
Replace this file with prentcsmacro.sty for your meeting,
or with entcsmacro.sty for your meeting. Both can be
found at the ENTCS Macro Home Page.

A Note on Formalising Undefined Terms in
Real Analysis

Claudio Sacerdoti Coen1,2 Enrico Zoli1,3

Department of Computer Science
University of Bologna

Bologna, Italy

Abstract

To adopt proof assistants based on logic of total functions in education, one major problem is that of
representing partial functions. In particular, one wishes to capture undefinedness in a rigorous way, while
staying as close as possible to traditional mathematical practice. In this paper, we propose to represent
potentially undefined terms with partial setoids on lifted terms, and to understand book equalities occurring
in equality chains as special directed relations that hold only under assumptions of definedness for some
terms. We also employ a suitable notion of strict morphism to fully automate propagation of these directed
relations in strict contexts.

Keywords: undefinedness, strictness, proof assistant, Real Analysis, education, Matita

1 Introduction

DAMA (Dimostrazione Assistita per la Matematica e l’Apprendimento) is a recently
started locally funded project of the University of Bologna aimed at the develop-
ment of a self-assessment tool for students of a first Real Analysis course. The tool
will be able to check the correctness of proofs and provide hints or counterexam-
ples. It should also force the student to prove every necessary side condition in
computational exercises.

The tool, still under development, will be based on the core of the Matita inter-
active theorem prover [1], also under development by the research group of Prof. As-
perti at the University of Bologna. Matita is based on the Calculus of (Co)Induction
Constructions, a logic of total functions. Since partial functions play a major role
in Real Analysis, the first problem we have to address is that of the representation
of partial functions.

1 Partially supported by the strategic project DAMA (Dimostrazione Assistita per la Matematica e
l’Apprendimento) of the University of Bologna.
2 sacerdot@cs.unibo.it
3 zoli@math.unifi.it

c©2008 Published by Elsevier Science B. V.

http://www.math.tulane.edu/~entcs
mailto:sacerdot@cs.unibo.it
mailto:zoli@math.unifi.it

Sacerdoti Coen, and Zoli

Several papers have already been devoted to the subject. Müller and Slind
in [6] provide a good comparison of the techniques proposed and give many useful
references. However, in didactics we cannot adopt those solutions that are far from
the usual mathematical practice. The latter, called in [4] the traditional approach
to undefinedness, can be summarized as: 1) atomic terms (variables and constants)
are always defined; 2) a function application is undefined either when the argument
or the function is undefined or when the function is undefined on the argument; 3)
formulas are always defined, and are false when undefined terms occur within them.

Among the proposals close to the usual mathematical practice, Farmer’s [4] is
certainly very interesting, but it requires an ad-hoc logic with undefinedness. A
similar remark applies to other proposals requiring ad-hoc logics, e.g. [7]. Since
we do not plan to change the logic of Matita, we cannot adopt these solutions.
In this paper, we therefore encode partial functions as total functions on lifted
terms. To hide the details of this formalisation from the student, we exploit an
automation tactic that deal with partial setoids [8]. Indeed, lifted terms naturally
form a partial setoid, when equipped with the partial equivalence relation that
coincides with equality on defined terms, and is false otherwise.

The main contribution of the paper is the observation that there is more than
reasoning on partial setoids in the traditional handling of equality chains over po-
tentially undefined terms. Indeed, in equality chains some steps also reduce the
proof of definedness of one side to that of the other. Hence we need to extend
automation to fully capture this form of reasoning.

We claim that in practice our approach is suitable for didactics. However, it is
still to be completely automated and tested extensively on students.

To be more concrete, consider the following running example as it usually ap-
pears in textbooks.

Theorem 1.1 Suppose that x is a real number with |x| < 1. Then
∑∞

n=0 xn = 1
1−x .

Proof.
∑n

i=0 xi = 1−xn+1

1−x by an easy induction over n. Thus

∞∑
n=0

xn = lim
n→∞

n∑
i=0

xi

= lim
n→∞

1− xn+1

1− x

=
limn→∞(1− xn+1)

1− x

=
1− limn→∞ xn+1

1− x

=
1

1− x
.

2

In our opinion, this exercise is interesting for it consists in two distinct parts:
the first is a simple proof by induction that exercises proving skills; the second part
is an easy computational proof where the main difficulty (completely hidden in the
text) is to check that every expression is well-defined. Note that in the given proof

2

Sacerdoti Coen, and Zoli

no rewriting step is explicitly justified at all. Therefore, in our judgement, it is too
lax for an exercise solution, since we expect students to show at least where the
hypotheses are employed.

The first question about this exercise we should pose ourselves concerns our
teaching goals when proposing it to the student. We identify some alternatives in
Sect. 2, and give a rigorous account of the justification of each proof step. Formal-
isation in a logic of total functions is discussed in Sect. 3. In the same section we
also discuss how to provide automation to hide the intricacies of the formalization,
allowing natural manipulation of formulas. Automation is achieved by coupling
the ideas in [8] with the notion of strict morphism, i.e., a function that preserves
equalities and undefinedness. Conclusions follow in Sect. 4.

2 Teaching goals

In principle, proof assistants can become a useful aid for self-assessment of prov-
ing skills. However, the gap between the usual pen&paper mathematical practice
and the formalised mathematics these systems understand is significant and diffi-
cult to fill. Two phenomena yield this gap: the lack of absolute rigour in the usual
manipulation of formulas; the limitations of formal systems, which render formalisa-
tion difficult and formalised proofs obscure. We postpone discussion on the second
phenomenon to Sect. 3.

The first phenomenon is already evident in our running example where we ma-
nipulate limits of sequences before proving convergence of the sequences. Similarly,
it often happens to compute derivatives of functions before proving their differentia-
bility. Admittedly, an excess of rigour may lead to drown the essence of a proof in
pedantic details. However, we argue that a first Real Analysis course for students in
Mathematics or Computer Science should both frame rigorously their minds — our
first teaching goal — and teach effective high-level formulas manipulation — our
second teaching goal. The two teaching goals may require different sets of exercises
(or different approaches to them).

For instance, our running example could be proposed as an exercise twice. The
first time, just after the introduction of the “tends to” relation, where no partial
operator is employed and each limit must explicitly be shown (or assumed) to exist.
The expected solution to the exercise would be the following:

Theorem 2.1
Suppose that x is a real number with |x| < 1. Then

∑n
i=0 xi −−−→

n→∞
1

1−x .

Proof.
We prove

∑n
i=0 xi = 1−xn+1

1−x by induction over n.
. . .
Moreover xn+1 −−−→

n→∞
0 since |x| < 1.

Hence 1− xn+1 −−−→
n→∞

1.

Hence 1−xn+1

1−x −−−→
n→∞

1
1−x as 1− x 6= 0.

Hence the thesis. 2

Note that, with respect to Theorem 1.1, the equality chain has been replaced

3

Sacerdoti Coen, and Zoli

with a chain of implications. Moreover, the two chains proceed in opposite order.
The chosen order appears more natural in this context, because we need to rigorously
prove the existence of limits before computing with them. The two proofs are
different in an even more radical sense: in the original proof we can see formulas,
such as 1−limn→∞ xn+1

1−x , that have no exact counterpart in the new proof. Note also
the need to explicitly prove denominators to be different from 0, because of the lack
of undefined terms (which is consistent with the choice of avoiding the partial limit
operator).

It is possible to follow the original proof a little more closely by adopting the
original order of the chain. However, the solution looks rather artificial:

Proof.
. . .
We have 1− x 6= 0 since |x| < 1.
We need to prove 1−xn+1

1−x −−−→
n→∞

1
1−x .

It is sufficient to prove 1− xn+1 −−−→
n→∞

1.

It is sufficient to prove xn+1 −−−→
n→∞

0.

The thesis follows from |x| < 1. 2

To reach our second teaching goal, we could propose the same exercise a second
time just after the introduction of the limit operator. This time the emphasis is
on exercising the students on effective limit computation, where (usually) as many
side conditions as possible are avoided. Thus, we look for a solution quite adherent
to that of Theorem 1.1. In particular, we admit the existence of undefined terms to
be handled according to the traditional approach discussed in the introduction.

In Theorem 1.1, the definedness of each expression containing a partial operator
(a limit or a division) is not justified. Consistently with our first teaching goal, we
would like to avoid such a lax approach, but we look for lightweight justifications.
We propose to make sense of the proof by assuming that, at each step in the equation
chain, ground for the definedness of the left hand side is derived by the assumption
that the right hand side will be proved to be defined later on. This property does
not always hold in general, unless side conditions are required. E.g., if ax

a is defined,
then so is x and x = ax

a ; but the definedness of x yields neither that of ax
a nor

the equality x = ax
a . The latter property holds when the additional hypothesis

a 6= 0 is assumed. Thus, replacing ax
x with x in an equality chain or the other

way around yields different side conditions; this suggests that, when terms can
possibly be undefined, rewriting chains are not symmetric. As far as we know,
this phenomenon has not extensively been studied in the literature. We propose to
understand it rigorously by introducing two oriented relations: �= and its dual �=.

Definition 2.2
x

�= y when x is defined if y is, and in this case they are equal.
x

�= y when y
�= x or equivalently when y is defined if x is, and in this case they are

equal.

These relations are oriented variants of Farmer’s quasi equality relation: x is
quasi equal to y when x and y are either both undefined or equal. Quasi equality

4

Sacerdoti Coen, and Zoli

can be reduced to our definitions: x is quasi equal to y if x
�= y and x

�= y. Therefore
we call our relations directed quasi equalities.

Our running example can now be rigorously justified using �=:

Proof.
. . .

∞∑
n=0

xn def= lim
n→∞

n∑
i=0

xi

�= lim
n→∞

1− xn+1

1− x

�=
limn→∞(1− xn+1)

1− x
(1)

�=
1− limn→∞ xn+1

1− x
(2)

�=
1

1− x
since |x| < 1 (3)

which is defined since |x| < 1.

2

It is to be noted that, since the existence of each expression is reduced by �= to
the definedness of 1

1−x , in the final step we have to show this term to be defined in
order to conclude

∑∞
n=0 xn = 1

1−x . Without this justification, the final conclusion

of the equality chain would become (the weaker)
∑∞

n=0 xn �= 1
1−x .

In general, given an equality chain

. . .
�= M1

�= E1
�= . . .

�= En
�= T1

�= En+1
�= . . .

�= Em
�= M2

�= Em+1
�= . . . ,

to conclude that all terms in the chain are equal (and thus defined), we have to
prove that every term Mi is defined. This done, we recursively obtain that any
other term in the equality chain is defined and, ultimately, that all terms are equal.

More formally, an equality chain fragment E1 R E2 R′ E3 must be al-
ways understood as an application of an ad-hoc generalized transitivity principle
∀x, y, z.x R y ∧ y R′ z ⇒ x S z, where the relation S depends on R and R′ and is
usually the strongest of them. The following generalized transitivity principles hold
for our directed quasi equalities:

5

Sacerdoti Coen, and Zoli

Lemma 2.3 For x, y, z potentially undefined terms

x
�= y ∧ y

�= z ⇒ x
�= z

x
�= y ∧ y

�= z ⇒ x
�= z

x = y ∧ y
�= z ⇒ x = z

x
�= y ∧ y = z ⇒ x = z

x
�= y ∧ y

�= z ⇒ x = z when y is defined

x
�= y ∧ y

�= z ⇒ x = z when x and z are defined

The proof of this lemma is trivial (just recall that in the traditional approach
two terms are equal only when they are both defined and have the same value).

As another example that employs an equality chain, let us look at the corre-
sponding proof obtained by reversing the direction of the chain:

Proof.
. . .
Since |x| < 1 the expression 1

1−x is defined. Hence

1
1− x

�=
1− limn→∞ xn+1

1− x
since |x| < 1

�=
limn→∞(1− xn+1)

1− x

�= lim
n→∞

1− xn+1

1− x

�= lim
n→∞

n∑
i=0

xi

def=
∞∑

n=0

xn

2

This time, the expression that is directly shown to be defined is the leftmost end of
the chain.

Observe that the corresponding rewriting steps in the direct and backward proof
are justified by exactly the same lemma, since x

�= y is equivalent to y
�= x (because

of the symmetry of the equality). For instance, both (1) �=(2) and (2) �=(1) are
justified by

Lemma 2.4 For all c and all real sequences f(n),

lim
n→∞

(c− f(n)) �= c− lim
n→∞

f(n)

The lemma used to justify (2) �=(3) as well as (3) �=(2) is

Lemma 2.5 If |x| < 1, then limn→∞ xn �= 0.

6

Sacerdoti Coen, and Zoli

Note that the hypothesis |x| < 1 is to be explicitly justified in the equality
chain by a side proof. Incidentally, the following corresponding “dual” lemma (that
could justify (2) �=(3) or (3) �=(2)) has no extra hypotheses, as the definedness of
limn→∞ xn already gives |x| < 1.

Lemma 2.6 0 �= limn→∞ xn.

Finally, we would like to spend a few additional words on teaching goals. So
far, we have recognized two teaching goals in adopting proof assistants and types in
mathematical education. The first one is the emphasis on mathematical rigour, so
as to augment both the comprehension of the role played by axioms and hypotheses
in inferences and the awareness of common pitfalls in mathematical reasoning. The
second one is the enhancement of skills in mathematical practice, where rigour
is not forced. In both cases it is important for a didactic tool to hide all the
difficulties arising from the formalisation process. In particular, we expect the
system to provide enough automation to completely hide from the student the side
proofs arising from technical side conditions. These are justifications we do not
expect to see on paper, independently from the teaching goal.

We can also identify a third alternative goal, i.e., teaching (mathematical) for-
malisation techniques, which are largely independent from the mathematical sub-
ject being formalized, and definitely outside standard curricula in Mathematics and
Computer Science. For this reason we will not address this subject any longer.

The exercise dealing with the “tends to” relation can be straightforwardly for-
malised in a logic of total functions, provided that division requires either a proof
that the quotient is not 0 or a formalisation via alternative techniques such as, e.g.,
Σ-types. The one that deals with the limit operator requires a preliminary encoding
of undefined terms and operators, and a substantial amount of automation to hide
the intricacies of this encoding. This is the subject of the next section.

3 Formalisation

Plenty of functions and operators in elementary calculus are partial. The following
are examples of undefined expressions: division by zero; supremum of an unbounded
set; limit of an oscillating sequence; value of a non-converging series; derivative of
a discontinuous function; definite integral of a non-integrable function.

The usual “lax” mathematical practice manipulates partial expressions in a way
that is often difficult to understand rigorously. In Sect. 1 we have partially discussed
the issue by sticking to what Farmer calls “the traditional approach to undefined-
ness”, enriched by two new directed quasi equality relations �= and �= that replace
book equality in chains of equations. However, we have kept the description at an
informal level. We now address the problem of capturing these ideas in a formal
system.

In the unlikely case that our system is based on a logic with undefinedness [4]
or a three value logic [7], the formalisation proceeds very smoothly: the logic is
already aware of undefined terms, equality is already the proposed relation, �= and
�= can be directly defined and appropriate replacement principles are likely to be

7

Sacerdoti Coen, and Zoli

derivable.
When the logic is a logic of totally defined terms, we need a way to represent

undefinedness and we need to change the equality (and every other predicate) to
behave correctly over undefined terms. Since equality is replaced by a coarser rela-
tion, it is no longer true that x = y ⇒ C[x] ⇐⇒ C[y] for each context C. In order
to keep term manipulation simple, the system is now in charge of automatically
proving the side conditions that make the previous implication true for a particular
C. In [8], the first author has given the Coq proof assistant this explicit support in
the case of generalized setoids, including partial setoids. Partial setoids can be ex-
ploited in our context, since the well-known representation of potentially undefined
terms of type T as elements of the lifted type T⊥

def= T ⊕{⊥} gives rise to a partial
setoid.

Even when partial setoids automation is exploited, the user is still requested
to prove many side conditions that are implicitly discharged in the mathematical
practice, and that we plan to avoid basing our equality chains on �= and �=. Hence,
we now provide automation for �= and �=. Let us recall the notion of partial setoid
and the associated morphisms.

A partial setoid is a couple (T,'T), where T is a type and 'T is a symmetric
and transitive relation over T . An element x of T is said to be proper when x 'T x.
We will also write x ↓T for x 'T x. We drop the subscript/superscript T when the
partial equality relation is clear from the context.

A morphism of partial setoids (S,'S), (T,'T) is a function f : S → T such that
f(x) 'T f(y) whenever x 'S y. We will write f : (S,'S) ⇒ (T,'T) for f being a
morphism between (S,'S) and (T,'T). With a little notational abuse, we will say
that f has type (S,'S)⇒ (T,'T).

If (S,'S) and (T,'T) are partial setoids, so is (S,'S)× (T,'T) def= (S×T,'S

× 'T) (the cartesian product equipped with the partial equivalence relation induced
by 'S and 'T acting componentwise). The type Prop of propositions together with
coimplication forms the (total) setoid (Prop, ⇐⇒).

Alternative formulations of the notion of partial setoids are explored in [3]. The
one we adopt is that of Bailey [2].

For each type T , we represent potentially undefined terms of T with elements
of the lifted type T⊥. We equip T⊥ with a partial setoid structure by defining the
partial equivalence relation ' as x ' y iff x, y 6= ⊥ and x = y as elements of T .
According to this definition, proper elements are defined elements and we can read
x ↓ as “x is defined”. Moreover, from x ' y we immediately know x ↓ and y ↓ since
for no x, not even ⊥, we have ⊥ ' x.

The reader acquainted with the work of Farmer should note that our notation
is not consistent with [4]: he denotes our relation ' with =, whereas we reserve
the symbol = for either Leibniz’s or book equality; moreover, he uses ' for quasi
equality, whereas we only have special symbols for directed quasi equalities. Fi-
nally, in Farmer’s logic with undefinedness all atoms are implicitly defined, while
our variables are always quantified over T⊥ for some T . Thus, according to the
terminology used by Feferman in [5], Farmer’s logic is a logic of definedness, while
we are encoding a logic of existence.

8

Sacerdoti Coen, and Zoli

The following facts over morphisms are exploited in manual and automatic proofs
over setoids. The identity function over S is always a morphism of type (S,') ⇒
(S,'′) whenever ' and '′ are partial equivalence relations over S such that the
graph of ' is included in the graph of '′ (i.e. x ' x′ implies x '′ x′ for each
x, x′). The constant function f(x) def= c of type S → T is a morphism of type
(S,'S) ⇒ (T,'T) iff c ↓T . The function Cf (x) def= f(x, x) is a morphism of type
(S,'S)⇒ (T,'T) whenever f is a morphism of type (S,'S)× (S,'S)⇒ (T,'T).
Composition of morphisms is a morphism. Finally, any partial equivalence relation
' over S is a morphism of type (S,')×(S,')⇒ (Prop, ⇐⇒), since it is symmetric
and transitive (proof given in [8]).

Let us now consider how to formalise our running example in this setting. Sub-
traction between real numbers is represented as a morphism of type (R⊥,') ⇒
(R⊥,'); exponentiation as a morphism of type (R⊥,') ⇒ (N, =) ⇒ (R⊥,');
the limit operator as a morphism of type (N → R⊥,'→), where f '→ g when
f(n) ' g(n) for each n; finally, division is represented as a morphism of type
(R⊥,') × (R⊥,'0) ⇒ (R⊥,') where x '0 y iff x ' y and x 6= 0. Note that the
identity function over real numbers is a morphism from (R,'0) to (R,'); hence,
we can compose a morphism of type (R,') ⇒ (S,'S) with a morphism of type
(T,'T) ⇒ (R,'0). Note also that it is impossible to prove division to be a mor-
phism of type (R⊥,') × (R⊥,') ⇒ (R⊥,'), as 1 ' 1 and 0 ' 0 but 1/0 is ⊥ and
it is not true 4 that ⊥ ' ⊥.

Consider the third equality in our running example:

limn→∞(1− xn+1)
1− x

�=
1− limn→∞ xn+1

1− x

and suppose that Lemma 2.4 has already been proved. To justify the equality we
need to contextualise (an instance of) the lemma to the context C(w) def= w

1−x . In
other words, we need to prove

lim
n→∞

(1− xn+1) �= 1− lim
n→∞

xn+1 ⇒ limn→∞(1− xn+1)
1− x

�=
1− limn→∞ xn+1

1− x

or, more generally, that x
�= y ⇒ (C(x) ⇒ C(y)). Adopting the terminology of

[8], we need to prove that C(·) is a covariant morphism from the partial and asym-
metric setoid (R,

�=) to the asymmetric setoid (Prop,⇒). This can be done, even
automatically, exploiting all the lemmas in [8]. However, to our knowledge Coq is
the only system that implements automation over “generalised” setoids (i.e., setoids
whose relation is not required to be reflexive, symmetrical or transitive). Moreover,
when asymmetric setoids are employed, user-provided proofs that basic morphisms
are indeed morphisms become more involved. Therefore, we now propose a simpler
alternative automation technique that does not require asymmetric setoids.

To avoid the latter, we can expand the definition of �= both in the lemma and

4 We do not write ⊥ 6' ⊥ since that latter symbol is better understood as book diversity, i.e., x 6' y iff x
and y are both defined and different. Thus, it is not true that ⊥ 6' ⊥.

9

Sacerdoti Coen, and Zoli

in the equality to be justified; they become, respectively,

∀c, f.(c− lim
n→∞

) ↓⇒ lim
n→∞

(c− f(n)) ' c− lim
n→∞

f(n)

1− limn→∞ xn+1

1− x
↓⇒ limn→∞(1− xn+1)

1− x
' 1− limn→∞ xn+1

1− x

The equality can now be justified, thanks to the lemma and the definition of a
morphism, by assuming (H) 1−limn→∞ xn+1

1−x ↓ and showing:

(i) (1 − x) ↓ and (1 − limn→∞ xn+1) ↓. Both are consequences of the assump-
tion (H). The second proof is used to discharge the hypothesis of the lemma.

(ii) C(w) def= w
1−x is a morphism of type (R⊥,')⇒ (R⊥,').

This is of course the case, for id(w) def= w is an identity morphism, c(w) def= 1−
x is a constant morphism returning the element 1−x (which is defined because
of (i)), division is a morphism, and C(w) is a composition of division, c(·) and
the identity morphism.

When implementing automation over partial setoids as explained in [8], (ii) is
proved automatically by the system. Hence we only need to provide automation
for (i). Now, (i) holds since we can prove that ∀n, d.nd ↓⇒ n ↓ ∧d ↓. In other
words, if the application of division to some arguments yields a defined term, then
the arguments are defined as well. This is a general property of morphisms and
predicates in the traditional approach to undefinedness, and it can be recognized to
be just strictness (see, for instance, [5]):

Definition 3.1
A morphism f : (S⊥,'S)⇒ (T⊥,'T) is strict if f(x) ↓T implies x ↓S .
A morphism P : (S⊥,')⇒ (Prop, ⇐⇒) is strict if P (x) implies x ↓.

The partial equivalence relation 'S over S⊥ is strict for each type S. Moreover,
all morphisms in our running example are strict. For instance, if x − y is defined
then both x and y are.

The following facts help showing that a predicate is strict and can be easily
exploited in a tactic that proves syntactic composition of morphisms to be strict.
The identity morphism is strict, whereas constant morphisms are not. Composition
of strict morphisms yields a strict morphism. The morphism f(x) def= (g(x), h(x))
is strict on x if (at least) one of g(x) and h(x) is. The morphism P (x) ∨Q(x) on x

is strict if P (x) and Q(x) are; P (x) ∧Q(x) is strict on x if P (x) is strict or if Q(x)
is; ∃y.P (x, y) is strict on x whenever P (x, y) is strict on x for each y; moreover,
∀y.P (x, y) is strict on x if there exists a y such that P (x, y) is strict on x. There
is no relation between the strictness of P (x) and that of ¬P (x). In particular, in
the traditional approach to undefinedness all predicates over undefined terms are
false, so that the negative form of a predicate P (x) is not the logical negation of P ,
but the predicate “x ↓ ∧¬P (x)”. In turn, we obtain the following restriction over
implication: the predicate P (x) ⇒ Q(x) is strict on x if Q(x) is strict on x and P

is constant over x. The latter check is necessary, as the following counterexample
shows: x ' x⇒ x ' x always holds, but it does not imply x ↓.

10

Sacerdoti Coen, and Zoli

Similarly to what the first author did in [8], we can easily implement a semi-
reflexive tactic to prove automatically when a morphism P : (S,')⇒ (Prop, ⇐⇒
), that is a syntactic composition of strict and non-strict morphisms, is strict in one
argument. The tactic is based on the lemmas above.

Exploiting such a tactic, we can specialise [8] (or its restriction to symmetric
and transitive setoids) to automatically prove, for a context P that is a suitable
syntactic composition of strict and non strict morphisms,

P (x)⇒ (y �= x)⇒ P (y)

Coming back to our running example, we can now use automation to reduce,
for instance, a proof of limn→∞(1−xn+1)

1−x ' 1
1−x to a proof of 1−limn→∞ xn+1

1−x ' 1
1−x

by means of a proof of limn→∞(1 − xn+1) �= 1 − limn→∞ xn+1 and no other side
condition.

For the sake of generality, we remark that strict morphisms are a special case of
co-guarded morphisms.

Definition 3.2
A morphism f : (S⊥,'S)⇒ (T⊥,'T) is Q-co-guarded if f(x) ↓T⇒ Q(x).

Strict morphisms are ↓-co-guarded morphisms. Note that for a strict morphism
P : (S,')⇒ (Prop, ⇐⇒) the condition P (x) ↓⇐⇒ can be omitted since it is not
informative.

For a Q-co-guarded strict morphism P over Prop, we can specialise [8] to au-
tomate proofs of

P (x)⇒ (Q(x)⇒ y ' x)⇒ P (y)

So far, the only interesting class of co-guarded morphisms we currently know is
that of strict morphisms.

To summarise, we suggest how to formalise chains of directed quasi equalities
by automating “directed rewritings” justified by lemmas of the form ∀x̄, P (x̄) ⇒
F (x̄) �= F ′(x̄), being x̄ a vector of variables and the extra hypotheses P (·) justified
as side conditions in the chain. Since F (x̄) �= F ′(x̄) is equivalent to F ′(x̄) ↓⇒
F (x̄) ' F ′(x̄), a number of lemmas can exploit the hypothesis F ′(x̄) ↓ to drop
many extra conditions such as the definedness of quantified variables occurring in
F ′(x̄).

For instance, in our running examples all lemmas can be given in this form
and only Lemma 2.5 requires an extra hypothesis. As a comparison, corresponding
lemmas in Farmer’s approach [4] would also miss the additional hypotheses, but for
a different reason: since his logic is a logic of definedness, all quantified variables
are implicitly assumed to be defined.

We finally add that we have not discussed two other simple and well-known
approaches to undefined terms (not far away from the usual mathematical prac-
tice, but too lax according to our first teaching goal). Contrary to the traditional
approach to undefinedness, in both approaches some dubious properties can hold
even for undefined terms. The first approach extends every partial function and
operation to the whole domain by assigning an arbitrary value outside the original

11

Sacerdoti Coen, and Zoli

domain. For instance, 1/0 becomes a perfectly valid real number, say 17, that en-
joys the property (1/0)/17 = 1. The approach is often used in HOL, Isabelle and
Mizar, and always in ACL2. The second approach extends axiomatically every par-
tial function and operation to the whole domain, but this value remains unknown
by prefixing each axiom of the theory with hypotheses that avoid characterising
the partial functions outside their domain of definitions. For instance, it is true
that 1/0 is a perfectly valid number, but we can never get rid of the division since
(a/b) ∗ b = a iff b 6= 0. However, all universal properties are enjoyed also by “un-
defined” terms: 0 ∗ (1/0) = 0 since ∀x, 0 ∗ x = 0, (1/0) = (1/0) as ∀x, x = x, etc.
Even if these properties are unlikely to be noticed by the student, it may happen
to unconsciously employ them, for instance omitting side conditions that are made
unnecessary by the additional properties. Users of HOL, Isabelle and Mizar often
mix the two approaches.

Coq, NuPRL and PVS, being based on dependent types, can use yet another
approach: they can encode the domain of a partial function in its type, so that
application to arguments outside the domain is not allowed by the type system.
We have not considered this approach in the paper since it is not well suited for
students for several reasons. For instance, applications of partial functions require
a new argument that is the proof that the argument belongs to the domain of the
function. First year students do not understand that derivations can be represented
syntactically and used as arguments to functions; moreover, when a mathematical
operator has a standard notation, there is no natural place where the new argument
can be put. PVS avoids this problem by removing the extra arguments and replacing
them with side proofs for domain conditions. Wiedijk and Zwanenburg in [9] apply
the approach of PVS to obtain a first order logic with domain conditions, without
dependent types. Looking at the examples in the paper it is pretty obvious that
the user is faced with too many side conditions. We believe that their number can
be highly reduced in equality chains exploiting directed quasi equalities.

4 Conclusions

The most important problem to be faced when adopting proof assistants and types
in education is probably that of representating and manipulating undefined expres-
sions. In the case that adopting a logic with undefinedness is not an option, we are
led to represent partial functions and operators in logics of total functions. Many
formalisations have been proposed in the literature, but most of them are of limited
use in education. We suggest that types of potentially undefined terms can be suit-
ably represented with partial setoids and that partial functions can be represented
as morphisms over partial setoids. This suggestion is not new: support for term
manipulation in the partial setoids setting has already been implemented for Coq
in [8]. However, in this setting equality chains require too many side conditions to
be proved.

While analysing an informal equality chain that deals with potentially unde-
fined terms we have noticed that a number of side conditions can be dropped by
reducing definedness of both equality arguments to that of just one of them (to be
proved later on). We have captured this behavior by introducing two oriented quasi

12

Sacerdoti Coen, and Zoli

equalities �= and �= that can be exploited in equality chains. We have also proposed
the automation of the propagation of these equalities by combining automation for
partial setoids with the notion of a strict morphism. A strict morphism is a mor-
phism P such that P (x) implies x defined. Hence, for a given strict morphism P ,
the system can automatically prove P (x) ⇒ (y �= x) ⇒ P (y), which means that
P is a contra-variant morphism over the partial asymmetric relation �= (compare
with [8]).

Thanks to automation, we have shown how an informal proof that computes
the limit of a convergent series could be formalised in a proof assistant like Matita,
providing only the minimal amount of rigorous justifications we expect from clever
students even in a pen&paper proof.

As a future work, we plan to complete the implementation in Matita of the
proposed automation and to test the proposed approach on a significant set of
exercises to be submitted to a good number of students. We also plan a deeper
comparison with alternative approaches. In particular, directed quasi equalities and
their combinations with strict morphisms are likely to be exploitable with similar
benefits in other contexts.

References

[1] A. Asperti, C. Sacerdoti Coen, E. Tassi, S. Zacchiroli. “User Interaction with the Matita Proof
Assistant”, in Journal of Automated Reasoning, Special Issue on User Interfaces for Theorem Proving.
To appear.

[2] A. Bailey. “Representing Algebra in LEGO”, M. Phil. thesis, University of Edinburgh.

[3] G. Barthe, O. Pons, V. Capretta. “Setoids in type theory”, Journal of Functional Programming, 13(2),
pages 261-293, 2003.

[4] W.M. Farmer. “Formalizing Undefinedness Arising in Calculus”, in Automated Reasoning, Lecture
Notes in Computer Science (LNCS), 3097:475-489, 2004.

[5] S. Feferman, “Definedness”, Erkenntnis 43 (1995) 295-320.

[6] O. Müller, K. Slind. “Treating partiality in a logic of total functions”, the Computer Journal, 40:640–
652, 1997.

[7] M. Kerber, M. Kohlhase. “A Mechanization of Strong Kleene Logic for Partial Functions”, CADE 1994:
371-385.

[8] C. Sacerdoti Coen, “A Semi-reflexive Tactic for (Sub-)Equational Reasoning”, in Types for Proofs and
Programs International Workshop, TYPES 2004. Lecture Notes in Computer Science (LNCS), Vol.
3839, 99–115, 2006.

[9] F. Wiedijk, J. Zwanenburg, “First order logic with domain conditions”, in Theorem Proving in Higher
Order Logics, Proceedings of TPHOLs 2003, D. Basin and B. Wolff (eds.), Springer LNCS 2758, 221-237,
2003.

13

	Introduction
	Teaching goals
	Formalisation
	Conclusions
	References

