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ABSTRACT 

Multi-agent systems are prone to failures typical of any distributed 
system. Agents and resources may become unavailable due to 
machine crashes, communication breakdowns, process failures, 
and numerous other hardware and software failures. Most of the 
work done in fault handling in multi-agent systems deals with 
detection and recovery from faults such as state-inconsistencies, 
relying on the traditional techniques for recovering from other 
distributed systems failure. However, the traditional fault-
tolerance techniques are designed for specific situations and they 
require special infrastructural support. We argue for fault-
tolerance techniques that can be readily implemented using a 
generic agent shell with minimal or no modification to the agent 
infrastructure. 

We propose that theories from multi-agent systems literature can 
be effectively combined with basic fault-tolerance principles to 
design robust multi-agent systems. In particular, we argue that (1) 
teamwork may be used to create a robust brokered architecture 
that can recover a multi-agent system from broker failures without 
incurring undue overheads, (2) teamwork may also be used to 
guarantee a specified number of brokers in a large multi-agent 
system, and (3) agent autonomy can be used to prevent thrashing 
and guarantee acceptable levels of quality of service by an agent. 
We also describe the Adaptive Agent Architecture (AAA), a fault-
tolerant brokered multi-agent system architecture, and present 
experimental evidence using the AAA to validate our approach. 
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1. MOTIVATION 
Multi-agent systems are prone to the failures that can occur in any 
distributed software system. An agent may become unavailable 
suddenly due to various reasons. The agent process may die due 
to unexpected conditions, improper handling of exceptions and 
other bugs in the agent program or in the supporting environment. 
The machine on which the agent process is running may crash due 
to hardware and software faults. Network partitioning may also 
make agents unavailable for unforeseen periods.  

 

 

 

 

 

 

 

Various techniques have been developed in traditional distributed 
systems to deal with recovery from such failures. As we shall see 
in section three, these techniques are meant for specific failure 
situations and they require special infrastructure support. For 
instance, the techniques of object group replication [2], virtual 
synchrony [2] and N-version voting [3] need prescribed 
mechanisms for communication and synchronization among the 
replicas. Therefore, a multi-agent system intending to use any of 
these techniques must be built using an infrastructure that 
provides support for these techniques. It may not be possible for a 
multi-agent system to use these powerful fault-tolerant techniques 
without extensively modifying the agent architecture. On the other 
hand, a technique based on the multi-agent system concept of 
teamwork [18], may be implemented by simply adding a plan to 
the plan library of a generic agent.  

If the broker with whom an agent was registered becomes 
unavailable, the agent may look for another broker using transport 
level broadcasting or multicasting. However, this mechanism 
cannot be relied upon unless reliable multicasting is used. The 
reliable multicasting techniques require special protocols and 
architectures [22] that must be supported by the agent 
infrastructure. On the other hand, a technique based on teamwork 
to ensure connectivity with another broker may be readily 
implemented using a generic agent shell. Agents with specific 
behavior can be created from a generic agent shell by adding 
plans and actions to its plan and action libraries respectively. 

It is apparent, therefore, that we do need fault-tolerance 
techniques designed for multi-agent systems. The focus of this 
paper is to investigate fault-tolerance techniques based on multi-
agent system concepts.  Thereafter, subsequent research can 
investigate the ease of implementing these techniques using 
generic agent shells.  

Multi-agent systems require brokers1 or middle agents for certain 
tasks such as accepting requests, locating capable agents, routing 
requests and responses, sharing of information, managing the 
system, registering agent capabilities, and for legal purposes as an 
independent third party [13]. As a result, a large number of multi-
agent infrastructures such as OAA [5], RETSINA [10], JATLITE 
[14], and Infosleuth [21] provide some kind of middle agents or at 
least some form of facilitation and routing service. This 
observation motivates us towards designing fault-tolerant 
brokered multi-agent system architectures. Moreover, our 
experiences with Quickset [9], a multi-agent system based on 
                                                                 
1 The term broker has a special connotation in multi-agent 

systems [20]. However, in this paper we will use the term 
broker to be synonymous with middle agent, as the work 
described in this paper may be extended to most middle agents. 



OAA, reinforces the need for an agent architecture that can 
recover quickly from broker failures.  

As a brokered multi-agent system becomes more complex and as 
the number of agents increases, the number of brokers in the 
system will also increase due to reasons such as domain 
specialization and efficiency. We note that in a large multi-agent 
system with multiple brokers, the brokers could potentially serve 
as backups for each other, thus achieving a high level of fault-
tolerance. However, instead of using warm and hot backups, N-
version voting and other traditional techniques that build upon 
redundancy, we propose a scheme that uses teamwork as the 
distributed interaction protocol among these brokers. 

It has been shown that load balancing by brokers in multi-agent 
systems improves the performance of the system [10]. However, 
we observe that a malicious or faulty agent can still bring down a 
brokered multi-agent system by continuously sending requests at a 
rate much higher than what the broker can handle. We believe that 
autonomous agents should be less susceptible to external 
influences and this motivates us to investigate exploiting an 
agent’s autonomy to protect against such problems. 

The above discussions indicate that we need (1) fault-tolerance 
techniques designed for multi-agent systems, (2) robust brokered 
architectures that can recover from broker failures, and (3) agents 
that are robust from fault-causing influences of other agents. 

2. OVERVIEW 
We review the work done in the area of fault tolerance in multi-
agent systems in the next section. Two divergent approaches that 
have been used to diagnose failures and attempt recovery are (1) 
using sentinels, external to the agents, that monitor inter-agent 
communication, and (2) using introspection to monitor an agent’s 
own run time behavior. We also briefly review some of the 
important fault-tolerance techniques used in the database and 
traditional distributed systems and observe that redundancy is the 
basic principle behind most of those techniques. 

In section four, we briefly introduce the Adaptive Agent 
Architecture (AAA), a fault-tolerant multi-agent system 
architecture that is currently under development and forms the 
basis for most of this paper. 

Thereafter, in section five, we show that a multi-agent system can 
recover from broker failures if the brokers form a team with 
certain commitments and the agent architecture enables the 
brokers to honor those commitments. This recovery scheme based 
on teamwork avoids the overhead of using redundant brokers just 
for the purpose of fault-tolerance. We also show that this 
technique does not appreciably interfere with the normative 
behavior of the multi-agent system and that a multi-agent system 
using this technique will continue to function as long as there is at 
least one broker left in the system. 

We propose an extension to the above teamwork based technique 
in section six, wherein it can be specified that the system needs at 
least N brokers at all times for its functioning. We discuss our 
current implementation where it is possible to have at least two 
brokers at all times, irrespective of broker failures, and compare it 
with the classical technique of regenerative processes. 

Thereafter, in section seven, we argue that autonomous brokers 
are more fault-tolerant than non-autonomous brokers. In 
particular, we show that brokers should be able to refuse requests 

so as to prevent thrashing and buttress our argument with 
experimental evidence. We discuss the future work in the 
direction of this paper in section eight and finally, in section nine, 
we conclude with a summary of the present work. 

In this paper, we do not address the detection of unavailability of 
an agent (or broker) due to network, machine, and process failures 
and rely on TCP mechanism and timeouts for this purpose.  

3. REVIEW OF RELATED WORK 
Here we review some of the main approaches to fault-tolerance in 
multi-agent systems as well as in the traditional distributed and 
database systems. 

3.1 Fault Handling in Multi-agent systems 
Jennings showed that as the world becomes more complex and 
variable and plans tend to fail more often, teams as a whole waste 
fewer resources and are more robust than self-interested agents 
[15]. This approach is similar to ours in that both approaches are 
based on the theory of teamwork. However, we explicitly address 
the problem of fault-tolerance whereas Jennings work is more 
focused towards cooperative problem solving. 

Hägg uses external sentinel agents to monitor inter-agent 
communication, build models of other agents, and take corrective 
actions [12]. The sentinel agents listen to all broadcast 
communication, interact with other agents, and use timers to 
detect agent crashes and communication link failures. A sentinel 
agent copies the world model of other agents and detects 
inconsistencies by observing the behavior of other agents as well 
as its own internal state. In our teamwork-based approach, the 
problem solving agents themselves participate in fault-tolerance as 
opposed to the external sentinel agents used in this work. Further, 
Hägg’s work does not use middle agents whereas the current work 
mainly focuses on recovery from failures of middle agents. Lastly, 
the sentinels in this approach analyze the entire communication 
going on in the multi-agent system to detect state inconsistencies. 
However, this approach is not realistic for systems such as 
Quickset [9] that we use due to the high volume and frequency of 
messages in these systems. 

Klein proposes to use exception-handling service to monitor the 
overall progress of a multi-agent system [17]. Agents register a 
model of their normative behavior with the exceptional-handling 
service that generates sentinels to guard the possible error modes. 
The exceptional-handling services use a query and action 
language to interact with the problem solving agents to detect and 
diagnose faults and take corrective actions. The exception-
handling service is a centralized approach whereas our teamwork-
based approach is essentially a decentralized approach. Moreover, 
Klein’s approach relies on being able to communicate with the 
agents whereas the current work attempts to restore connectivity 
when communication with a broker is not possible. 

A social diagnosis approach is used by Kaminka and Tambe 
wherein socially similar agents compare their own state with the 
state of other agents for detecting possible failures [16]. An 
explicit teamwork model is used for failure diagnosis. The agents 
use plan recognition from observable actions as well as 
communication with other agents to infer and construct a model 
of the other agents. This work is similar to the current work in that 
the teamwork model is used in both cases. However, we mainly 
concentrate on middle agents whereas Kamnika’s work is related 
to a system that is not based on middle agents.   



Decker, Sycara, and Williamson advocate the use of caching by 
individual agents in systems that use matchmakers to improve 
robustness in the face of matchmaker failures [10]. They have also 
shown that using load balancing by brokers in brokered systems 
improves performance and hence provides a degree of robustness 
from aggressive agents. These approaches compliment our work 
and they can be used along with our teamwork-based techniques. 

3.2 Traditional Fault-Tolerance Techniques 
A large number of techniques for fault-tolerance can be found in 
the traditional database and distributed systems literature. Figure 
1 lists some of the techniques that have been developed for 
database recovery, for application recovery and recovery of 
distributed systems.  

Most of these recovery methods primarily focus on replication 
techniques that permit critical system data and services to be 
duplicated as a way to increase reliability [2].  Active replication 
is also used for processes wherein the inputs are duplicated and 
the outputs produced are consolidated. Most of the methods used 
for application recovery advocate either logging the application 
messages or frequently saving the application state and therefore, 
require either a database or a recoverable queue [19].  The current 
work attempts to recover a multi-agent system without recovering 
an inaccessible broker process and so does not require the brokers 
to save their state to persistent storage. 

Considering the specific problem of recovering a multi-agent 
system from broker failure, the closest traditional techniques that 
may be applicable are the techniques of warm and hot backups 
and the object group replication technique used in conjunction 
with virtual synchrony. In the warm backup technique, a process 
is replicated and when the main process goes down, the replica 
immediately starts recovering to the last known state of the dead 
process. A hot backup is similar to a warm backup except that the 
input and output of the main process as well as the replica are 
synchronized at all times and so the replica can immediately take 
over without having to first bring itself to the state of the dead 
process [1]. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Traditional Fault-Tolerance Techniques 

The object group replication used with virtual synchrony is 
essentially the same as the hot backup technique except that here 
objects are replicated instead of active processes [2]. Groups of 
objects are treated as a single object and all objects in a group 
receive the same messages in the same sequence. Therefore, if we 
form a group of similar objects, there is a high probability that the 

different objects in a group will be in possibly different but 
correct states. So if one object fails or gets into some unforeseen 
problem, another object can take over the responsibility of 
responding to messages. A slightly different technique is that of 
N-version voting in which N independently developed modules 
from the same specification run in parallel and the result is 
decided by voting [3].  

The above three categories of fault-tolerance require explicit 
replication for the purpose of fault-tolerance. These replicas are 
overheads in the sense that they exist only as backups and perform 
no useful task. These techniques also require infrastructural 
support to keep the process replicas synchronized or to implement 
object groups and virtual synchrony. The technique that we 
propose uses the brokers that are already present in the system and 
it uses teamwork to achieve an effect similar to warm backups and 
object groups plus virtual synchrony. Moreover, generic agents 
that already have reasoning and planning capabilities may be able 
to implement a technique based on multi-agent system concepts 
with minimal support (for example, by adding a plan and the 
corresponding actions to the plan and action libraries respectively) 
as opposed to the aforementioned techniques that require specific 
infrastructural support. 

4. A ROBUST AGENT ARCHITECTURE  
The Adaptive Agent Architecture (AAA) is a facilitated multi-
agent system architecture under development and forms the basis 
of our research in fault-tolerance and agent communication 
languages.  The agent library has been developed in Java and it 
uses Horn Clause for internal knowledge representation and 
reasoning. The AAA facilitator is a generic middle agent that 
serves as a broker, a matchmaker and a recruiter. Henceforth, in 
this paper, we will refer to the AAA facilitator as the AAA broker. 
The AAA brokers can be interconnected to form arbitrary 
networks and the agent library supports facilitated as well as 
direct inter-agent communication. The brokers as well as other 
agents can dynamically enter and leave AAA-based multi-agent 
systems. The support for fault-tolerance is built into the agent 
library. All of the experiments presented in the subsequent 
sections use AAA agents and the AAA broker. The AAA can also 
interoperate with the Open Agent Architecture [5]. 

5. RECOVERY FROM BROKER FAILURE 
Here we discuss the teamwork-based technique used by the AAA 
for automatically recovering a multi-brokered multi-agent system 
from sudden broker unavailability. The broker under 
consideration may be inaccessible due to machine crash, network 
breakdown, or death of the broker process.  We also make the 
simplifying assumption that the brokers in the system are fully 
connected. We first present the logical characterization of our 
teamwork model and briefly describe the steps in our recovery 
scheme. Thereafter, we walk through a recovery scenario 
describing the commitments involved and the actions taken by the 
agents. 

5.1 Logical Characterization 
Team activity has been explained in terms of the theory of joint 
intentions [6, 7, 8, 18]. This theory characterizes an agent’s 
behavior in a team in terms of its internal state described in modal 
logic, linear time temporal logic, and dynamic logic of action.  A 
joint persistent goal (JPG) formalizes the notion of joint 
commitment. The existence of a JPG between a group of agents is 
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a sufficient condition for the formation of a team with respect to 
that JPG. Two agents have a joint intention (JI) to do an action a 
if they have a JPG to do a while being in a particular mental state. 
A joint intention requires the starting mutual belief that the team 
members are going to do the jointly intended action next. Joint 
intention brings about one of the following mental states. (1) The 
agents mutually believe that a has been done; (2) They mutually 
believe that a is impossible; (3) They mutually believe that a is 
irrelevant. 

We argue that the recovery of an AAA-based multi-agent system 
from broker failures is a consequence of the following 
specification of teamwork that is implemented by the AAA 
brokers: 

∀y [(agent y) ∧ (DONE (registered y T)?) ⊃  
           (JI x1 x2…xn  a(y)  (registered y T))] where,  
        a(y) =  ( WHILE (registered y T)  
                       DO [if ¬(connected y T) THEN (connect y T)] ) 
        T = team of brokers consisting of x1, x2,...,xn 

It means that whenever an agent registers with the broker team, 
the brokers have the joint intention of connecting to the agent, if it 
ever disconnects, as long as it remains registered with the team. 
Using this proposition, along with other logical properties of the 
AAA, we can establish the commitments of the brokers in the 
team. These commitments result in fault tolerant behavior when 
the brokers act rationally and take appropriate actions to act on 
the commitments. Here, we state without proof, theorems about 
commitments of the AAA brokers. The basic theorems can be 
found in [8, 18]. 

Theorem 1: Whenever an agent registers or unregisters with a 
broker, the broker has a commitment to make this fact mutually 
believed by the broker team2.  

Theorem 2: When a broker discovers that an agent that is 
registered with the team is not connected, it has a commitment to 
make this fact mutually believed. 

Theorem 3: When an agent that is registered with the broker team 
gets disconnected, the brokers have a joint commitment to 
connect to that agent. Moreover, all the brokers in the broker team 
have an individual commitment to connect that agent to the team. 

Theorem 4: When a broker successfully connects to an agent that 
is registered with the broker team, but got disconnected, it has a 
commitment to bring about mutual belief about this fact. 

Theorem 5:When a broker that was committed to the disconnected 
agent’s being reconnected to the team, learns that the agent has 
been connected to the broker team, it gives up its commitment to 
connect to that agent. 

The proof of these theorems along with a detailed logical 
characterization of AAA will be discussed in a subsequent paper.  

                                                                 
2 The sending of an inform that registration has taken place, 

followed by an acknowledgement that the prior inform was 
believed brings about mutual belief by default. Note that a 
circular data structure enables the representation of mutual 
belief compactly by referencing only two messages [4]. 

 

5.2 Recovery Scheme 
The recovery scheme that follows from the above commitments 
consists of the following steps: 

1) Each broker communicates the following information to its 
adjacent brokers: 
(1) The name and the address for direct connection (lets call 

it dc-addr) of agents that register with it. 
(2) The name of the agent that unregisters with it. 

2) Each facilitator joins a recoverable broker team consisting of 
the adjacent brokers. The entire multi-agent system will 
consist of such teams with overlapping members. 

3) Normally, an agent contacts some broker on startup, perhaps 
specified by the person starting the agent. 

4) Agents listen for request from brokers at address dc-addr and 
they inform a broker about this address at the time of their 
registration with that broker. Brokers can initiate connection 
with agents for which they know the direct connection 
address. 

5) When a broker disconnects from its teammates, all the 
brokers on its team attempt to directly contact the agents that 
were registered with the now disconnected broker. 

6) When a broker successfully contacts an agent in this manner, 
it informs its teammates due to step (1).  The other brokers 
give up their attempts to contact this agent directly. 

The multi-agent system has recovered from failure of the 
disconnected broker when all the agents registered with that 
broker have been contacted in this manner. The requests that were 
in progress at the time of the failure, and hence could not be 
completed, may be sent again by the requesting agent. 

5.3 A Recovery Scenario 
We explain the recovery scenario from one of our experiments 
using the theory of teamwork. Figure 2 illustrates the initial 
system setup.  The client agent periodically sends requests for 
which the distance agent is the only capable agent. The three 
brokers form a robust team as described earlier. This system can 
function only if both the client and the distance agents are 
registered with a broker. 

From theorem 1, the brokers have an individual commitment to 
bring about mutual belief when an agent registers with a broker. 
Therefore, when the client agent registers with broker2, broker2 
informs this fact along with the name and address of the distance 
agent to broker1 and broker3. Similarly, when the distance agent 
registers with the broker3, broker3 informs this fact to broker1 
and broker2.  

Figure 2:  Setup for demonstrating the recovery process 
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In the middle of the experiment, we kill broker3. When a broker 
teammate is no longer accessible, the other brokers believe that all 
the agents registered with that broker are disconnected.  When 
broker3 gets killed, at least one of the remaining brokers, broker1 
or broker2, discovers that broker3 is no longer accessible to it and 
believes that the distance agent is not connected to the broker 
team. Therefore, from theorem 2, this broker has an individual 
commitment to bring about a mutual knowledge about its 
discovery. As a result, there would be some communication, in 
the general case, among the brokers in the team. However, each of 
the remaining brokers knows that the other was also connected to 
broker3 and believes that the other broker should have also 
discovered the fact about broker3 being no longer accessible3. 
Hence, no communication takes place at this point. 

From theorem 3, the broker team has a joint commitment to 
connect to the agent that it mutually believes is disconnected from 
the team. Moreover, each of the remaining brokers has an 
individual commitment to contact the disconnected agent. The 
two brokers act rationally by attempting to contact the distance 
agent at the address given to them earlier by broker3. If the 
distance agent accepts registration request from one of the 
brokers, it refuses subsequent registration requests from other 
brokers. Figure 3 illustrates the situation when broker1 has 
successfully contacted the distance agent. 

From theorem 4, broker1 now has an individual commitment to 
inform the successful connection of the distance agent to its 
teammates. As a result, broker1 will act rationally by 
communicating this information to broker2, and from theorem 5, 
broker2 will give up its attempt if it was still trying to contact the 
distance agent as the mutual goal has already been achieved. 
Moreover, from theorem 1, broker1 needs to inform the 
registration and address information of the distance agent to 
broker2. In the current AAA implementation, these two 
communication attempts are combined into one and just one 
message gets sent from broker1 to broker2. 

Figure 3: System after successful recovery 

After successfully contacting the distance agent, the broker1 
requests it for agent-specific information such as its capabilities. 
The multi-agent system has recovered from the failure of broker3 
at this point and any request from the client agent that could not 

                                                                 
3 This belief will not hold in general. However, recall that the 

AAA brokers use TCP for detection of connection failures. 
Therefore, every broker that was connected to broker3 will 
eventually discover the fact that broker3 is not reachable. 

be completed due to the failure of broker3 may be sent again to 
the distance agent and the system continues to work. 

5.4 Performance Characteristics 
The experiments that follow and those in the subsequent sections 
were conducted on a 366 MHz Pentium II single-CPU machine, 
128 MB SDRAM, 66MHz system bus, and running Windows 
NT 4.0 SP5. The machine was used as a standalone, disconnected 
from the network, and there was no application running on the 
machine other than the minimal operating system services and the 
agents and brokers used in the experiments. The experiments used 
JRE version 1.2.2 with just-in-time compiler enabled. 

The experimental setup was same as that of the previous section 
with varying number of brokers fully connected to each other. The 
client agent sent synchronous requests that were answered by the 
distance agent. A constant delay of 20 ms was introduced in the 
distance agent before responding to requests so as to obtain 
observable response times. The client agent sent the requests 20 
ms after receiving the reply to the previous request. The response 
time was measured as the real time elapsed between the sending 
of a request and the receipt of the corresponding response. The 
brokers used a policy wherein a request is sent to all the brokers 
even if a capable agent is found locally. This policy was used to 
prevent the response time from being biased by any particular 
configuration when the system reorganizes after a broker failure. 

5.4.1 Effect of Recovery on Response Time 
The experiment in figure 4 was started with eight fully connected 
brokers and the brokers were killed one by one. The stair-step plot 
shows the number of brokers present at any time. The agents 
mentioned near the peaks are the agents that were connected to 
the broker that was killed. 

Figure 4: Effect on response time as brokers are killed 

The plot in figure 4 clearly shows that the AAA recovery scheme 
enables the system to function, despite broker failures, as long as 
there is at least one broker left in the system. The peak response 
times are for the requests that were in progress when the broker 
got killed. The peak values go down as the number of brokers in 
the system decreases because (1) there is less team overhead in 
reorganizing a smaller team, and (2) the single-CPU system used 
in this experiment gets less loaded due to fewer processes.  

Broker1

Broker2
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5.4.2 Overheads of Using Teamwork 
The establishment of joint persistent goals for teamwork requires 
communication overheads. However, the implementation of 
teamwork described above comes into play only when there is 
some transition in the system such as brokers or agents being 
added or removed. As such, we would expect that there should be 
no teamwork overhead in the steady state.  Figure 5 shows two 
plots, one with the normal recoverable system, and the other with 
the teamwork code disabled. For each number of brokers, the 
response time was collected for 100 requests and the maximum, 
the minimum and the mean have been plotted.  

Figure 5: Mean response times with and without teamwork 

We observe that a plot of the mean response times in the two 
cases will nearly overlap. A paired t-test of the mean response 
times for the same number of brokers, with and without 
teamwork, was unable to confirm a difference at 0.05 significance 
level. Therefore, we can say that statistically the AAA 
implementation of teamwork for fault-tolerance does not present 
appreciable overhead in the steady state.  

5.4.3 Effect of Transitions on Response Time 
Broker-team reorganization does affect the response times of the 
requests in progress at the time of the reorganization. The effect of 
adding additional brokers to a working system is expected to be 
similar to that when brokers are killed (assuming that the effects 
of the CPU getting overloaded due to additional processes and the 
disturbance due to process creation are accounted for). 

When an agent enters or leaves the multi-agent system, a message 
is sent to all the broker teammates as prescribed by theorem 1, 
section 5.2. However, this message generates too little traffic to 
appreciably affect the ongoing agent conversations. The 
experiment in figure 6 consisted of four interconnected brokers 
and six additional agents. These additional agents did not 
participate in the interaction between the client agent and the 
distance agent. The system was run until completion and the six 
additional agents were killed one by one every second in this 
period. We observe that there is no appreciable and consistent 
peak in response time whenever an agent was killed. Moreover, 

small peaks if any, are within the bounds of random effects (the 
peak in response time that we see even before any agent was 
killed is due to random effects such as thread scheduling). This 
preliminary result meets our expectation that agents leaving (or 
entering) the AAA multi-agent system do not cause the teamwork 
implementation to create noticeable disturbance in the application. 

6. MAINTAINING SPECIFIED NUMBER 
OF BROKERS 
A large multi-agent system will typically use a number of brokers 
(or middle agents) to achieve an optimum between redundancy, 
resource utilization, efficiency and load balancing. Moreover, 
when a number of independent multi-agent communities are 
interconnected, it is generally desirable for each local agent 
community to have its own middle agents. The teamwork-based 
recovery scheme discussed in the previous section can be 
extended to have at least N brokers in the system at all times. 
When brokers fail or become inaccessible, new brokers can be 
started to maintain the specified number of brokers. Infrastructure 
support is required from the agent library so as to enable agents 
(including brokers) to start other brokers. Proper coordination is 
required among the brokers to ensure correct mutual beliefs, to 
track the progress of a recovery process, and to reorganize the 
agents after recovery.  

The current AAA implementation can maintain at least two 
brokers at all times despite broker failures. The implementation of 
teamwork in this case is trivial because the teamwork code 
becomes effective only when there is one broker left in the system 
in which case the team consists of just one broker. The AAA 
agents commit to the AAA broker, with which they are registered, 
to honor its requests for starting broker processes. Whenever an 
agent registers or a broker teammate disconnects from an AAA 
broker, it checks to see if there are at least two brokers in the 
team. If not, it searches for an AAA agent on a different machine.  
If it finds such an agent, it requests that agent to start a broker and 
request the newly started broker to join the broker team of which 

Figure 6: Response time when agents leave the system 



the requesting broker is a member4. If the AAA broker fails to 
find an agent on a different machine, it picks up an agent on the 
local machine at random and repeats the process. Further, an AAA 
broker started as a result of this process is committed to connect 
to (and form a team with) the broker that initiated its birth. The 
AAA broker also keeps track of pending requests to start brokers 
and may request another agent to start a broker if needed. 

This technique resembles the technique of regenerative processes 
in the traditional fault-tolerance literature wherein a critical 
process can be restarted by a monitoring process upon failure. 
However, there are a few major differences between the two 
techniques. 

(1) If the monitoring process fails, there needs to be another level 
of monitoring process to restart the first monitoring process. This 
can go up to any level but all these levels have to be explicitly 
designed and configured for each machine. In the AAA scheme, 
no separate configuration is needed for each machine. Moreover, 
all of the requisite N-1 brokers can be started even if there is just 
one broker left in the system, thereby automatically providing N-1 
levels of monitoring.  

(2) Special monitoring infrastructure is required to be able to start 
processes on different machines. A convenient way would be to 
have separate monitoring processes on each machine that are 
coordinated using a special distributed algorithm. However, any 
such algorithm needs proof of correctness before it can be relied 
upon. In the AAA scheme, no separate monitoring infrastructure 
is required as the problem solving agents themselves participate in 
the fault-tolerance process. The specification of teamwork 
provides a distributed coordination protocol that is logically 
proven to work. 

The general case in which N brokers can be maintained at all 
times is under implementation. A subsequent paper will provide 
the detailed logical analysis for this technique. 

7. AUTONOMY AND ROBUSTNESS 
Autonomous agents act in pursuit of their own agenda. They 
evaluate their internal goals and beliefs and the consequences of 
their action even when serving the requests of other agents. As a 
result, we would expect an autonomous agent to be less 
susceptible to the influences of other agents. A weaker notion of 
autonomy is the ability to refuse requests [11]. We show that even 
this simplistic notion of autonomy can prevent process thrashing 
and hence protect against performance degradation beyond a point 
where an agent effectively becomes useless. 

The experiment in figure 7 consisted of a base case in which 
asynchronous requests were sent to the broker every 200 ms that 
then were forwarded to a capable agent and the answers were 
returned back. The mean response time was calculated to be 34.4 
ms. In the second case, the client agent aggressively sent 
asynchronous requests every 17 ms (half the mean response time). 
This rate of sending requests was beyond what the broker could 
handle and as a result, the response time increased without 

                                                                 
4 Note that this algorithm will result in a maximally connected 

broker graph if (1) the brokers are started one at a time, and (2) 
a new broker is started after a previously started broker has 
joined the broker team. 

 

bounds. A performance analysis tool revealed that the memory 
usage increased linearly with a sharp slope as the message got 
queued up (the memory usage graph was linear since all the 
requests were of nearly the same size in bytes).  The broker was 
then setup to refuse new requests when the agent capable of 
answering the request was busy and as a result, the response time 
can be seen to oscillate around the base case. The experiment was 
repeated with the broker set to refuse alternate requests and the 
results were identical.  

These simple experiments conclusively show that a malicious or 
faulty agent or an aggressive agent can almost bring down a multi-
agent system unless the agents concerned start refusing messages. 
The queueing up of messages for future processing, without any 
limit on the number and size of messages that can be queued, 
appears to be the main cause of this problamatic behavior. Even a 
simple policy, such as refusing messages when the input queue 
length grows beyond a certain limit, can prevent an agent from 
thrashing and hence from becoming unusable. In general, an agent 
should evaluate its performance and the intentions of the 
requesting agent (for instance whether it appears to be a malicious 
or faulty agent) and refuse requests if they tend to degrade its 
performance beyond certain acceptable levels (which of course 
can be determined dynamically by an the agent).  

8. FUTURE WORK 
We are currently underway implementing a teamwork model that 
can maintain N brokers in a multi-agent system where N is more 
than two.  

We are also working towards the pragmatics of designing an ACL 
(Agent Communication Language) for fault-tolerance. For 
instance, the ACL message structure should be designed to 
directly access fields such as speech-act type and the message 
identifier so that refusal messages can be sent without parsing and 
interpreting the entire incoming message. Further, we believe that 
certain minimal context information in the ACL message can be 
used to detect circular deadlocks if this information is carried over 
to any new message sent by (1) an agent after task decomposition, 
and (2) a middle agent forwarding a message.  

Figure 7: Effect of refusal on performance 



The recovery scheme described in this paper guarantees recovery 
of the system connectivity but it is left to an agent to guarantee 
idempotent behavior when a message that was presumably lost 
due to broker failure is resent by the agent shell. However, 
recovery of the ongoing conversations is required for a complete 
recovery and we are investigating an approach for recovering 
conversations using ACL support.  

Finally, we also need to investigate the ease of implementing the 
above techniques using generic agents. 

9. CONCLUSION 
We investigated the possibility of using concepts from multi-agent 
systems literature for designing robust multi-agent systems and 
showed that teamwork and autonomy can be used to achieve this 
end. We introduced the Adaptive Agent Architecture (AAA) and 
discussed the design and performance of its fault-tolerance 
implementation. Multi-agent systems that use AAA can recover 
from broker failures arising out of machine, network, or process 
failures. It was statistically shown that the AAA implementation 
of teamwork did not present any appreciable overhead during 
steady state. We also presented experimental evidence to show 
that agent autonomy can prevent an agent from thrashing and 
hence becoming unresponsive. 

In summary, this paper showed that (1) teamwork can be used to 
create a robust brokered architecture that can recover a multi-
agent system from broker failures without incurring appreciable 
overheads, (2) teamwork can be used to guarantee a specified 
number of brokers in a large multi-agent system, and (3) 
autonomous agents can make a multi-agent system more robust. 
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