
Noname manuscript No.
(will be inserted by the editor)

Declarative Representation of Proof Terms

Claudio Sacerdoti Coen

Received: date / Accepted: date

Abstract We present a declarative language inspired by the pseudo-natural language

previously used in Matita for the explanation of proof terms. We show how to compile

the language to proof terms and how to automatically generate declarative scripts

from proof terms. Then we investigate the relationship between the two translations,

identifying the amount of proof structure preserved by compilation and re-generation

of declarative scripts.

Keywords declarative language · proof terms · translation · generation

Mathematics Subject Classification (2000) 68W30 · 03B35 · 03B40

1 Introduction

In modern interactive theorem provers, proofs are likely to have several alternative

representation inside the system. For instance, in Figure 1 we show the case of a

system based on Curry-Howard implementation techniques: proofs could be input by

the user in either a declarative or a procedural proof language; then the script could

be interpreted and executed yielding a proof tree; from the proof tree we can generate

a proof term; from the proof term, the proof tree or the initial script we can generate

a description of the proof in a pseudo-natural language; finally, from the proof term,

the proof tree or a declarative script we can generate a content level description of the

proof, for instance in the OMDoc + MathML content language. For instance, the Coq

proof assistant [1] has had in the past or still has all these representations but the last

one; our Matita interactive theorem prover [2] also has all these representations but

proof trees.

Partially supported by the Strategic Project DAMA (Dimostrazione Assistita per la Matem-
atica e l’Apprendimento) of the University of Bologna.

C. Sacerdoti Coen
Dipartimento di Scienze dell’Informazione, via Mura Anteo Zamboni n. 7, 40127, Bologna (IT)
Tel.: +39-051-2094973
Fax: +39-051-2094510
E-mail: sacerdot@cs.unibo.it

2

PROOF TERM

PROOF TREE

PROCEDURAL

NATURAL
LANGUAGE

OMDoc +
MathML

DECLARATIVE

 SYSTEM DEPENDENT

LOGIC DEPENDENT
SYSTEM INDEPENDENT

Fig. 1 Proof representations in Curry-Howard based interactive theorem provers. Arrows
pointing upwards are compilation/interpretation processes. Arrows pointing downwards are
serialisation/pretty-printing processes. The horizontal arrow between procedural and declara-
tive scripts is a reconstruction of a declarative script from the effects of the procedural script
on the state. The difference between the procedural language and the natural language is that
the former is executable, while the latter is not.

It is then natural to investigate the translations between the different representa-

tions, wondering how much proof structure can be preserved in the translations. In [3]

we started this study by observing that λ̄µµ̃-proof-terms are essentially isomorphic to

the pseudo-natural language we proposed in the HELM and MoWGLI projects. In [4]

we extended the result to OMDoc documents. At the same time we started investigat-

ing the possibility of giving an executable semantics to the grammatical constructions

of our pseudo-language, obtaining the declarative language described in this paper.

The language, which embeds an unelaborated justification sub-language, is currently

in use in the Matita proof assistant.

In this paper we investigate the mutual translation between declarative scripts in

this language and proof terms. We use λ-terms for a sub-language of the Calculus of

(Co)Inductive Constructions (CIC) to keep the presentation simple but close to the

actual implementation in Matita, which is not based on λ̄µµ̃-proof-terms.

Our main result is that the two translations preserve the proof structure and behave

as inverse functions on declarative scripts generated by proof terms. Compilation and

re-generation of a user-provided declarative script results in a script where the original

proof steps and their order are preserved, and additional steps are added to make

explicit all the justifications previously proved automatically. Misuses of declarative

statements are also corrected by the process.

Translation of procedural scripts to declarative scripts can now be achieved for free

by compiling procedural scripts to proof terms before generating the declarative scripts.

In this case the proof structure is preserved only if it is preserved (by the semantics of

tactic compilation) during the first translation.

In the companion paper [5] Ferruccio Guidi investigates the translation between

proof terms of CIC and a subset of the procedural language of Matita. Several at-

tempts at capturing the effects of procedural commands with declarative ones have

been proposed in the past and are currently in use in the PhoX interactive theorem

3

prover [6]. Thus the picture about the different translations is now getting almost

complete, up to the fact that the papers presented do not agree on the intermediate

language used by most translations, which is the proof terms language.

An immediate application of this investigation, also explored in [5], is the possibility

to take a proof script from a proof assistant (say Coq), compile it to proof terms,

transmit them to another proof assistant (say Matita) based on the same logic and

rebuild from them either a declarative or a procedural proof script that is easier to

manipulate and to be evolved. A preliminary experiment in this sense is also presented

in the already cited paper.

The requirement for the translations investigated in this paper are presented in

Section 2. Then in Section 3 we present the syntax and the informal semantics of our

declarative proof language. Compared with other state of the art declarative languages

such as Isar [7] and Mizar [8], a minor attention has been given to the (sub-)language

for justification of proof steps. Right now justifications can be completely omitted

(and provided by automation) or they can be hints to automation — like the set of

hypotheses to be used or parameters to prune the search space — or they are proof

terms.

In Section 4 we show the small steps operational semantics of the language which,

scripts being sequences of statements, is naturally unstructured in the spirit of [9]. The

semantics of a statement is a function from partial proof terms to partial proof terms,

i.e. a procedural tactic. Thus the semantics of a declarative script is a compilation to

proof terms mediated by tactics in the spirit of [10].

In Section 5 we show the inverse of compilation, i.e. the automatic generation of

a declarative script from a proof term. We prove that the two translations form a

retraction pair and that their composition is idempotent.

2 Requirements

In this paper we explain how to translate declarative scripts into proof terms and back.

By going through proof terms, procedural scripts can also be translated to declarative

scripts. Before addressing the details of the translations, we consider here their informal

requirements. We classify the requirements according to two interesting scenarios we

would like to address.

Re-generation of declarative scripts from declarative scripts (via proof terms). In this

scenario a declarative script is executed obtaining a proof term that is then translated

back to a declarative script. The composed translation should preserve the structure

of the user provided text, but can make more details explicit. For instance, it can

interpolate a proof step between two user provided proof steps or it can add an omitted

justification for a proof step. The translation must also reach a fix-point in one iteration.

The latter requirement is a consequence of the following stronger requirement: the

proof term generated executing the obtained declarative script should be exactly the

same proof term used to generate the declarative script. In other terms, the composed

translation should not alter the proof term in any way and can only reveal hidden

details.

Re-generation of declarative scripts from procedural scripts (via proof terms). In this

scenario a procedural script is executed obtaining a proof term that is then translated

4

back to a declarative script. Ideally the two scripts should be equally easy to modify

and maintain. Moreover, the “structure” of the procedural script (if any) should be

preserved. Pedantic details or unnecessary complex sub-proofs that are not explicit in

the procedural proof should be hidden in the declarative one. This last requirement is

not really a constraint on the declarative language, but on the implementation of the

tactics of the proof assistant [11].

Some of the requirements, in particular the preservation of the structure of the

user provided text, seem quite difficult to obtain. In [3] we claimed that the latter

requirement is likely to be impossible to fulfil when proof terms are Curry-Howard

isomorphic to natural deduction proof trees, i.e. when proof terms are simple λ-terms.

On the contrary, we expect to be able to fulfil the requirements if proof terms are

Curry-Howard isomorphic to sequent calculus. This is the case, for instance, for the

λ̄µµ̃-terms [12] we investigated as proof terms in [3,4]. In particular, automatic struc-

ture preserving generation of Mizar/Isar procedural scripts from λ̄µµ̃-terms have been

attempted in the Fellowship theorem prover [13] (joint work with Florent Kirchner, for

more informations see [14]).

Matita proof terms are λ-terms of CIC. The calculus is so rich that several of the

required constructs of the λ̄µµ̃-calculus are somehow available. Thus we expect to be

able to fulfil at least partially the requirements just presented. Even in case of failure

it is interesting to understand exactly how close we can get.

In the present paper we restrict ourselves to a fragment of CIC, although the im-

plementation in Matita considers the whole calculus. The fragment is an extension

of the first order fragment of CIC where we also keep explicit type conversions, lo-

cal definitions and local proofs. We will present the proof terms for this fragment in

Section 6.

3 The declarative language

The syntax of the declarative language we propose is an adaptation of the syntax of

the pseudo natural language already generated by Matita and studied in [15]. It is also

a super-set of the language proposed in [3] and studied also in [4]. The sub-language

for justifications is unelaborated. Thus currently a justification is either provided as

a proof term or it is omitted and recovered by automation. In the latter case, it is

possible to specify hints to the automation, like the only lemmas and hypotheses to be

used. A comparison with other declarative languages, which would be out of scope for

this paper, is currently planned.

We have explicit statements that deal with conversion, a feature of the logical

framework of Matita that is not available in first and higher order logics. Two formulae

are convertible when they can be reduced by computation to a common value. For

instance, 2 ∗ 2 is convertible with 3 + 1. Since conversion is a decidable property (in a

confluent and strongly normalisable calculus), conversion and reduction steps are not

recorded in the proof term (e.g. as rewriting steps). However, since conversion steps are

not always obvious to the reader, it is sometimes necessary to make them explicit in

the declarative language. Thus the need for the additional statements. In Isar the same

steps would be represented by (chains of) rewriting steps since Isabelle’s meta-logic

does not have any conversion rule, only a primitive notion of equality and rewriting

rules.

5

Table 1 Syntax

assume id : type [that is equivalent to type]
suppose prop [(id)] [that is equivalent to prop]
let id := term
just we proved prop (id) [that is equivalent to prop]
just we proved prop [that is equivalent to prop] done
just done
just let id : type such that prop (id)
just we have prop (id) and prop (id)
we need to prove prop [(id)] [or equivalently prop]
we proceed by [cases|induction] on term to prove prop
case id [(id:type)|(id:prop)]?

by induction hypothesis we know prop (id) [that is equivalent to prop]
the thesis becomes prop [or equivalently prop]
conclude term rel term just [done]
obtain id term rel term just [done]
rel term just [done]

Justifications:
using proof term
[control param] [by proof term1 [, . . . , proof termn]]

Non terminals:

id identifiers term inhabitants of data types
type data types rel transitive relations (e.g. =,≤, <)
prop propositions proof term proof terms, e.g. an identifier
control param for automation

Table 2 An example of declarative script

we need to prove ∀R,S : N→ N.〈R,S〉 is a retraction pair⇒ ∀n : N.S(n) = (S ◦R ◦ S)(n)
assume R : N→ N
assume S : N→ N
suppose 〈R,S〉 is a retraction pair (H1) that is equivalent to ∀m : N.S(R(m)) = m
assume n : N
let t := S(n)
by H1 we proved t = S(t)(H3) that is equivalent to S(n) = (S ◦R ◦ S)(n)
by H3

done

We now present informally the semantics of the proposed language statements,

whose syntax is summarised in Table 1. Table 2 and Table 3 show two examples of

declarative scripts where most commands are used.

assume id : type1 [that is equivalent to type2]

Introduces in the context a new generic but fixed term id whose type is type1. If

specified, type2 must be convertible to type1. In this case id will be used later on

with type type2, but in the conclusion of the proof type1 will be used.

suppose prop1 [(id)] [that is equivalent to prop2]

Introduces in the context the hypothesis prop1 labelled by id. If the proposition

prop2 is specified, it must be convertible with prop1. In this case id will stand later

on for the hypothesis prop2, but in the conclusion of the proof prop1 will be used.

let id := term

Introduces in the context a new local definition.

6

Table 3 Another example of declarative script

we need to prove ∀n : N.n+ n = n ∗ 2
assume n : N
we proceed by induction on n to prove n+ n = n ∗ 2
case O

the thesis becomes 0 + 0 = 0 ∗ 2 or equivalently 0 = 0
done
case S (m : N)

by induction hypothesis we know m+m = m ∗ 2 (IH)
the thesis becomes S(m) + S(m) = S(m) ∗ 2
or equivalently S(m+ S(m)) = 2 +m ∗ 2

conclude
S(m+ S(m))

= S(S(m+m)) by plus n Sm
= S(S(m ∗ 2)) by IH
= 2 +m ∗ 2

done

just we proved prop1 (id) [that is equivalent to prop2]

Concludes the proposition prop1 by means of the justification just. The (proof of

the) proposition is labelled by id for further reference. If prop2 is specified, it must

be convertible with prop1. In this case id will stand for a proof of the proposition

prop2.

just we proved prop1 [that is equivalent to prop2] done

Similar to the previous statement. However, the conclusion prop1 (or prop2 if

specified and convertible with prop1) is the current thesis. Thus this statement

ends the innermost sub-proof.

just done

Similar to the previous statement. However, the conclusion, equal to the current

thesis, is not repeated.

just let id1 : type such that prop (id2)

Concludes the proposition ∃id1 : type s.t. prop by means of the justification just.

Exist-elimination is immediately performed yielding the new generic but fixed term

id1 of type type and the new hypothesis prop labelled by id2.

just we have prop1 (id1) and prop2 (id2)

Concludes the proposition prop1 ∧ prop2 by means of the justification just.

And-elimination is immediately performed yielding the new hypotheses

prop1 and prop2 labelled respectively by id1 and id2.

we need to prove prop1 [(id)] [or equivalently prop2]

If id is omitted, it repeats the current thesis prop1. Moreover, if prop2 is specified

and convertible with prop1, it replaces the current thesis with prop2. Otherwise, if

id is specified, it starts a nested sub-proof of prop1 that will be labelled by id. If

prop2 is specified and convertible with prop1, the thesis of the nested sub-proof is

prop2, but id will label prop1.
we proceed by [cases|induction] on term to prove prop

case id1 [(id2 :type2)|(id2 :prop)]?

by induction hypothesis we know prop1 (id) [that is equiv. to prop2]

the thesis becomes prop1 [or equivalently prop2]
This set of statements are used for proofs by structural induction or by case analysis.

The initial statement must be followed by a proof for each case. Each proof must be

started by the case id statement, where id is the label of the case (i.e. the name of

7

the inductive constructor the case refers to). The list of arguments that follows id

binds the local non inductive assumptions for the case. The inductive assumptions

are postponed and introduced by the next statement in the set. Only proofs by

inductions have inductive assumptions. The last statement in the set, the thesis

becomes, is used to state explicitly what is the current thesis for each proof.
conclude term1 rel term2 just [done]

obtain id term rel term just [done]

rel term just [done]
This set of statements are used for chains of (in)equalities. A chain is started by

either the first or the second command in the set. All the remaining steps in the

chain are made by the third command. In all commands rel must be a transitive

relation. Chains with mixed relations are possible as soon as the different relations

enjoy generalised transitivity (e.g. x ≤ y ∧ y < z ⇒ x < z). Every step in the chain

must have a justification just. The end of the chain is marked by done. In every

step but the first one the left hand side of the inequation is the right hand side of

the previous step.

If the first step of the chain is a conclude statement, then the chain must prove

the current thesis, and the last step of the chain ends the innermost sub-proof.

Otherwise, if the first step of the chain is a conclude statement, the chain only

proves a local lemma that is labelled by id in the rest of the innermost sub-proof.

For instance, in the following example H is in scope after done and labels the fact

(x+ y)2 = x2 + 2xy + y2:

obtain H

(x+ y)2 = (x+ y)(x+ y)

= x(x+ y) + y(x+ y) by distributivity

= x2 + xy + yx+ y2 by distributivity

= x2 + 2xy + y2

done

Justifications of the form “using t” represent the direct application of the proof

term t. When t has the form “(H E1 . . . En H1 . . . Hm)” we say that the justification

“using t” is simple. All other justifications are invocations of automation. In particular,

the user can specify some control parameters to drive automation and he can specify

the list of proof terms to be used (usually hypotheses and lemmas in the library or

their instantiation). When the list is omitted, the system tries all hypotheses and all the

lemmas in the files that have been explicitly required so far by the user. However, there

is a control parameter to extend the search space with all the lemmas already proved

in the distributed mathematical library of the system. Finally, there is the possibility

to open an interactive interface [16] to show and prune the search space and, more

generally, to drive the proof search process.

4 Formal semantics

The semantics of each statement of Table 1 is a function from a partial proof term to

a partial proof term. Intuitively, a partial proof term is a proof term with linear place-

holders for missing sub-proofs and non-linear placeholders for missing sub-expressions.

Each placeholder must be replaced with a proof term or an expression, of the appro-

priate type, closed in the logical context of the placeholder. The logical context of

8

Table 4 Proof term syntax

Types
T ::= T → T function space
| nat basic type
| . . . other type constructors

Propositions
P ::= P ⇒ P logical implication
| ∀x : T.P universal quantification
| ∃x : T.P existential quantification
| P ∧ P conjunction
| E = E equality
| F (E1, . . . , En) n-ary predicate

Expressions (inhabitants of types)
E ::= x bound variable ranging over expressions
| k constants
| E(E1, . . . , En) n-ary application
| ? expression placeholder

Proof terms (inhabitants of propositions)
t ::= λx : T.t local assumption (for an universal quantification)
| ΛH : P.t local supposition (for a logical implication)
| let x := E in t local definition
| Let H : P := t in t logical cut
| (t : P ≡ P) explicit type conversion
| (H E1 . . . En H1 . . . Hm) application of a bound variable ranging over

proof terms to 0 or more arguments
| (c E1 . . . En a1 . . . am) application of a constant to 0 or more arguments;

a ::= (H E1 . . . En H1 . . . Hm) provided that the type of the application is not a
logical implication or an universal quantification,
i.e. the argument is in head long βη normal form

| (c E1 . . . En a1 . . . am) provided that the argument is in head long βη normal form
| λx : T.a local assumption (for an universal quantification)
| ΛH : P.a local supposition (for a logical implication)

c ::= and elimP,P,P conjunction elimination
| ex elim existential elimination
| nat indP induction over Peano natural numbers
| nat casesP case analysis over Peano natural numbers
| eq transitive transitivity of equality
| . . . other constants

the placeholder is the ordered set of hypothesis, definitions and declarations collected

navigating the proof term from the root to the placeholder. A partial proof term is

complete (i.e. it represents a completed proof) when it is placeholder-free. When a

proof is started, it is represented by the partial proof term made of just one term

placeholder.

Term placeholders occur only linearly in a partial proof term and, since our language

has no dependent types, a term placeholder never occurs in an expression. Thus, we

are not obliged to explicitly introduce term placeholders in the formal syntax: instead

we can just represent a partial proof term as a function from a tuple of proof terms to

9

Table 5 Proof term typing rules (standard well-formed conditions on expressions, contexts,
and types omitted)

Proof term typing rules (also valid for arguments).

Γ ` t : ∀x1 : T1.∀xn : Tn.P1 ⇒ . . .⇒ Pm ⇒ P
Γ ` Ei : Ti{E1/x1 ; . . . ; Ei−1/xi−1} ∀i ∈ {1, . . . , n}
Γ ` ti : Pi{E1/x1 ; . . . ; En/xn} ∀i ∈ {1, . . . ,m}

Γ ` (t E1 . . . En t1 . . . tm) : P

Γ, x : T ` t : P

Γ ` λx : T.t : ∀x : T.P

Γ,H : P1 ` t : P2

Γ ` ΛH : P1.t : P1 ⇒ P2

Γ ` t : P1 Γ ` P1 ≡ P2

Γ ` (t : P1 ≡ P2) : P2

Γ, x := E ` t : P

Γ ` let x := E in t : P{E/x}
Γ ` t1 : P1 Γ,H : P1 ` t2 : P2

Γ ` Let H : P1 := t1 in t2 : P2

We now show the formal semantics of our language in terms of compilation of a declarative
script to a proof term. In Tables 4 and 5 we show the syntax and typing rules for the proof
terms we will use to encode first order logic natural deduction trees. We only show the inference
rules for proof terms, omitting all the conditions about the well-formedness of contexts, types
and propositions occurring in the inference rules, since they are quite standard and not relevant
to the present work. Moreover we restrict induction and case analysis to natural numbers and
we only consider chains of equalities over natural numbers.
In the definition of the proof term syntax we use the non standard notion of arguments in
head long βη-normal form, defined as follows: an argument is in head long βη-normal form
when either it is not an application or its type is neither a logical implication nor a universal
quantification. Note that this definition is purely based on the syntax and a restricted set of
typing rules. In particular, we do not need to assume any notion of βη-reduction on proof
terms. Nevertheless, we call it head long βη-normal form since, in presence of βη-reduction
rules on proof terms, it restricts terms to be in head β-normal form and to be be non-recursively
η-expanded.
We also assume at least the following constant schemes (that are always supposed to be applied
to arguments in head long βη normal form):

and elimP1,P2,P3 : P1 ∧ P2 ⇒ (P1 ⇒ P2 ⇒ P3)⇒ P3

ex elimT,P1,P2 : (∃x : T.P1)⇒ (∀x : T.P1 ⇒ P2)⇒ P2

nat indP : ∀n : nat.P (0)⇒ (∀m : nat.P (m)→ P (S(m)))⇒ P (n)
nat casesP : ∀n : nat.P (0)⇒ (∀m : nat.P (m))⇒ P (n)
eq transitive : ∀x, y, z : nat.x = y ⇒ y = z ⇒ x = z

a proof term. Every formal parameter in the tuple corresponds to a term placeholder.

On the other hand, we have introduced in Table 4 the explicit syntax “?” for expression

placeholders. From now on, if not stated otherwise, a placeholder is always an expression

placeholder. Moreover, the sequent (i.e. the pair context/type) associated to a proof

term placeholder will be called goal.

Formally, we represent a partial proof term as a triple (Σ,Σ′, Π). Σ is an ordered

list of sequents Γ ` P providing context and type for the proof term placeholders

occurring in the partial proof. Σ′ does the same for expression placeholders. Π, the

actual partial proof term, is a function from “fillings” for both kinds of placeholders

to placeholder-free proof terms.

partial proof :=

(context ∗ proposition) list ∗
(context ∗ type) list ∗
(proof term list ∗ expression list→ proof term)

10

We denote the empty list with [], the concatenation of two lists with l1@l2 and the

insertion of an element at the beginning of a list with x :: l. With (l, l′) 7→ t we denote

an anonymous function from pairs of lists to terms. In particular, (l, l′) is a pattern

that binds both l and l′ in t. With C[l, l′] we represent a proof term having all the

proof-terms in l and all the expressions in l′ as sub-terms. Finally, π3 is the third

projection of a tuple.

We now look at some examples of partial proofs.

Example 1 (Initial partial proof) Let P be a statement (a proposition). In order to

prove P , the following initial partial proof is considered: ([` P], [], ([H], []) 7→ H). The

list of open goals presented to the user is the singleton list [` P], i.e. the user must prove

P in the empty context. The list of placeholders is empty. The function ([H], []) 7→ H

must be applied to the singleton list [t] of inhabitants of [` P] and to the empty list of

instantiations for []; once applied, it reduces to t which is the closed proof term that

inhabits the statement of the theorem. Indeed, t has type P .

Example 2 (Closed partial proof) A closed partial proof is a triple ([], [], ([], []) 7→ t).

Since the list of open goals is empty, there is nothing left to prove. Thus the function

([], []) 7→ t must be applied to ([], []) to compute the closed proof term t that inhabits

the statement of the theorem.

Example 3 (General partial proof) The partial proof ([` 2 > 0; (x : N;H : x > 0;`
x 6= 0)], [], ([H1;H2], []) 7→ let x := 2 in Let H := H1 in H2) represents a situation

where there are two goals to be proved: the first one requires a proof of 2 > 0 in the

empty context; the second one requires a proof of x 6= 0 under the assumption x : N
and the supposition x > 0 (inhabited by H). Let t1 be a closed proof term for the first

goal and t2 a proof term for x 6= 0 where x and H may freely occur. The application

of the function to ([t1, t2], []) is the closed proof term let x := 2 in Let H := t1 in t2.

Note that the free occurrences of x and H in t2 are now bound in the final proof term.

Example 4 (Partial proof with a placeholder) The partial proof ([x : N;H :? > 1 `
? > 0], [x : N ` N], ([H2], [E]) 7→ λx : N.λH1 : E > 1.H2) represents a situation

where there is one unknown term of type N which can be instantiated with any term

whose only free variables are in {x}. Moreover, there is one open goal that requires

to prove positivity of the unknown term, represented by the placeholder ?, under the

assumption ? > 1. For any instantiation e of the placeholder and any proof term t for

the goal instantiated over e, the function returns λx : N.λH1 : e > 1.t which is a proof

term for ∀x : N.e > 1⇒ e > 0.

Not every element of the partial proof data type actually corresponds to a well

formed proof in progress. To define a typing judgement for partial proofs it is sufficient

to require: that every sequent in the list (with at most one element) of placeholders

declarations is well formed; that every sequent in the list of goals is well typed under

the assumption that any occurrence of ? has the declared type and is put in a context

compatible with the declared one; that the function expects two lists whose lengths are

equal to those of the lists of goals and placeholders; that the function produces only

well typed proof terms under the assumption that the i-th element of the list of goals

(placeholders) has the declared type; that every occurrence of the i-th element of the

list of goals (placeholders) occurs in a context compatible with the declared one. Two

contexts are compatible when every variable (assumption) declared/defined in the first

context is also declared/defined in the same way in the second context.

11

We do not give here the formal judgements corresponding to the previous conditions

and, similarly, we omit from the paper the typing rules for expressions, types and

formulae and the reduction rules for formulae and terms. As a consequence, we omit

as well all the meta-theory of the given calculus. We believe that being more rigorous

by better fixing the calculus is unnecessary to understand the ideas presented here,

that apply to a broad spectrum of calculi. Indeed, only the typing rules for proof

terms matter in the remaining of the paper. The implementation we provide in Matita

considers the whole CIC without any major difference from what is presented here, but

for the complication of having to detect in advance which terms are proof-terms and

which terms are expressions. This is achieved with an enhanced version of Coscoy’s

double type inference algorithm presented in [17].

The semantic function CJ·K shown in Table 6 maps statements to partial functions

from partial proof terms to partial proof terms. Typically, the head goal is removed

from the list of goals in input and zero or more goals are added to the list of goals

in output. The new function that builds the final proof term takes in input the proof

terms for the newly generated goals and for the goals that are just propagated by the

command; then it calls the old function passing for the first argument — the proof

term for the removed goal — a proof term built from those for the newly generated

goals; the remaining arguments are just propagated. In simpler words, the function is

responsible for building an evidence for the removed goal from the evidences for the

new goals.

The output of the semantic function is a partial function since it may be the case

that a command is erroneously applied to a goal that does not have the expected shape.

For instance, in order to assume a variable, the goal must be a universal quantification.

We appreciate this kind of strictness when the declarative language is used in education

to teach logic to first year students, like we are currently doing at the University of

Bologna. On the other hand, it is common mathematical practice to be more liberal in

this respect. Isar tries to adhere to this practice by allowing users to prove something

different from what is stated in the main or local proofs. Lightweight automation is

then applied to conclude the original goal. This can be easily accommodated in the

proposed framework and we leave it as a future extension.

Since we are not interested in the way automation finds justifications, we assume

the existence of a (partial) function AJ·K that, given a justification and a proposition,

returns a proof term that inhabits the proposition.

AJ·K : justification ∗ proposition→ proof term

However, we must impose the following requirement: for each proof term t that inhabits

P we ask AJusing t, P K = t. Moreover, the grammar of proof terms already constrains

automation. For instance, an automatically found proof of the argument of a constant

must be in the particular head long βη normal form of Table 1. If no proof in such

form can be found, automation must fail.

CJ·K? extends the semantics to a list of statements (a declarative script). Given a

declarative script S1 · · · Sn, the proof term generated executing the script S from

the initial proof state for a proposition P is given by CJ·Ks applied to (S, P). More

12

rigorously:

CJ·K : statement→ partial proof → partial proof

CJ·K? : statement list→ partial proof → partial proof

CJS1 · · ·SnK? = CJSnK ◦ · · · ◦ CJS1K

CJ·Ks : statement list ∗ proposition→ proof term

CJS1 · · ·Sn, P Ks = π3(CJS1 · · · SnK? ([` P], [], ([H], []) 7→ H)) ([], [])

Example 5 Consider the statement ∀x : nat.P (x) and a script “assume x : nat S”

where we suppose that S produces for the sequent x : nat ` P (x) a proof term t (i.e.

that CJSK?([x : nat ` P (x)], [], Π) = ([], [], ([], []) 7→ Π([t], [])))

We have:

CJassume x : nat S,∀x : nat.P (x)Ks

= π3((CJSK? ◦ CJassume x : T K) ([` ∀x : nat.P (x)], [], (H, []) 7→ H)) ([], [])

= π3(CJSK?([x : nat ` P (x)], [], ([hd], []) 7→ λx : nat.hd)) ([], [])

= π3(([], [], ([], []) 7→ λx : nat.t)) ([], [])

= λx : nat.t

We immediately notice from the rules in the table that assume generates a λ-

abstraction, suppose a Λ-abstraction and let a let . . . in definition. Moreover, all

commands that prove a sub-result, i.e. we proved and obtain, generate a logical

cut Let . . . in. The commands that end with done are those that close the head goal

without opening new ones. Most commands have an alternative form to also han-

dle conversion, that is explicitly recorded in the proof term. Most of the remaining

commands are syntactic sugar for the application of elimination principles or transi-

tivity principles. Finally, notice that some commands, like the thesis becomes and

we need to prove are perfect synonyms meant to be used in different contexts.

The translation of the case command is only partial, since the name H of the case

is ignored. Thus the user must remember to prove the base case and the inductive case

exactly in this order. In a realistic implementation, the system should detect if the

two cases are swapped and either complain or, even better, match the second proof

term and goal instead of the first one when the inductive case is addressed first. This

is easily achievable by labelling each sequent in the list of sequents with a string that

can be, for instance, O in the base case and S in the inductive case. We did not do

that in the formal semantics to keep it simple.

Only the command obtain H E1 = E2 introduces in Σ′ a new expression place-

holder ?. The placeholder ? stands for the right hand side of the last expression of

the chain. Its instantiation will be known only in the last step of the chain, i.e. in

the next = E3 done statement. Since equation chains cannot be nested, in a partial

proof term there can be at most one placeholder, i.e. Σ′ can have at most one element

and one placeholder symbol ? is sufficient. A simple extension consists in introducing

non-linear, numbered placeholders ?i in order to introduce additional commands that

leave some part of a local thesis unspecified and that can be freely nested. The current

semantics has already been given with this extension in mind, so that no rules would

need to be changed but the typing rules for sequents that have been omitted.

13

Table 6: Formal semantics

CJassume x : T K(Γ ` ∀x : T.P :: Σ,Σ′, Π) =

((Γ ; x : T ` P) :: Σ,Σ′, (hd :: tl, l) 7→ Π((λx : T.hd) :: tl, l))

CJassume x : T1 that is equivalent to T2K(Γ ` ∀x : T1.P :: Σ,Σ′, Π) =

((Γ ; x : T2 ` P) :: Σ,Σ′,
(hd : P ′ ≡ P) :: tl, l) 7→ Π(((λx : T2.hd) : (∀x : T2.P

′) ≡ (∀x : T1.P)) :: tl, l)

(hd :: tl, l) 7→ Π(((λx : T2.hd) : (∀x : T2.P) ≡ (∀x : T1.P)) :: tl, l)

CJsuppose P1 (H)K(Γ ` ∀P : P1.P2 :: Σ,Σ′, Π) =

((Γ ; H : P1 ` P2) :: Σ,Σ′, (hd :: tl, l) 7→ Π((ΛH : P1.hd) :: tl, l))

CJsuppose P1 (H) that is equivalent to P2K(Γ ` ∀H : P1.P :: Σ,Σ′, Π) =

((Γ ; H : P2 ` P) :: Σ,Σ′,
((hd : P3 ≡ P) :: tl, l) 7→ Π(((ΛH : P2.hd) : (P2 → P3) ≡ (P1 → P)) :: tl, l)

(hd :: tl, l) 7→ Π(((ΛH : P2.hd) : (P2 → P) ≡ (P1 → P)) :: tl, l)

CJlet x := EK(Γ ` P :: Σ,Σ′, Π) =

((Γ ; x := E ` P) :: Σ,Σ′, (hd :: tl, l) 7→ Π((let x := E in hd) :: tl, l))

CJj we proved P1 (H)K(Γ ` P2 :: Σ,Σ′, Π) =

((Γ ; H : P1 ` P2) :: Σ,Σ′, (hd :: tl, l) 7→ Π((Let H : P1 := AJj, P1K in hd) :: tl, l))

CJj we proved P1 (H) that is equivalent to P2K(Γ ` P :: Σ,Σ′, Π) =

((Γ ; H : P2 ` P) :: Σ,Σ′,
(hd :: tl, l) 7→ Π((Let H : P1 := (AJj, P1K : P1 ≡ P2) in hd) :: tl, l))

CJj we proved P doneK(Γ ` P :: Σ,Σ′, Π) =

(Σ,Σ′, (tl, l) 7→ Π(AJj, P K :: tl, l))

CJj we proved P1 that is equivalent to P2 doneK(Γ ` P2 :: Σ,Σ′, Π) =

(Σ,Σ′, (tl, l) 7→ Π((AJj, P1K : P1 ≡ P2)) :: tl, l))

CJj doneK(Γ ` P :: Σ,Σ′, Π) = (Σ,Σ′, (tl, l) 7→ Π(AJj, P K :: tl, l))

CJj let x : T such that P1 (H)K(Γ ` P2 :: Σ,Σ′, Π) =

((Γ ; x : T ; H : P1 ` P2) :: Σ,Σ′,
(hd :: tl, l) 7→ Π((ex elimT,P1,P2AJj, ∃x : T.P1K (λx : T.ΛH : P1.hd))) :: tl, l))

CJj we have P1 (H1) and P2 (H2)K(Γ ` P :: Σ,Σ′, Π) =

((Γ ; H1 : P1 ; H2 : P2 ` P) :: Σ,Σ′,
(hd :: tl, l) 7→ Π((and elimP1,P2,P AJj, P1 ∧ P2K (ΛH1 : P1.ΛH2 : P2.hd))) :: tl, l))

CJwe need to prove P K(Γ ` P :: Σ,Σ′, Π) =

((Γ ` P) :: Σ,Σ′, (hd :: tl, l) 7→ Π((hd) :: tl, l))

CJwe need to prove P1 or equivalently P2K(Γ ` P1 :: Σ,Σ′, Π) =

((Γ ` P2) :: Σ,Σ′, (hd :: tl, l) 7→ Π((hd : P2 ≡ P1)) :: tl, l))

CJwe need to prove P1 (H)K(Γ ` P2 :: Σ,Σ′, Π) =

((Γ ` P1) :: (Γ ; H : P1 ` P2) :: Σ,Σ′,
(hd1 :: hd2 :: tl, l) 7→ Π((Let H : P1 := hd1 in hd2) :: tl, l))

CJwe need to prove P1 (H) or equivalently P2K(Γ ` P :: Σ,Σ′, Π) =

((Γ ` P2) :: (Γ ; H : P1 ` P) :: Σ,Σ′,
(hd1 :: hd2 :: tl, l) 7→ Π((Let H : P1 := (hd1 : P2 ≡ P1) in hd2) :: tl, l))

CJconclude E1 = E2 jK(Γ ` E1 = E3 :: Σ,Σ′, Π) =

14

((Γ ` E2 = E3) :: Σ,Σ′,
(hd :: tl, l) 7→ Π(((eq transitive E1 E2 E3 AJj, E1 = E2K hd) :: tl, l)))

CJconclude E1 = E2 j doneK(Γ ` E1 = E2 :: Σ,Σ′, Π) =

(Σ,Σ′, (tl, l) 7→ Π(AJj, E1 = E2K :: tl, l))

CJobtain H E1 = E2 jK(Γ ` P :: Σ,Σ′, Π) =

((Γ ` E2 =?) :: (Γ ; H : E1 =? ` P) :: Σ, (Γ ` nat) :: Σ′,
(hd1 :: hd2 :: tl, hd′ :: tl′) 7→
Π((Let H : E1 = hd′ := (eq transitive E1 E2 hd

′ AJj, E1 = E2K hd1) in hd2) :: tl, tl′))
CJobtain H E1 = E2 j doneK(Γ ` P :: Σ,Σ′, Π) =

((Γ ; H : E1 = E2 ` P) :: Σ,Σ′,
(hd :: tl, l) 7→ Π((Let H : E1 = E2 := AJj, E1 = E2K in hd) :: tl, l))

CJ= E2 jK(Γ ` E1 =? :: Σ,Σ′, Π) =

(Γ ` E2 =? :: Σ,Σ′, (hd :: tl, E3 :: l) 7→ Π(eq transitive E1 E2 E3 AJj, E1 = E2K hd :: tl, l))

CJ= E2 jK(Γ ` E1 = E3 :: Σ,Σ′, Π) =

(Γ ` E2 = E3 :: Σ,Σ′, (hd :: tl, l) 7→ Π(eq transitive E1 E2 E3 AJj, E1 = E2K hd :: tl, l))

CJ= E2 j doneK(Γ ` E1 =? :: Σ, (Γ ` nat) :: Σ′, Π) =

(Σ,Σ′, (tl, l) 7→ Π(AJj, E1 = E2K :: tl, E2 :: l))

CJ= E2 j doneK(Γ ` E1 = E2 :: Σ,Σ′, Π) = (Σ,Σ′, (tl, l) 7→ Π(AJj, E1 = E2K :: tl, l))

CJwe proceed by induction on n to prove P (n)K(Γ ` P (n) :: Σ,Σ′, Π) =

((Γ ` P (O)) :: (Γ ` ∀m : nat.P (m)⇒ P (S(m))) :: Σ,Σ′,
(hd1 :: hd2 :: l, l′) 7→ Π((nat indP n hd1 hd2) :: l, l′))

CJwe proceed by cases on n to prove P (n)K(Γ ` P (n) :: Σ,Σ′, Π) =

((Γ ` P (O)) :: (Γ ` ∀m : nat.P (S(m))) :: Σ,Σ′,
(hd1 :: hd2 :: l, l′) 7→ Π((nat casesP n hd1 hd2) :: l, l′))

CJcase H arg1 · · · argnK = CJarg1Ka · · · CJargnKa

CJ(x : T)Ka = CJassume x : T K
CJ(H : P)Ka = CJsuppose P (H)K

CJby induction hypothesis we know P (H)K = CJsuppose P (H)K
CJby induction hypothesis we know P1 (H) that is equivalent to P2K =

CJsuppose P1 (H) that is equivalent to P2K

CJthe thesis becomes P K = CJwe need to prove P K
CJthe thesis becomes P1 or equivalently P2K =

CJwe need to prove P1 or equivalently P2K

5 Natural language generation

We present in Table 7 the inverse translation GJ−K from proof terms to declarative proof

scripts. The translation is recursive and proceeds by pattern matching over the proof

term. Rules coming first take precedence. Recursion on equality chains is performed

by the auxiliary function GJ−K=
− where the argument in subscript position is used to

remember the right hand side of the last step in the chain.

15

The inverse translation we propose generates fully explicit justifications in the

form using(H E1 . . . En H1 . . . Hm). With the same effort it could generate the more

lightweight justification byH,H1, . . . , Hm. In the implementation in Matita we even

added a parameter to force automation to look only for proofs terms that have depth

one, i.e. exactly of the form (H E1 . . . En H1 . . . Hm).

Table 7: Natural language generation

GJlet x := E in tK = let x := E GJtK

GJλx : T.tK = assume x : T GJtK
GJ((λx : T2.t) : (∀x : T2.P) ≡ (∀x : T1.P))K =

assume x : T1 that is equivalent to T2 GJtK
GJ((λx : T2.t) : (∀x : T2.P2) ≡ (∀x : T1.P1))K =

assume x : T1 that is equivalent to T2

we need to prove P1 or equivalently P2 GJtK

GJΛH : P.tK = suppose P (H) GJtK
GJ((ΛH : P2.t) : (P2 ⇒ P) ≡ (P1 ⇒ P))K =

suppose P1 (H) that is equivalent to P2 GJtK
GJ((ΛH : P2.t) : (P2 ⇒ P4) ≡ (P1 ⇒ P3))K =

suppose P1 (H) that is equivalent to P2

we need to prove P3 or equivalently P4 GJtK

GJLet K : P := (H E1 . . . En H1 . . . Hm) in tK =

using (H E1 . . . En H1 . . . Hm) we proved P (K) GJtK
GJLet K : P2 := ((H E1 . . . En H1 . . . Hm) : P1 ≡ P2) in tK =

using (H E1 . . . En H1 . . . Hm) we proved P1 (K)

that is equivalent to P2 GJtK
GJLet H : P2 := (t1 : P1 ≡ P2) in t2K =

we need to prove P2 (H) or equivalently P1 GJt1K GJt2K
GJLet H : E′1 = E′3 :=

(eq transitive E′1 E
′
2 E
′
3 (H E1 . . . En H1 . . . Hm) t2) in t1K =

obtain H E′1 = E′2 using (H E1 . . . En H1 . . . Hm) GJt2K=
E′

3
GJt1K

GJLet H : P := t1 in t2K = we need to prove P (H) GJt1K GJt2K

GJ(eq transitive E′1 E
′
2 E
′
3 (H E1 . . . En H1 . . . Hm) t)K =

conclude E′1 = E′2 using (H E1 . . . En H1 . . . Hm) GJtK=
E′

3

GJ(H E1 . . . En H1 . . . Hn)K=
E′ =

= E′ using (H E1 . . . En H1 . . . Hn) done

GJ(eq transitive E′1 E
′
2 E
′
3 (H E1 . . . En H1 . . . Hm) t)K=

E′
3

=

= E2 using (H E1 . . . En H1 . . . Hm)GJ tK=
E′

3

GJ(ex elim T P1 P2 (H E1 . . . En H1 . . . Hm) (λx : T.ΛH2 : P2.t))K =

using (H E1 . . . En H1 . . . Hm) let x : T such that P2 (H2) GJtK
GJ(and elim P1 P2 P3 (H E1 . . . En H1 . . . Hm) (ΛH1 : P1.ΛH2 : P2.t))K =

using (H E1 . . . En H1 . . . Hm) we have P1 (H1) and P2 (H2) GJtK

GJ(nat indP n t1 (λm : nat.ΛH : P (m).t2))K =

we proceed by induction on n to prove P (n)

16

case O

the thesis becomes P (O)

GJt1K
case S (m : nat)

by induction hypothesis we know P (m) (H)

the thesis becomes P (S(m))

GJt2K
GJ(nat indP n t1 (λm : nat.

((ΛH : P (m).t2) : (P2 ⇒ P (S(m))) ≡ (P (m)⇒ P (S(m))))))K =

we proceed by induction on n to prove P (n)

case O

the thesis becomes P (O)

GJt1K
case S (m : nat)

by induction hypothesis we know P (m) (H)

that is equivalent to P2

the thesis becomes P (S(m))

GJt2K
GJ(nat indP n t1 (λm : nat.

((ΛH : P2.t2) : (P (m)⇒ P3) ≡ (P (m)⇒ P (S(m))))))K =

we proceed by induction on n to prove P (n)

case O

the thesis becomes P (O)

GJt1K
case S (m : nat)

by induction hypothesis we know P (m) (H)

that is equivalent to P2

the thesis becomes P (S(m)) or equivalently P3

GJt2K
GJ(nat indP n t1 (λm : nat.ΛH : P (m).(t2 : P2 ≡ P (S(m)))))K =

we proceed by induction on n to prove P (n)

case O

the thesis becomes P (O)

GJt1K
case S (m : nat)

by induction hypothesis we know P (m) (H)

the thesis becomes P (S(m)) or equivalently P2

GJt2K

GJ(H E1 . . . En H1 . . . Hm)K = using (H E1 . . . En H1 . . . Hm) done

GJ((H E1 . . . En H1 . . . Hm) : P1 ≡ P2)K =

using (H E1 . . . En H1 . . . Hm) we proved P1

that is equivalent to P2 done

GJ(t1 : P1 ≡ P2)K =

we need to prove P2 or equivalently P1

GJt1K

17

The following important theorem shows that the proof term obtained processing a

declarative script generated from a given proof term is identical to the starting proof

term. Thus, we fully satisfy the strongest requirement of Section 2 about re-generation

of declarative scripts.

Theorem 1 (Round-tripping from proof terms)

1. For all Γ, P, t such that Γ ` t : P and for all Σ,Π there exists an unique Π ′ such

that

(a) CJGJtKK?((Γ ` P) :: Σ, [], Π) = (Σ, [], Π ′)
(b) for all l,Π(t :: l, []) = Π ′(l, [])

2. For all Γ,E1, E2, t such that Γ ` t : E1 = E2, and for all Σ,Π there exists an

unique Π ′ such that

(a) CJGJtK=
E2

K?((Γ ` E1 = E2) :: Σ, [], Π) = (Σ, [], Π ′)
(b) for all l,Π(t :: l, []) = Π ′(l, [])

3. For all Γ, Γ ′, E1, E2, such that Γ ` t : E1 = E2, and for all Σ,Π there exists an

unique Π ′ such that

(a) CJGJtK=
E2

K?((Γ ` E1 =?) :: Σ, [Γ ′ ` N], Π) = (Σ, [], Π ′)
(b) for all l,Π(t :: l, [E2]) = Π ′(l, []).

In particular, for all P, t such that ` t : P we have CJGJtK, P Ks = t

The statement is made of three parts, one for GJ·K and two for GJ·K=
· . As a particular

case of the first part we have the last statement that justifies the name of the theorem.

The third part handles the case when we are plugging the generated script in a proof

of an equality chain whose final conclusion is yet unknown and will be inferred from

the generated script.

Proof We prove the particular case first assuming that the first statement holds.

CJGJtK, P Ks = π3(CJGJtKK? ([` P], [], ([H], []) 7→ H))([], []) = Π ′([], []) where ([H], []) 7→
H)([t], []) = t = Π ′([], []). Hence CJGJtK, P Ks = t.

The remaining three statements are proved by structural induction on t. The proofs

of the second and third one are required to complete the proof of the first one. We only

show two significant cases.

Case λ + conversion for the first statement:

Let t be (λx : T2.t
′) : (∀x : T2.P2) ≡ (∀x : T1.P1). We have GJtK = S1 S2 GJt′K

where S1 = “assume x : T1 that is equivalent to T2” and S2 = “we need to prove

P1 or equivalently P2”. Assume generic, but fixed Σ and Π. We have

CJS1 S2 GJt′KK?((Γ ` ∀x : T1.P1) :: Σ, [], Π)

= (CJGJt′KK ◦ CJS2K ◦ CJ“ assume x : T1 that is equivalent to T ′′2 K)

((Γ ` ∀x : T1.P1) :: Σ, [], Π)

= CJGJt′KK(CJS2K((Γ ; x : T2 ` P1) :: Σ, [],
((hd : P2 ≡ P1) :: tl, []) 7→ Π(((λx : T2.hd) : (∀x : T2.P2) ≡ (∀x : T1.P1)) :: tl, [])

(hd :: tl, []) 7→ Π(((λx : T2.hd) : (∀x : T2.P1) ≡ (∀x : T1.P1)) :: tl, [])
))

= CJGJt′KK(((Γ ; x : T2 ` P2) :: Σ, [],

(hd :: tl, []) 7→ Π(((λx : T2.hd) : (∀x : T2.P2) ≡ (∀x : T1.P1)) :: tl, [])))

= (Σ, [], (l, []) 7→ Π(((λx : T2.t
′) : (∀x : T2.P2) ≡ (∀x : T1.P1)) :: l, [])

18

The last identity is justified by the inductive hypothesis on t′. To conclude the case

we just need to verify that ∀l,Π(((λx : T2.t
′) : (∀x : T2.P2) ≡ (∀x : T1.P1)) :: l, []) =

Π(((λx : T2.t
′) : (∀x : T2.P2) ≡ (∀x : T1.P1)) :: l, []), which is trivially true.

Case application for the third statement:

Let t be (H F1 . . . Fn H1 . . . Hm).

We have GJtK=
E2

= “ = E2 using (H F1 . . . Fn H1 . . . Hm) done”. Assume generic but

fixed Σ and Π. We have

CJ“ = E2 using (H F1 . . . Fn H1 . . . Hm) done′′K?((Γ ` E1 =?) :: Σ, [Γ ′ ` N], Π)

= (Σ, [], (tl, []) 7→ Π(AJ using (H F1 . . . Fn H1 . . . Hm), E1 = E2K :: tl, E2 :: []))

= (Σ, [], (tl, []) 7→ Π((H F1 . . . Fn H1 . . . Hm) :: tl, E2 :: []))

Once again, a quick verification by reflexivity completes the proof.

ut

The next theorem shows that all the requirements about re-generation of declarative

scripts of Section 2 are fulfilled: the declarative script re-generated from a proof term

is an improved version of the starting declarative script. Moreover re-generation is

idempotent. Improvement is captured by the map B that consists in:

1) interpolating new statements corresponding to the explicitation of justifications

previously found automatically or given by means of a proof term more complex than

an application. For instance

“using ΛH : A.H done” B “suppose A (H)” “using H done”

2) replacing sequences of statements with semantically equivalent ones that are

more appropriate in their context. For instance the formal semantics of Table 6 shows

that the thesis becomes P is equivalent to we need to prove P . However the for-

mer is supposed to be used only to state the thesis of a branch in a proof by induction

or case analysis. The map B also captures the notion of “being less appropriate then”.

For instance

“conclude E1 = E2 j1” “j2 done′′

B “conclude E1 = E2 j1” “ = E3 j2 done”

since, once a chain of inequation is started, the same style must be used until the end

of the chain.

3) replacing sequences of statements with shorter ones that are semantically equiv-

alent. In particular, equality chains with just one step are changed to other statements.

The following is an example that does not involve an equality chain.

“we need to prove P1 (H)”

“we need to prove P1 that is equivalent to P2”

B “we need to prove P1 (H) that is equivalent to P2”

Of the three kind of transformations, only the latter one can modify the script

against the user will. This happens, for instance, when the user explicitly recalls the

19

current thesis where not necessary. This can be avoided by improving only selected

parts of the script, since improvement is (almost) structure preserving.

The main property of the map B is that it is reflexive only on scripts that cannot

be improved and that is reaches a fixpoint in one step (i.e. that it maximally improves

the script it is applied to).

Formally, a script S1 is improved in a script S2, i.e. S1BS2, if S2 is the normal form

of S1 according to the contextual and conditional rewriting system given in Table 8.

The rewriting system is confluent, since it has no critical pairs, and terminating. All

commands generated by automation in the rewriting rules are justified by simple steps

and are already in improved form.

Table 8: Improvement map on declarative scripts

“C[S1 . . . Sn]” B “C[S′1 . . . S′n′]” for every context C[·]
when “S1 . . . Sn” B “S′1 . . . S′n′” and no other contextual rewriting rule apply

“C[assume x : nat]” B “C[case S (x : nat)]” when C[·] is the context

“we proceed by (cases|induction) on t to prove P case O S1 . . . Sn · ”
and Sn is the last step in the proof of the base case. This condition can be

detected syntactically.

“C[suppose P1 (H)]” B “C[by induction hypothesis we know P1 (H)]”

when C[·] is the context

“we proceed by induction on t to prove P case O S1 . . . Sn

case S (x : nat) · ”
and Sn is the last step in the proof of the base case.

“C[suppose P1 (H) that is equivalent to P2]”B
“C[by induction hypothesis we know P1 (H) that is equivalent to P2]”

when C[·] is the context

“we proceed by induction on t to prove P case O S1 . . . Sn

case S (x : nat) · ”
and Sn is the last step in the proof of the base case.

“j we proved P (K)” B “using (H E1 . . . En H1 . . . Hm) we proved P (K)”

when j is (equivalent to) a simple justification

“j we proved E1 = E2 (H)” B “obtain HE1 = E2 S
′
1 · · · S′n”

when j is not simple and it generates the rewriting chain S′1 . . . S′n
“j we proved P1 (H)” B “we need to prove P1 (H) S′1 · · · S′n”

when P1 is not an equality and j is not simple, it does not immediately applies

conversion and it generates S′1 . . . S′n
“j we proved P1 (H)”B

“using (H E1 . . . En H1 . . . Hm) we proved P2 (H) that is equivalent to P1”

when j is not simple, it immediately converts P1 to P2 and it generates a simple

justification

“j we proved P1 (H)”B
“we need to prove P1 (H) or equivalently P2 S

′
1 · · · S′n”

when j is not simple, it immediately converts P1 to P2 and it generates S′1 . . . S′n
“j we proved P1 (K) that is equivalent to P2”B

“using (H E1 . . . En H1 . . . Hm) we proved P1 (K) that is equivalent to P2”

20

when j is (equivalent to) a simple justification

“j we proved P1 (H) that is equivalent to P2”B
“we need to prove P2 (H) or equivalently P1 S

′
1 · · · S′n′”

when j is not simple and it generates S′1 . . . S′n′

“C[j we proved P done]” B “C[S′1 · · · S′n′]” when j generates S′1 . . . S′n′

In particular S′1 . . . S′n′ can be the last steps of an equality chain when

the hole of C[·] is at the end of an equality chain.

“C[j done]” B “C[S′1 · · · S′n′]” when j generates S′1 . . . S′n′

In particular S′1 . . . S′n′ can be the last steps of an equality chain when

the hole of C[·] is at the end of an equality chain.

“C[j we proved P1 that is equivalent to P2 done]”B
“C′[using (H E1 . . . En H1 . . . Hm) we proved P1 (K)

that is equivalent to P2 done]”

when C[·] is “C′[we need to prove P2 (K) ·]” and j is (equivalent to) a simple

justification

“C[j we proved P1 that is equivalent to P2 done]”B
“C′[we need to proved P2 (K) that is equivalent to P1 done S′1 . . . S′n′]”

when C[·] is “C′[we need to prove P2 (K) ·]” and j generates S′1 . . . S′n′

“j we proved P1 that is equivalent to P2 done”B
“using (H E1 . . . En H1 . . . Hm) we proved P1

that is equivalent to P2 done”

when j is (equivalent to) a simple justification

“j we proved P1 that is equivalent to P2 done”B
“we need to prove P2 or equivalently P1 S

′
1 · · · S′n′”

when j is not simple and generates S′1 . . . S′n′

“j let x : T such that P1 (H)”B
“using (H E1 . . . En H1 . . . Hm) let x : T such that P1 (H)”

since j must be (equivalent to) a simple justification

“j we have P1 (H1) and P2 (H2)”B
“using (H E1 . . . En H1 . . . Hm) we have P1 (H1) and P2 (H2)”

since j must be (equivalent to) a simple justification

“C[we need to prove P]” B “C[the thesis becomes P]”

when C[·] has its hole just after “case O” or just after

“by induction hypothesis . . . ” and the hole is not followed by

“the thesis becomes . . . ”

“we need to prove P”B
“C[we need to prove ∀x : T1.P1 or equivalently ∀x : T2.P1]”B

“C′[assume x : T1 that is equivalent to T2]”

when C[·] is C′[· “assume x : T2”]

“C[we need to prove ∀x : T1.P1 or equivalently ∀x : T2.P2]”B
“C′[assume x : T1 that is equivalent to T2 we need to prove P1

or equivalently P2]”

when C[·] is C′[· “assume x : T2”]

“we need to prove P”B
“C[we need to prove P1 ⇒ P2 or equivalently P ′1 ⇒ P2]”B

“C′[suppose P1 (H) that is equivalent to P ′1]”

when C[·] is C′[· “suppose P ′1 (H)”]

21

“C[we need to prove P1 ⇒ P2 or equivalently P ′1 ⇒ P ′2]”B
“C′[suppose P1 (H) that is equivalent to P ′1 we need to prove P2

or equivalently P ′2]”

when C[·] is C′[· “suppose P ′1 (H)”]

“C[we need to prove P1 or equivalently P2]”B
“C′[using (H E1 . . . En H1 . . . Hm) we proved P2

that is equivalent to P1 done]”

when C[·] is either C′[· “j done”] or C′[· “j we proved P2 done”]

and j is (equivalent to) a simple justification

“C[we need to prove P1 (K)]”B
“C′[using (H E1 . . . En H1 . . . Hm) we proved P1 (K)]”

when C[·] is either C′[· “j done”] or C′[· “j we proved P2 done”]

and j is (equivalent to) a simple justification

“C[we need to prove P1 (K)]”B
“C′[using (H E1 . . . En H1 . . . Hm) we proved P2 (K)

that is equivalent to P1]”

when C[·] is C[· “j we proved P2 that is equivalent to P1”]

and j is (equivalent to) a simple justification

“C[we need to prove F1 = F2 (K)]”B
“C′[obtain K F1 = F2 using (H E1 . . . En H1 . . . Hm)]”

when C[·] is C′[· “conclude F1 = F2 j”] and j is (equivalent to) a

simple justification

“C[we need to prove P1 (K)]”B
“C′[we need to prove P1 (K) or equivalently P2]”

when C[·] is C′[· “we need to prove P1 or equivalently P2”]

“C[we need to prove P1 (K) or equivalently P2]”B
“C′[using (H E1 . . . En H1 . . . Hm) we proved P2 (K)

that is equivalent to P1]”

when C[·] is either C′[· “j done”] or C′[· “j we proved P2 done”]

and j is (equivalent to) a simple justification

“C[conclude F1 = F2 j done]” B “C[S′1 . . . S′n′]”

where j generates the script S′1 . . . S′n′ In particular, the generated script can

be an equality chain or it can continue an equality chain if the hole in C[·] is

at the end of an equality chain

“conclude F1 = F2 j”B
“conclude F1 = F2 using (H E1 . . . En H1 . . . Hm) S′1 . . . S′n′”

where S′1 . . . S′n′ are all equality chain steps generated from j

“obtain K F1 = F2 j done”B
“using (H E1 . . . En H1 . . . Hm) we proved F1 = F2 (K)”

when j is (equivalent to) a simple justification

“obtain K F1 = F2 j done”B
“using (H E1 . . . En H1 . . . Hm) we proved P

that is equivalent to F1 = F2 (K)”

when j immediately performs a conversion and then it is equivalent to a

simple justification

“obtain K F1 = F2 j done”B
“we need to prove F1 = F2 (K) S′1 . . . S′n′”

22

when j generates the commands S′1 . . . S′n′

“obtain K F1 = F2 j done”B
“we need to prove F1 = F2 (K) or equivalently P S′1 . . . S′n′”

when j immediately performs a conversion and then it generates the commands

S′1 . . . S′n′

“obtain K F1 = F2 j”B
“obtain K F1 = F2 using (H E1 . . . En H1 . . . Hm) S′1 . . . S′n′”

where S′1 . . . S′n′ are all equality chain steps generated from j

“ = F2 j” B “ = F3 using (H E1 . . . En H1 . . . Hm) S′1 . . . S′n′”

where j generates the rewriting steps S′1 . . . S′n′ that prove F3 = F2

“ = F2 j done” B “ = F2 using (H E1 . . . En H1 . . . Hm) done”

where j is (equivalent to) a simple justification

“ = F2 j done” B “ = F3 using (H E1 . . . En H1 . . . Hm) S′1 . . . S′n′”

where j generates the rewriting steps S′1 . . . S′n′ that prove F3 = F2 and S′n′

ends the chain

“C[case H arg1 · · · argn]” B “C[S1 . . . Sn]”

when the hole in C[·] is not at the beginning of a case in an inductive proof

or a proof by cases, and Si is “assume x : T” when argi is (x : T) and

“suppose P (K)” when argi is (K : P)

“C[by induction hypothesis we know P (H)]” B “C[suppose P (H)]”

when the hole in C[·] does not follow a “case” command in a proof by induction

“C[by induction hypothesis we know P1 (H) that is equivalent to P2]”B
“C[suppose P1 (H) that is equivalent to P2]”

when the hole in C[·] does not follow a “case” command in a proof by induction

“C[]” B “C[the thesis becomes P]”

when the hole in C[·] immediately follows a “case O” or a

“by induction hypothesis. . . ” command and it is not followed by a

“the thesis becomes . . . ” or a “we need to prove . . . ” command

Idempotence of improvement requires a lengthy but simple verification. Thus we

have the following fact.

Fact 1 (Idempotence of improvement)

For all S1, . . . , Sn, S
′
1, . . . S

′
m, S

′′
1 , . . . S

′′
m′ , if S1 · · · Sn BS′1 · · · S′m BS′′1 · · · S′′m′ then

m = m′ and ∀i ≤ m,S′i = S′′i

In order to make the proof of our last theorem easier, we introduce the notion of

improvement in an equality chain.

Definition 1 (Improvement in an equality chain) We write S1 . . . SnB=S′1 . . . S
′
m

iff C[S1 . . . Sn] B= C[S′1 . . . S′m] where C[·] = “conclude 0 = 0 · ”.

The chosen equality 0 = 0 in the previous definition is just dummy, since all contextual

rules in the definition of improvement ignore the exact equality stated in a conclude

or an obtain command.

23

Theorem 2 (Round-tripping from declarative scripts)

For all n ∈ N and for all S1, . . . , Sn, Σ,Σ
′, Π, if CJS1 · · · SnK?(Σ,Σ′, Π) = (Σ1, Σ

′
1, Π1)

where Σ = [Γ1 ` P1; . . . ;Γv ` Pv] then there exists k ≤ v, unique v′ and h and unique

t1, . . . , tk and l′ such that:

1. Σ1 = [Γ ′1 ` P ′1; . . . ;Γ ′v′ ` P ′v′ ;Γk+1 ` Pk+1; . . . ;Γv ` Pv]

Σ′1 = [Γ ′′1 ` T ′′1 ; . . . ;Γ ′′h ` T
′′
h]

2. for each i < k, the term ti is closed in Γi and has type Pi (or one instance of P1

if i = 1 and Σ′ is not empty)

3. tk[l, l′] is a context (a term with holes for proof terms and expressions) that behaves

as the map (l, l′) 7→ s; the list l binds a proof term variable for each proof goal

Γ ′i ` P
′
i ; once applied, the output of the map is a term closed in Γk that has type

Pk (or its instance where the placeholder ? has been instantiated with the element

of the singleton list l′, if Σ′1 is not empty)

4. For all r1, . . . , rv′ , E1, . . . , Eh, l there exists l′′ such that
Π(t1 :: · · · :: tk−1 :: tk[r1 :: · · · :: rv′ , E1 :: · · ·Eh] :: l, l′)

= Π1(r1 :: · · · :: rv′ :: l, l′′)
5. For all r1, . . . , rv′ , E1, . . . , Eh,

S1 · · · Sn GJr1K · · · GJrv′K
B GJt1K · · · GJtk−1K GJtk[[r1, . . . , rv′], [E1, . . . , Eh]]K

Moreover if t1 has type “F1 = F2” then for all r1, . . . , rv′ , E1, . . . , Eh,
S1 · · · Sn GJr1K · · · GJrv′K

B= GJt1K=
F2
GJt2K · · · GJtk−1K GJtk[[r1, . . . , rv′], [E1, . . . , Eh]]K

In particular, for Σ = [` P], Σ′ = [], Σ1 = [] and Σ′1 = [] we have k = 1 and tk[[], []]

is a closed term of type P such that S1 · · · Sn B GJtk[[], []]K (if P is not an equality)

or S1 · · · Sn B GJtk[[], []]K=
F2

(if P is F1 = F2).

The statement of the theorem is rather technical, but corresponds to a clear intu-

ition, captured by the first four conditions above. The intuition is the following: the

sequence of commands S1, . . . , Sn completely proves the first k − 1 goals of Σ and

begins the proof of the k-th goal by opening v′ new goals. Thus the user is left (in

Σ1) with the new goals and with the remaining old goals. Moreover, the proof of the

first goal may have instantiated any placeholder declared in Σ′, and the commands

that have started the proof of the k-th goal may have introduced a new placeholder

declaration in Σ′1. The proof terms that inhabit the statements of the closed goals are

t1, . . . , tk−1 and the proof term context tk[l, l′] generates a proof term for the k-th

statement once filled with proof terms for the new v′ goals.

Condition 5 is the one that forces round-tripping: it states that the script S1 · · · Sn ,

followed by a script to prove all the new goals, is improved in the script generated from

the proof terms that inhabits the closed goals. Moreover, from the previous lemma, we

know that the improved script is a fixpoint of the transformation.

The particular case at the end of the statement is the one that gives the name to

the theorem. It says that, given a statement and a declarative script that proves the

statement, executing the script generates a closed proof term (the proof object for the

script) that can be used to re-generate an improved and equivalent declarative script.

Proof The particular case is a simple instantiation of the general case. The proof of

the general case is by induction on n (or, equivalently, by structural induction on the

list S1 · · · Sn). The base case (n = 0) is vacuously true. In the inductive case we

24

know that the theorem holds for S2 · · · Sn and we must show that it holds also for

S1 S2 · · · Sn. We proceed by cases on S1 and we do some simple verifications.

Since the definition of improvement is contextual, in a few cases we need to perform

a one-step look-ahead by proceeding by cases also on S2 and using the induction

hypothesis on S3 · · · Sn. These are the cases where the contextual rule for B considers

a context C[·] of the form C′[· S] for some particular S. The remaining contextual rules

either deal with equality chains or with proofs by cases/induction. To handle the first

ones we have strengthened the statement of the theorem with the second requirement of

the fifth condition, that deals with improvement in equality chains. Thus the induction

hypothesis is sufficient without requiring any unbounded look-ahead.

We only show one simple, but significant case (since it shows a potential improve-

ment of the script). Let S1 = “j done” and let P1 be “F1 = F2” (hence Σ′ = []).

CJS1 S2 · · · SnK?(Γ ` F1 = F2 :: Σ, [], Π)

= (CJS2 · · · SnK? ◦ CJS1K)(Γ ` F1 = F2 :: Σ, [], Π)

= CJS2 · · · SnK(Σ, [], (l, []) 7→ Π(AJj, F1 = F2K :: l, []))

= (Σ1, Σ
′
1, Π1)

By induction hypothesis we obtain k < v−1, t1, . . . , tk and l′. We need to prove that ∃k̄
and ∃t̄1, . . . , t̄k and l̄′ that satisfy the required properties. We take k+1 for k̄, AJj, F1 =

F2K, t1, . . . , tk for t̄1, . . . , t̄k̄ and l′ for l̄′. Properties 2 and 3 are trivial. To prove property

4, we know by induction hypothesis that ∀r1, . . . , rv′ , ∀E1, . . . , Eh,∀l,∃l′′,

Π1(r1 :: · · · :: rv :: l, l′′)

= Π(AJj, F1 = F2K :: t1 :: · · · :: tk−1 :: tk[r1 :: · · · :: rv, E1 :: · · ·Eh] :: l, l′)

= Π(t̄1 :: · · · :: t̄k̄−1 :: tk̄[r1 :: · · · :: rv, E1 :: · · ·Eh] :: l, l′)

Hence property 4 holds. Finally, to prove property 5, by induction hypothesis we know

that ∀r1, . . . , rv′ ,∀E1, . . . , Eh,

S2 · · · Sn GJr1K · · · GJrv′K B GJt1K · · · GJtk−1K GJtk[[r1, . . . , rv′], [E1, . . . , Eh]]K

Moreover if t1 has type “G1 = G2” then ∀r1, . . . , rv′ ,∀E1, . . . , Eh,

S2 · · · Sn GJr1K · · · GJrv′KB=

GJt1K=
G2
GJt2K · · · GJtk−1K GJtk[[r1, . . . , rv′], [E1, . . . , Eh]]K

Since t̄1 = AJj, F1 = F2K has type F1 = F2, we must prove both conditions of prop-

erty five. Both proofs use the inductive hypothesis. We only show the case where the

justification is equivalent to a simple one, i.e. t̄1 = (H G1 . . . Gn H1 . . . Hm). We

have ∀r1, . . . , rv′ , ∀E1, . . . , Eh,

“j done” S2 · · · Sn GJr1K · · · GJrv′K

B “using (H G1 . . . Gn H1 . . . Hm) done”

GJt1K · · · GJtk−1K GJtk[[r1, . . . , rv′], [E1, . . . , Eh]]K

= GJAJj, F1 = F2KK GJt1K · · · GJtk−1K GJtk[[r1, . . . , rv′], [E1, . . . , Eh]]K

= GJt̄1K GJt̄2K · · · GJt̄k̄−1K GJt̄k̄[[r1, . . . , rv′], [E1, . . . , Eh]]K

25

and

“j done” S2 · · · Sn GJr1K · · · GJrv′K

B= “ = F2 using (H G1 . . . Gn H1 . . . Hm) done”

GJt1K · · · GJtk−1K GJtk[[r1, . . . , rv′], [E1, . . . , Eh]]K

= GJAJj, F1 = F2KK=
F2 GJt1K · · · GJtk−1K GJtk[[r1, . . . , rv′], [E1, . . . , Eh]]K

= GJt̄1K=
F2 GJt̄2K · · · GJt̄k̄−1K GJt̄k̄[[r1, . . . , rv′], [E1, . . . , Eh]]K

Hence property 5 also holds. Moreover, we see that the statement “j done” is improved

to the statement “= F2 using . . .done” when it occurs in an equality chain.

ut

6 Conclusions

In this paper we study the compilation of declarative scripts into proof terms, and

the opposite translation of proof terms into declarative scripts. The study is done

on the declarative language of the Matita interactive theorem prover and on proof

terms for a sub-calculus of the Calculus of (Co)Inductive Constructions (CIC) used

in Matita. The actual implementation in Matita already considers a larger calculus

that comprises, for instance, fully general inductive types. However, regeneration of

declarative scripts on fully general inductive types currently fails to round-trip. This

is due to two technical limitations that will be lifted in the next major version of the

system and that are linked to the representation of elimination principles and case

analysis in Matita. The former is done by automatically defining a theorem for each

inductive type t that is called t indP and that generalizes the nat indP constant we

consider in the paper. For historical reasons, in the hypotheses of the theorem the

arguments of the constructors are interleaved with the relative inductive hypotheses.

For instance, the second hypothesis of the elimination theorem over binary trees B is

∀b1 : B.P b1 ⇒ ∀b2 : B.P b2 ⇒ P (Node b1 b2)

where Node is the constructor for the tree nodes. Thus, it is not possible to extend

the semantics CJ·K of “we proceed by induction on term to prove prop” and of

“case Node (id1:type) (id2:type)” since the two λ-abstractions generated by the former

command to inhabit ∀b1 and ∀b2 and the two Λ-abstractions generated by the latter

to inhabit the implications need to be interleaved in the proof term. Creating some

β-redexes it is possible to obtain the wanted effect, but then the redexes prevent a

correct regeneration of the script, that will contain commands that correspond to the

redexes. The solution simply consists in declaring the elimination theorem with the

alternative type

∀b1, b2 : B.P b1 ⇒ P b2 ⇒ P (Node b1 b2)

The technical problem due to case analysis is similar: the semantics of “we proceed

by cases on term to prove prop” must instantiate in Matita one occurrence of the

case analysis operator that is used in CIC in place of a case analysis constant. Then

the “case Node (id1:type) (id2:type)” command must bind the two variables b1 and

b2 in the branches of the case analysis operator. However, the current implementation

of Matita does not allow to represent case analysis operators before the binding phase,

26

which is instead allowed in Coq that implements the same calculus. Both technical

limitations will be lifted in the next major version of Matita.

We observe that the translation from declarative scripts to declarative scripts via

proof terms respects the initial script structure and can even improve it by fixing mis-

uses of statements. Moreover this (double) translation is idempotent. It is an open

question whether the same results can be achieved for more complex declarative lan-

guages whose statements could alter partial proof terms in a non structural way. Our

understanding is that this is the case at least for the proof language presented in [18].

Exportation of formalised results between proof assistants having the same proof

terms but different high level proof languages is an immediate application of our tech-

nique. Another obvious application is the translation of procedural scripts into exe-

cutable declarative scripts, for instance for their use in education. This way it is pos-

sible to present to students or mathematicians, who better understand the declarative

language, proofs found in the procedural style.

The proposed justification sub-language is currently less elaborated than the corre-

sponding one in Isar and Mizar. Nevertheless an extension of the proposed approach to

more elaborated justification sub-languages is certainly feasible, at the price of chang-

ing the improvement map. We note, however, that the interest in the round-tripping

theorem for declarative scripts decreases when the improvement map starts dropping

too much user-provided structure and information. Thus the study of improvement

maps for elaborated justification sub-languages is an interesting future research ques-

tion that we believe could be driven again by the analysis of justification languages in

terms of λ̄µµ̃-calculus terms.

References

1. The Coq Development Team: The Coq proof assistant reference manual (2005)
2. Asperti, A., Sacerdoti Coen, C., Tassi, E., Zacchiroli, S.: User interaction with the Matita

proof assistant. Journal of Automated Reasoning 39(2), 109–139 (2007)
3. Sacerdoti Coen, C.: Explanation in natural language of lambda-bar-mu-mu-tilde-terms.

In: A. Asperti, B. Buchberger, J.H. Davenport (eds.) Post-Proceedings of the Fourth In-
ternational Conference on Mathematical Knowledge Management, MKM 2005, Lecture
Notes in Computer Science, vol. 3863, pp. 234–249. Springer-Verlag (2006)

4. Autexier, S., Sacerdoti Coen, C.: A formal correspondence between omdoc with alterna-
tive proofs and the lambda-bar-mu-mu-tilde-calculus. In: Proceedings of Mathematical
Knowledge Management 2006, Lectures Notes in Artificial Intelligence, vol. 4108, pp. 67–
81. Springer-Verlag (2006)

5. Guidi, F.: Procedural Representation of CIC Proof Terms. In this issue of the Journal of
Automated Reasoning

6. Christophe Raffalli: The Proof checker Documentation, version 0.85, manual of the PhoX
Proof Assistant (2005)

7. Wenzel, M.: Isar - a generic interpretative approach to readable formal proof documents.
In: Theorem Proving in Higher Order Logics, LNCS, vol. 1690, pp. 167–184. Springer
(1999)

8. Wenzel, M., Wiedijk, F.: A comparison of Mizar and Isar. J. Autom. Reasoning 29(3-4),
389–411 (2002)

9. Sacerdoti Coen, C., Tassi, E., Zacchiroli, S.: Tinycals: step by step tacticals. In: Proceed-
ings of User Interface for Theorem Provers 2006, Electronic Notes in Theoretical Computer
Science, vol. 174, pp. 125–142. Elsevier Science (2006)

10. Harrison, J.: A Mizar Mode for HOL. In: J. von Wright, J. Grundy, J. Harrison (eds.) The-
orem Proving in Higher Order Logics: 9th International Conference, TPHOLs’96, LNCS,
vol. 1125, pp. 203–220. Springer-Verlag (1996)

27

11. Sacerdoti Coen, C.: Tactics in modern proof-assistants: the bad habit of overkilling. In:
Supplementary Proceedings of the 14th International Conference TPHOLS 2001, pp. 352–
367 (2001)

12. Curien, P.L., Herbelin, H.: The duality of computation. In: ICFP ’00: Proceedings of the
fifth ACM SIGPLAN international conference on Functional programming, pp. 233–243.
ACM Press, New York, NY, USA (2000). DOI http://doi.acm.org/10.1145/351240.351262

13. Kirchner, F., Sacerdoti Coen, C.: The Fellowship super-prover. http://www.lix.
polytechnique.fr/Labo/Florent.Kirchner/fellowship/

14. Kirchner, F.: Interoperable proof systems. Ph.D. thesis, École Polytechnique (2007)
15. Asperti, A., Loeb, I., Sacerdoti Coen, C.: Stylesheets to intermediate representation and

presentational stylesheets. MoWGLI Report D2d,D2f (2003)
16. Asperti, A., Tassi, E.: An interactive driver for goal directed proof strategies. In: Proc.

of User Interfaces for Theorem Provers 2008. Montreal, CA, August 2008 (2009). To be
published

17. Coscoy, Y., Kahn, G., Thery, L.: Extracting Text from Proofs. Technical Report RR-2459,
Inria (Institut National de Recherche en Informatique et en Automatique), France (1995)

18. Corbineau, P.: A declarative proof language for the Coq proof assistant. In: TYPES 2007:
Types for Proof and Programs, LNCS, vol. 4941. Springer-Verlag (2008)

http://www.lix.polytechnique.fr/Labo/Florent.Kirchner/fellowship/
http://www.lix.polytechnique.fr/Labo/Florent.Kirchner/fellowship/

	Introduction
	Requirements
	The declarative language
	Formal semantics
	Natural language generation
	Conclusions

