Network Science: Graph Theory

Ozalp Babaoglu
Dipartimento di Informatica - Scienza e Ingegneria
Università di Bologna
www.cs.unibo.it/babaoglu/

Graph theory

Terminology and notation

- Formally, a graph is a pair $\mathscr{G}=(\mathcal{N}, \mathcal{E})$ where \mathcal{N} is the set of nodes (vertices) and \mathcal{B} is the set of edges (links, arcs)
- We let n denote the number of nodes and m denote the number of edges in the graph
- Example ($n=4, m=4$):

Use letters to label nodes, node pairs to label edges
$\mathcal{N}=\{A, B, C, D\}$
$\mathcal{E}=\{(A, B),(A, C),(A, D),(B, D)\}$

Graph theory

- Branch of mathematics for the study of discrete structures called graphs for modeling pairwise relations between objects
- Invented by Swiss mathematician Leonhard Euler (15 April 1707-18 September 1783)

- Gives us the language and basic concepts to reason about networks
\qquad

Graph theory
Graph visualization

- It is customary to draw the nodes as circles and the edges as lines that join two nodes

- Is a visualization for the graph
$\mathscr{G}=(\{A, B, C, D\},\{(A, B),(A, C),(A, D),(B, D)\})$

Graph theory
 Graph visualization

- The graph is defined by the list of nodes and edges, not by its particular visualization
- The same graph may have many different visualizations

- All represent the same graph but some visualizations can be better than others

Graph theory Binary relations

- Note that binary relations are limiting
- For example, co-authorship among three people cannot be expressed through binary relations
- If authors A, B and C publish a paper together, the co-authorship graph will represent this through three binary relations

- But loses the information that they actually co-authored a common paper

Graph theory
 Binary relations

- Graphs represent arbitrary binary relations among objects
- Nodes are the objects, the presence of an edge indicates that some relation \mathscr{R} holds between the nodes, the absence indicates that relation \mathscr{R} does not hold

Examples of binary relation \mathscr{R} :
"greater than", "is a friend of", "trusts", "loans money to", "co-authored paper with", "sits on a board-of-directors with"
\qquad

Graph theory Directed graphs

- An edge as we have defined it, is undirected and corresponds to a symmetric binary relation

(A) B $A \mathscr{R} B$ is true and $B \mathscr{R} A$ is true

- An asymmetric binary relation holds in one direction only and is represented by a directed edge
$A \longrightarrow B \quad A \mathscr{R} B$ is true and $B \mathscr{R} A$ is false
Examples of asymmetric binary relations:
"follows (on Twitter)", "trusts", "connected by a direct flight", "loans money to", "has a URL to"
\qquad

Graph theory

Directed graphs

- Directed graphs are more general than undirected graphs

is equivalent to

Edge (A, B)
Edges (A, B) and (B, A)

Graph theory Some basic facts

- What is the maximum number of edges that an undirected graph with n nodes can have?
- Every node has an edge to every other node
- Excluding self edges, each node will have $n-1$ edges, for a total of $n(n-1) / 2$ edges (corrected for double counting)
- Thus, for any undirected graph, $m \leq n(n-1) / 2$
- How many different undirected graphs with n nodes can there be?
- There can be at most $n(n-1) / 2$ edges
- Each edge can be present or absent
- Resulting in a total of $2^{n(n-1) / 2}$ combinations

Graph theory Weighted graphs

- Both directed and undirected graphs can have a weight associated with edges to represent the strength of the relation
- Examples of weighted graphs:
- "co-authorship" (how many joint publications)
- "actors" (number of joint films)
- "citations" (number of times one author cites another)
- "flight routes" (number of daily non-stop flights)
- "interstate highway" (distance between cities)
- "Internet" (transmission capacity of a link)
\qquad

Graph theory Some basic facts

- How many different undirected graphs with 3 nodes can there be? $2^{3(3-1) / 2}=2^{3}=8$

Graph theory
 Some basic facts

- How does $2^{n(n-1) / 2}$ grow with the number of nodes?

n	$2^{n(n-1) / 2}$
5	1,024
6	32,768
7	$2,097,152$
8	$268,435,456$
9	$68,719,476,736$
10	$35,184,372,088,832$
15	$40,564,819,207,303,340,847,894,502,572,032$
20	1.569×1057
24	$1,214 \times 10^{83}$
30	8.872×10130

Node degree distribution

- In a graph with n nodes, the node degrees are in the range between 0 and $n-1$ (excluding self loops)
- How are node degrees distributed in this interval?
- Are all degrees equally likely or are some degrees more common than others?

Node degree

- Degree of a node counts the number of edges that are incident on it - its neighbors

- For a directed graph, we distinguish between the in-degree and the out-degree of a node

Paths, cycles

- A path in a graph is an alternating sequence of nodes and edges of the graph

- If the graph is directed, the path must respect the direction of edges
- A simple path is a path where the nodes do not repeat
- A cycle is a path where the first and last nodes are the same, but otherwise all nodes are distinct

Paths, cycles

- $C A B D$: simple path
- $A D B A C$: path but not a simple path
- BDAB: cycle
\qquad

Diameter

- Diameter of a graph is the longest of the distances between all pairs of nodes - the longest shortest path

Diameter 2

Diameter 3

Diameter ∞

Distance

- The length of a path in a graph is the number of steps it contains from beginning to end - the number of edges

- The distance between two nodes in a graph is the length of the shortest path between them
- Distance between C and G is 2
- Distance between A and B is 1
- Distance between A and C is infinite (or undefined)
\qquad

Connectivity, components

- A subgraph is connected if there is a path between every pair of nodes
- A component of a graph is a maximal connected subgraph

Not a component
(not maximal)

Component 1 Component 2

Connectivity, components

- A graph is connected if it contains a single component

Not connected

Connected

Giant components

- If the largest component of a graph contains a significant proportion of all nodes, it is called the giant component

Connectivity, components

- For directed graphs, definitions extended to strongly-connected components and strongly-connected graphs taking into consideration the direction of edges

Strongly-connected component

Bridge

- An edge in a graph is a bridge if deleting it increases the number of components of the graph

Clustering coefficient of a node

- Clustering is a measure of how "bunched up" (unevenly distributed) the edges of a graph are
- Formally, the clustering coefficient of node A is defined as the probability that two randomly selected friends of A are friends themselves
- The fraction of all pairs of A 's friends who are also friends
- Defined only if A has at least two friends (otherwise 0)
- The clustering coefficient is always between 0 and 1
\qquad

Clustering coefficient of a graph

- The clustering coefficient $C C$ of graph \mathscr{G} is the average of the clustering coefficients of all nodes in \mathscr{G}

$C C=(1+2 / 3+2 / 3+1+1 / 2) / 5=0.7666$

Clustering coefficient of a node

- A has four friends
- Among the four friends, there are $(4 \times 3) / 2=6$ possible friendships
- But only four of them are actually present
- Two are missing
- Thus, the clustering coefficient of node A is $4 / 6=0.6666$

Clustering coefficient of a graph

- All nodes are identical and have 4 neighbors

- Possible edges between pairs of neighbors is $4 \times 3 / 2=6$
- How many pairs of neighbors are actually connected? 3
- Clustering coefficient of any node: $3 / 6=0.5$
- Clustering coefficient of the entire graph: $C C=0.5$

Clustering coefficient of a graph

- Clustering quantifies the likelihood that nodes that share a common neighbor are neighbors themselves

- In social networks, it is very likely that triangles will indeed close over time - triadic closure

Clustering coefficient of a graph

- Alternative definition of clustering coefficient of a graph:
- Proportion of all possible triangles that are actually closed

- Number of possible triangles is 10 (5 choose 3 = 5!/3!2!)
- Number of closed triangles is 3
- Clustering coefficient is $3 / 10=0.3$ (compare to 0.7666)

Highly clustered

- Is $C C$ alone sufficient to conclude that a graph is "highly clustered"?
- CC close to $1 \Rightarrow$ highly clustered?
- $C C$ close to $0 \Rightarrow$ not highly clustered?
- Not necessarily true
- Some number of triangles in a graph could be closed simply by chance
- A graph is highly clustered only if the actual likelihood of a triangle being closed is substantially greater than what we would expect due to pure chance
- Clustering coefficient of the entire graph, $C C$, is the proportion of all possible triangles that are actually closed

Edge density

- Edge density of a graph is the actual number of edges in proportion to the maximum possible number of edges

$$
\rho=\frac{m}{n(n-1) / 2}=\frac{2 m}{n(n-1)}
$$

- Clearly, the edge density of any graph is between 0 and 1
- Suppose we pick two nodes of a graph at random without regard to the graph structure (e.g., whether the two nodes share a common neighbor or not)
- What is the probability p that the two nodes are connected?
- It is given exactly by the edge density of the graph
\qquad

$$
p=\rho
$$

Highly clustered

- We will compare the clustering coefficient $C C$ of a graph to its edge density ρ
- We consider a graph to be highly clustered if $C C \gg \rho$

$$
C C=3 / 8=0.375
$$ $\rho=0.2142$

"Not highly clustered"

$C C=(6+4 / 3) / 8=0.9166$ $\rho=0.3928$
"Highly clustered"

Sparse and dense graphs

- If ρ is small, then graph is sparse
- If ρ is large, then the graph is dense

Sparse ($\rho=3 /(8 \times 7 / 2)=3 / 28=0.1071$)

Denser ($\rho=11 / 28=0.3928$)

Highly clustered

- Consider a ring with eight nodes

Clustering coefficient: $C C=0$ Edge density: $\rho=2 \times 8 / 56=0.2857$

- What if there are one thousand nodes?

Clustering coefficient: $C C=0$
Edge density: $\rho=2 \times 1000 /(1000 \times 999)=0.002$

Highly clustered

- Consider an augmented ring with eight nodes

Clustering coefficient: $C C=0.5$
Edge density: $\rho=2 \times 16 / 56=0.5714$

- What if there are one thousand nodes?

Clustering coefficient: $C C=0.5$
Edge density: $\quad \rho=2 \times 2000 /(1000 \times 999)=0.004$
\qquad

Centrality metrics

- Different notions of centrality
- Degree - well connectedness
- Betweenness - criticality for connectedness
- Closeness - short distances to the rest of the graph
- Eigenvector - importance
- Centrality is a property of a single node but in the context of the entire graph
- We can also define a global notion of centrality that applies to the entire graph centralization

Centrality metrics

- For nodes in a graph, centrality metrics try to formalize notions such as "important", "influential" or "popular"

- Why was the Medici an important family in 15 th century Florence?
\qquad

Centrality metrics

- Degree centrality - the greater the degree of a node, the more "important"
- Appropriate for some settings (social networks) since nodes with high degree are better connected and can serve as introducers

Centrality metrics

- Problems with degree-based centrality

Betweenness

$4 \times 4=16$ al shortest paths between the 4 nodes to the left and the 4 nodes to the right $6 \times(6-1) / 2=30 / 2=15$ possible pairs among the 6 neighbors of the central node and all shortest paths go through it
$4 \times 3+1 / 2=12.5$ the node gets full credit for the 12 shortest paths that go through it but only half the credit for the two shortest paths between the top and bottom nodes

Betweenness

- Degree-based centrality is not able to capture the notion of brokerage - ability of a node in a graph to act as a bridge between different components
- Define betweenness of node u to be the fraction of all pairwise shortest paths that go through u
where

$$
B(u)=\sum_{\text {all pairs } i_{i, j}} \frac{g_{i j}(u)}{g_{i j}}
$$

$g_{i j}=$ total number of shortest paths between i, j
$g_{i j}(u)=$ number of shortest paths between i, j that go through u
\qquad

Closeness

- What if it is not important to have many friends
- Or be in a "broker" position?
- Important to be in a "central" position, close to the rest of the graph

- Acciaiuol have degree 1, betweenness 0 but are just one hop from the Medici

Closeness

- Define closeness of node u based on the (inverse) average shortest path length between node u and every other node in the graph
where

$$
C(u)=\frac{n-1}{\sum_{i} d(u, i)}
$$

$d(u, i)=$ length of shortest path between nodes u and i

Closeness

Closeness

$6 /(1+2+2+2+2+2)=6 / 11=0.5454$ $7 /(1+1+1+2+3+3+3)=7 / 14=0.5$

Centrality metrics in directed graphs

- Degree, betweenness and closeness centrality definitions extend naturally to directed graphs
- Out-degree centrality - based on out-degree
- In-degree centrality - based on in-degree
- Betweenness centrality of a node becomes the fraction of all pairwise shortest directed paths that go through it
- In-closeness - based on path lengths from all other nodes to the given node
- Out-closeness - based on path lengths from the given node to all other nodes

Eigenvector centrality

- Basic idea: the importance of a node in a graph is determined by the importance of its neighbors
- Recursive definition!
- Extremely relevant and important for the web graph
- Implemented for directed graphs by the PageRank algorithm that was the main technological innovation behind Google search
- On the web, what counts is not how many pages point to a given page but which pages point to that page
- The "slashdot effect"
\qquad

Eigenvector Centrality
Page Rank

- We have an equation like this for every node in the graph:

$$
R(t+1, B)=\sum_{\forall A:}(A, B) \in E \text { 位 } \frac{R(t, A)}{\text { out }(A)}
$$

- How to assign ranks to all nodes such that the set of equations for the entire graph is consistent (stable)?
- Formally, the solution is equivalent to solving for the eigenvector of a matrix (describing the connectivity of the graph)
- Can be approximated algorithmically by iterating - contribution of Larry Page and Sergey Brin while at Stanford that lead to the Google search engine

Eigenvector Centrality
 Page Rank

- Informally, an important node in a directed graph is pointed to by lots of other important nodes

- Let $R(t, A)$ be the rank of A at time t and let out (A) be its out-degree
- A "distributes" its rank evenly over its out-edges so that each one receives $R(t, A) / \operatorname{out}(A)$
- The rank of B at time $t+1$ is obtained by summing the ranks over all of its in-edges
\qquad

Eigenvector Centrality
Page Rank

$R(1, G)=R(0, A) / 3+R(0, F)+R(0, J) / 2+R(0, L) / 4$ $=1 / 3+1+1 / 2+1 / 4$
$=2.0833$

Recap
 Classes of graph properties

- Global patterns - macroscopic aspects of graph structure
- Degree distribution
- Connectivity
- Path lengths
- Diameter
- Edge density
- Local patterns - microscopic aspects of graph structure
- Degree
- Clustering coefficient
- Centrality - a single node in context (position) of graph
- Betweenness
- Closeness
\qquad

Software tools

- Gephi: interactive visualization and exploration platform for networks
- https://gephi.github.io/
- NetLogo: programmable multi-agent environment for modeling network dynamics
- https://ccl.northwestern.edu/netlogo/

