance and agent communication
languages. The agent library has been developed in Java and it
uses Horn Clause for internal knowledge representation and
reasoning. The AAA facilitator is a generic middle agent that
serves as a broker, a matchmaker and a recruiter. Henceforth, in
this paper, we will refer to the AAA facilitator as the AAA broker.
The AAA brokers can be interconnected to form arbitrary
networks and the agent library supports facilitated as well as
direct inter-agent communication. The brokers as well as other
agents can dynamically enter and leave AAA-based multi-agent
systems. The support for fault-tolerance is built into the agent
library. All of the experiments presented in the subsequent
sections use AAA agents and the AAA broker. The AAA can also
interoperate with the Open Agent Architecture [5].

5. RECOVERY FROM BROKER FAILURE
Here we discuss the teamwork-based technique used by the AAA
for automatically recovering a multi-brokered multi-agent system
from sudden broker unavailability. The broker under
consideration may be inaccessible due to machine crash, network
breakdown, or death of the broker process. We also make the
simplifying assumption that the brokers in the system are fully
connected. We first present the logical characterization of our
teamwork model and briefly describe the steps in our recovery
scheme. Thereafter, we walk through a recovery scenario
describing the commitments involved and the actions taken by the
agents.

5.1 Logical Characterization
Team activity has been explained in terms of the theory of joint
intentions [6, 7, 8, 18]. This theory characterizes an agent’s
behavior in a team in terms of its internal state described in modal
logic, linear time temporal logic, and dynamic logic of action. A
joint persistent goal (JPG) formalizes the notion of joint
commitment. The existence of a JPG between a group of agents is

Database Recovery:

Redo-undo Logs, Fuzzy and Basic Checkpointing, Database
Replication

TP Monitors, Application Servers, Resource Managers:

Recoverable Queues, Pseudo-conversations, Fault-tolerant
Input Logging, Checkpointing based Recovery, Transaction
based Recovery, Stateless Servers, Warm Backups, and Hot
Backups, Regenerative Processes

Fault-Tolerant Distributed Systems:

Object Group Replication + Virtual Synchrony, Message
Logging, N-Version Voting

a sufficient condition for the formation of a team with respect to
that JPG. Two agents have a joint intention (JI) to do an action a
if they have a JPG to do a while being in a particular mental state.
A joint intention requires the starting mutual belief that the team
members are going to do the jointly intended action next. Joint
intention brings about one of the following mental states. (1) The
agents mutually believe that a has been done; (2) They mutually
believe that a is impossible; (3) They mutually believe that a is
irrelevant.

We argue that the recovery of an AAA-based multi-agent system
from broker failures is a consequence of the following
specification of teamwork that is implemented by the AAA
brokers:

∀y [(agent y) ∧ (DONE (registered y T)?) ⊃
 (JI x1 x2…xn a(y) (registered y T))] where,
 a(y) = (WHILE (registered y T)
 DO [if ¬(connected y T) THEN (connect y T)])
 T = team of brokers consisting of x1, x2,...,xn

It means that whenever an agent registers with the broker team,
the brokers have the joint intention of connecting to the agent, if it
ever disconnects, as long as it remains registered with the team.
Using this proposition, along with other logical properties of the
AAA, we can establish the commitments of the brokers in the
team. These commitments result in fault tolerant behavior when
the brokers act rationally and take appropriate actions to act on
the commitments. Here, we state without proof, theorems about
commitments of the AAA brokers. The basic theorems can be
found in [8, 18].

Theorem 1: Whenever an agent registers or unregisters with a
broker, the broker has a commitment to make this fact mutually
believed by the broker team2.

Theorem 2: When a broker discovers that an agent that is
registered with the team is not connected, it has a commitment to
make this fact mutually believed.

Theorem 3: When an agent that is registered with the broker team
gets disconnected, the brokers have a joint commitment to
connect to that agent. Moreover, all the brokers in the broker team
have an individual commitment to connect that agent to the team.

Theorem 4: When a broker successfully connects to an agent that
is registered with the broker team, but got disconnected, it has a
commitment to bring about mutual belief about this fact.

Theorem 5:When a broker that was committed to the disconnected
agent’s being reconnected to the team, learns that the agent has
been connected to the broker team, it gives up its commitment to
connect to that agent.

The proof of these theorems along with a detailed logical
characterization of AAA will be discussed in a subsequent paper.

2 The sending of an inform that registration has taken place,

followed by an acknowledgement that the prior inform was
believed brings about mutual belief by default. Note that a
circular data structure enables the representation of mutual
belief compactly by referencing only two messages [4].

5.2 Recovery Scheme
The recovery scheme that follows from the above commitments
consists of the following steps:

1) Each broker communicates the following information to its
adjacent brokers:
(1) The name and the address for direct connection (lets call

it dc-addr) of agents that register with it.
(2) The name of the agent that unregisters with it.

2) Each facilitator joins a recoverable broker team consisting of
the adjacent brokers. The entire multi-agent system will
consist of such teams with overlapping members.

3) Normally, an agent contacts some broker on startup, perhaps
specified by the person starting the agent.

4) Agents listen for request from brokers at address dc-addr and
they inform a broker about this address at the time of their
registration with that broker. Brokers can initiate connection
with agents for which they know the direct connection
address.

5) When a broker disconnects from its teammates, all the
brokers on its team attempt to directly contact the agents that
were registered with the now disconnected broker.

6) When a broker successfully contacts an agent in this manner,
it informs its teammates due to step (1). The other brokers
give up their attempts to contact this agent directly.

The multi-agent system has recovered from failure of the
disconnected broker when all the agents registered with that
broker have been contacted in this manner. The requests that were
in progress at the time of the failure, and hence could not be
completed, may be sent again by the requesting agent.

5.3 A Recovery Scenario
We explain the recovery scenario from one of our experiments
using the theory of teamwork. Figure 2 illustrates the initial
system setup. The client agent periodically sends requests for
which the distance agent is the only capable agent. The three
brokers form a robust team as described earlier. This system can
function only if both the client and the distance agents are
registered with a broker.

From theorem 1, the brokers have an individual commitment to
bring about mutual belief when an agent registers with a broker.
Therefore, when the client agent registers with broker2, broker2
informs this fact along with the name and address of the distance
agent to broker1 and broker3. Similarly, when the distance agent
registers with the broker3, broker3 informs this fact to broker1
and broker2.

Figure 2: Setup for demonstrating the recovery process

Broker1

Broker2 Broker3

Client
Agent

Distance
Agent

In the middle of the experiment, we kill broker3. When a broker
teammate is no longer accessible, the other brokers believe that all
the agents registered with that broker are disconnected. When
broker3 gets killed, at least one of the remaining brokers, broker1
or broker2, discovers that broker3 is no longer accessible to it and
believes that the distance agent is not connected to the broker
team. Therefore, from theorem 2, this broker has an individual
commitment to bring about a mutual knowledge about its
discovery. As a result, there would be some communication, in
the general case, among the brokers in the team. However, each of
the remaining brokers knows that the other was also connected to
broker3 and believes that the other broker should have also
discovered the fact about broker3 being no longer accessible3.
Hence, no communication takes place at this point.

From theorem 3, the broker team has a joint commitment to
connect to the agent that it mutually believes is disconnected from
the team. Moreover, each of the remaining brokers has an
individual commitment to contact the disconnected agent. The
two brokers act rationally by attempting to contact the distance
agent at the address given to them earlier by broker3. If the
distance agent accepts registration request from one of the
brokers, it refuses subsequent registration requests from other
brokers. Figure 3 illustrates the situation when broker1 has
successfully contacted the distance agent.

From theorem 4, broker1 now has an individual commitment to
inform the successful connection of the distance agent to its
teammates. As a result, broker1 will act rationally by
communicating this information to broker2, and from theorem 5,
broker2 will give up its attempt if it was still trying to contact the
distance agent as the mutual goal has already been achieved.
Moreover, from theorem 1, broker1 needs to inform the
registration and address information of the distance agent to
broker2. In the current AAA implementation, these two
communication attempts are combined into one and just one
message gets sent from broker1 to broker2.

Figure 3: System after successful recovery

After successfully contacting the distance agent, the broker1
requests it for agent-specific information such as its capabilities.
The multi-agent system has recovered from the failure of broker3
at this point and any request from the client agent that could not

3 This belief will not hold in general. However, recall that the

AAA brokers use TCP for detection of connection failures.
Therefore, every broker that was connected to broker3 will
eventually discover the fact that broker3 is not reachable.

be completed due to the failure of broker3 may be sent again to
the distance agent and the system continues to work.

5.4 Performance Characteristics
The experiments that follow and those in the subsequent sections
were conducted on a 366 MHz Pentium II single-CPU machine,
128 MB SDRAM, 66MHz system bus, and running Windows
NT 4.0 SP5. The machine was used as a standalone, disconnected
from the network, and there was no application running on the
machine other than the minimal operating system services and the
agents and brokers used in the experiments. The experiments used
JRE version 1.2.2 with just-in-time compiler enabled.

The experimental setup was same as that of the previous section
with varying number of brokers fully connected to each other. The
client agent sent synchronous requests that were answered by the
distance agent. A constant delay of 20 ms was introduced in the
distance agent before responding to requests so as to obtain
observable response times. The client agent sent the requests 20
ms after receiving the reply to the previous request. The response
time was measured as the real time elapsed between the sending
of a request and the receipt of the corresponding response. The
brokers used a policy wherein a request is sent to all the brokers
even if a capable agent is found locally. This policy was used to
prevent the response time from being biased by any particular
configuration when the system reorganizes after a broker failure.

5.4.1 Effect of Recovery on Response Time
The experiment in figure 4 was started with eight fully connected
brokers and the brokers were killed one by one. The stair-step plot
shows the number of brokers present at any time. The agents
mentioned near the peaks are the agents that were connected to
the broker that was killed.

Figure 4: Effect on response time as brokers are killed

The plot in figure 4 clearly shows that the AAA recovery scheme
enables the system to function, despite broker failures, as long as
there is at least one broker left in the system. The peak response
times are for the requests that were in progress when the broker
got killed. The peak values go down as the number of brokers in
the system decreases because (1) there is less team overhead in
reorganizing a smaller team, and (2) the single-CPU system used
in this experiment gets less loaded due to fewer processes.

Broker1

Broker2

Client
Agent

Distance
Agent

5.4.2 Overheads of Using Teamwork
The establishment of joint persistent goals for teamwork requires
communication overheads. However, the implementation of
teamwork described above comes into play only when there is
some transition in the system such as brokers or agents being
added or removed. As such, we would expect that there should be
no teamwork overhead in the steady state. Figure 5 shows two
plots, one with the normal recoverable system, and the other with
the teamwork code disabled. For each number of brokers, the
response time was collected for 100 requests and the maximum,
the minimum and the mean have been plotted.

Figure 5: Mean response times with and without teamwork

We observe that a plot of the mean response times in the two
cases will nearly overlap. A paired t-test of the mean response
times for the same number of brokers, with and without
teamwork, was unable to confirm a difference at 0.05 significance
level. Therefore, we can say that statistically the AAA
implementation of teamwork for fault-tolerance does not present
appreciable overhead in the steady state.

5.4.3 Effect of Transitions on Response Time
Broker-team reorganization does affect the response times of the
requests in progress at the time of the reorganization. The effect of
adding additional brokers to a working system is expected to be
similar to that when brokers are killed (assuming that the effects
of the CPU getting overloaded due to additional processes and the
disturbance due to process creation are accounted for).

When an agent enters or leaves the multi-agent system, a message
is sent to all the broker teammates as prescribed by theorem 1,
section 5.2. However, this message generates too little traffic to
appreciably affect the ongoing agent conversations. The
experiment in figure 6 consisted of four interconnected brokers
and six additional agents. These additional agents did not
participate in the interaction between the client agent and the
distance agent. The system was run until completion and the six
additional agents were killed one by one every second in this
period. We observe that there is no appreciable and consistent
peak in response time whenever an agent was killed. Moreover,

small peaks if any, are within the bounds of random effects (the
peak in response time that we see even before any agent was
killed is due to random effects such as thread scheduling). This
preliminary result meets our expectation that agents leaving (or
entering) the AAA multi-agent system do not cause the teamwork
implementation to create noticeable disturbance in the application.

6. MAINTAINING SPECIFIED NUMBER
OF BROKERS
A large multi-agent system will typically use a number of brokers
(or middle agents) to achieve an optimum between redundancy,
resource utilization, efficiency and load balancing. Moreover,
when a number of independent multi-agent communities are
interconnected, it is generally desirable for each local agent
community to have its own middle agents. The teamwork-based
recovery scheme discussed in the previous section can be
extended to have at least N brokers in the system at all times.
When brokers fail or become inaccessible, new brokers can be
started to maintain the specified number of brokers. Infrastructure
support is required from the agent library so as to enable agents
(including brokers) to start other brokers. Proper coordination is
required among the brokers to ensure correct mutual beliefs, to
track the progress of a recovery process, and to reorganize the
agents after recovery.

The current AAA implementation can maintain at least two
brokers at all times despite broker failures. The implementation of
teamwork in this case is trivial because the teamwork code
becomes effective only when there is one broker left in the system
in which case the team consists of just one broker. The AAA
agents commit to the AAA broker, with which they are registered,
to honor its requests for starting broker processes. Whenever an
agent registers or a broker teammate disconnects from an AAA
broker, it checks to see if there are at least two brokers in the
team. If not, it searches for an AAA agent on a different machine.
If it finds such an agent, it requests that agent to start a broker and
request the newly started broker to join the broker team of which

Figure 6: Response time when agents leave the system

the requesting broker is a member4. If the AAA broker fails to
find an agent on a different machine, it picks up an agent on the
local machine at random and repeats the process. Further, an AAA
broker started as a result of this process is committed to connect
to (and form a team with) the broker that initiated its birth. The
AAA broker also keeps track of pending requests to start brokers
and may request another agent to start a broker if needed.

This technique resembles the technique of regenerative processes
in the traditional fault-tolerance literature wherein a critical
process can be restarted by a monitoring process upon failure.
However, there are a few major differences between the two
techniques.

(1) If the monitoring process fails, there needs to be another level
of monitoring process to restart the first monitoring process. This
can go up to any level but all these levels have to be explicitly
designed and configured for each machine. In the AAA scheme,
no separate configuration is needed for each machine. Moreover,
all of the requisite N-1 brokers can be started even if there is just
one broker left in the system, thereby automatically providing N-1
levels of monitoring.

(2) Special monitoring infrastructure is required to be able to start
processes on different machines. A convenient way would be to
have separate monitoring processes on each machine that are
coordinated using a special distributed algorithm. However, any
such algorithm needs proof of correctness before it can be relied
upon. In the AAA scheme, no separate monitoring infrastructure
is required as the problem solving agents themselves participate in
the fault-tolerance process. The specification of teamwork
provides a distributed coordination protocol that is logically
proven to work.

The general case in which N brokers can be maintained at all
times is under implementation. A subsequent paper will provide
the detailed logical analysis for this technique.

7. AUTONOMY AND ROBUSTNESS
Autonomous agents act in pursuit of their own agenda. They
evaluate their internal goals and beliefs and the consequences of
their action even when serving the requests of other agents. As a
result, we would expect an autonomous agent to be less
susceptible to the influences of other agents. A weaker notion of
autonomy is the ability to refuse requests [11]. We show that even
this simplistic notion of autonomy can prevent process thrashing
and hence protect against performance degradation beyond a point
where an agent effectively becomes useless.

The experiment in figure 7 consisted of a base case in which
asynchronous requests were sent to the broker every 200 ms that
then were forwarded to a capable agent and the answers were
returned back. The mean response time was calculated to be 34.4
ms. In the second case, the client agent aggressively sent
asynchronous requests every 17 ms (half the mean response time).
This rate of sending requests was beyond what the broker could
handle and as a result, the response time increased without

4 Note that this algorithm will result in a maximally connected

broker graph if (1) the brokers are started one at a time, and (2)
a new broker is started after a previously started broker has
joined the broker team.

bounds. A performance analysis tool revealed that the memory
usage increased linearly with a sharp slope as the message got
queued up (the memory usage graph was linear since all the
requests were of nearly the same size in bytes). The broker was
then setup to refuse new requests when the agent capable of
answering the request was busy and as a result, the response time
can be seen to oscillate around the base case. The experiment was
repeated with the broker set to refuse alternate requests and the
results were identical.

These simple experiments conclusively show that a malicious or
faulty agent or an aggressive agent can almost bring down a multi-
agent system unless the agents concerned start refusing messages.
The queueing up of messages for future processing, without any
limit on the number and size of messages that can be queued,
appears to be the main cause of this problamatic behavior. Even a
simple policy, such as refusing messages when the input queue
length grows beyond a certain limit, can prevent an agent from
thrashing and hence from becoming unusable. In general, an agent
should evaluate its performance and the intentions of the
requesting agent (for instance whether it appears to be a malicious
or faulty agent) and refuse requests if they tend to degrade its
performance beyond certain acceptable levels (which of course
can be determined dynamically by an the agent).

8. FUTURE WORK
We are currently underway implementing a teamwork model that
can maintain N brokers in a multi-agent system where N is more
than two.

We are also working towards the pragmatics of designing an ACL
(Agent Communication Language) for fault-tolerance. For
instance, the ACL message structure should be designed to
directly access fields such as speech-act type and the message
identifier so that refusal messages can be sent without parsing and
interpreting the entire incoming message. Further, we believe that
certain minimal context information in the ACL message can be
used to detect circular deadlocks if this information is carried over
to any new message sent by (1) an agent after task decomposition,
and (2) a middle agent forwarding a message.

Figure 7: Effect of refusal on performance

The recovery scheme described in this paper guarantees recovery
of the system connectivity but it is left to an agent to guarantee
idempotent behavior when a message that was presumably lost
due to broker failure is resent by the agent shell. However,
recovery of the ongoing conversations is required for a complete
recovery and we are investigating an approach for recovering
conversations using ACL support.

Finally, we also need to investigate the ease of implementing the
above techniques using generic agents.

9. CONCLUSION
We investigated the possibility of using concepts from multi-agent
systems literature for designing robust multi-agent systems and
showed that teamwork and autonomy can be used to achieve this
end. We introduced the Adaptive Agent Architecture (AAA) and
discussed the design and performance of its fault-tolerance
implementation. Multi-agent systems that use AAA can recover
from broker failures arising out of machine, network, or process
failures. It was statistically shown that the AAA implementation
of teamwork did not present any appreciable overhead during
steady state. We also presented experimental evidence to show
that agent autonomy can prevent an agent from thrashing and
hence becoming unresponsive.

In summary, this paper showed that (1) teamwork can be used to
create a robust brokered architecture that can recover a multi-
agent system from broker failures without incurring appreciable
overheads, (2) teamwork can be used to guarantee a specified
number of brokers in a large multi-agent system, and (3)
autonomous agents can make a multi-agent system more robust.

10. ACKNOWLEDGEMENT
We gratefully acknowledge the support of the DARPA CoABS
Program (contract F30602-98-2-0098, A0 G352) for the research
presented in this paper. We would also like to thank David
McGee for useful feedback during this work.

11. REFERENCE
[1] P. A. Bernstein and E. Newcomer, editors. Principles of

Transaction Processing. High Availability, chapter 7, 1997.

[2] K. P. Birman, editor. Building Secure and Reliable Network
Applications. Part III, Reliable Distributed Computing,
chapters 12-26, 1996.

[3] L. Chen and A. Avizienis. N-version programming: A fault-
Tolerance Approach to Reliability of Software Operation. In
Digest of Papers of the 8th Annual International Conference
on Fault-Tolerant Computing, Toulouse, France, 1978. As
referred in [12].

[4] P. R. Cohen. On Knowing What to Say: Planning Speech
Acts. Ph.D. Thesis, Department of Computer Science,
University of Toronto, 1978.

[5] P. R. Cohen, A. Cheyer, M. Wang, and S. C. Baeg. An Open
Agent Architecture. AAAI Spring Symposium, pages 1-8.
March 1994.

[6] Philip R. Cohen and Hector J. Levesque. Intention is Choice
with Commitment. Artificial Intelligence, Volume 42, pages
213-261, 1990.

[7] P. R. Cohen and H. J. Levesque. Rational Interaction as the
Basis for Communication. In P. R. Cohen, J. Morgan, and M.

E. Pollack, editors. Intentions in Communication, chapter 12,
pages 221-256. System Development Foundation Benchmark
Series, Bradford Books, MIT Press, 1990.

[8] P. R. Cohen and Hector J. Levesque. Confirmations and
Joint Action. In Proceedings of the 12th International Joint
Conference on Artificial Intelligence, Morgan Kaufman
Publishers, Inc., San Mateo, California, August 1991, pages
951-957.

[9] P. R. Cohen, M. Johnston, D. McGee, S. Oviatt, J. Pittman,
I. Smith, L. Chen, and J. Clow. QuickSet: Multimodal
Interaction for Distributed Applications, Proceedings of the
Fifth International Multimedia Conference (Multimedia ’97),
ACM Press, pages 31-40.

[10] K. Decker, K. Sycara, and M. Williamson. Matchmaking and
Brokering. Proceedings of the Second International
Conference on Multi-Agent Systems (ICMAS-96), Dec-96.

[11] S. Franklin and A. Graesser. Is it an Agent, or just a
Program?: A Taxonomy for Autonomous Agents.
Proceedings of the Third International Workshop on Agent
Theories Architectures and Languages. Springer-Verlag,
1996.

[12] S. Hägg. A Sentinel Approach to Fault Handling in Multi-
Agent Systems. In Proceedings of the 2nd Australian
Workshop on Distributed AI, Cairns, Australia, 1997.

[13] C. Heckman and A. Roetter. Designing Government Agents
for Constitutional Compliance. Autonomous Agents ‘99,
Seattle, 1999.

[14] JATLite. http://java.stanford.edu.

[15] N. R. Jennings. Controlling Cooperative Problem Solving in
Industrial Multi-Agent Systems using Joint Intentions.
Artificial Intelligence. 75(2), pages 195-240, 1995.

[16] G. A. Kaminka and M. Tambe. What is Wrong With Us?
Improving Robustness Through Social Diagnosis. In
Proceedings of the 15th National Conference on Artificial
Intelligence (AAAI-98), 1998.

[17] M. Klein and C. Dellarocas. Exception Handling in Agent
Systems. Autonomous Agents ‘99, Seattle, 1999.

[18] H. J. Levesque, P. R. Cohen, and J. Nunes. On Acting
Together. In Proceedings of the National Conference on
Artificial Intelligence (AAAI-90), Morgan Kaufmann
Publishers, Inc., San Mateo, California.

[19] D. Lomet and G. Weikum. Efficient Transparent Application
Recovery. In Client-Server Information Systems. SIGMOD
98, Seattle, WA, USA, 1998.

[20] K. Sycara, K. Decker, and M. Williamson. Middle-Agents
for the Internet. Proceedings of IJCAI-97, 1997.

[21] M. Nodine, B. Perry, and A. Unruh. Experience with the
InfoSleuth Agent Architecture. Proceedings of AAAI-98
Workshop on Software Tools for Developing Agents, 1998.

[22] Reliable Multicast Protocol. http://research.ivv.nasa.gov/RMP

