Lebesgue’s Dominated Convergence Theorem
in Bishop’s Style

Claudio Sacerdoti Coen Enrico Zoli

Technical Report UBLCS-2008-18
November 2008

Department of Computer Science
University of Bologna

Mura Anteo Zamboni 7
40127 Bologna (Italy)



The University of Bologna Department of Computer Science Research Technical Reports are available in
PDF and gzipped PostScript formats via anonymous FTP from the area ftp.cs.unibo.it:/pub/TR/UBLCS
or via WWW at URL http://www.cs.unibo.it/. Plain-text abstracts organized by year are available in
the directory ABSTRACTS.

Recent Titles from the UBLCS Technical Report Series

2007-25 Towards a Group Selection Design Patterns, Hales, D., Arteconi, S., Marcozzi, A., Chao, I., November
2007.

2008-01 Modelling decision making in fund raising management by a fuzzy knowledge system, Barzanti, L., Gas-
pari, M., Saletti, D., February 2008..

2008-02 Automatic Code Generation: From Process Algebraic Architectural Descriptions to Multithreaded Java Pro-
grams (Ph.D. Thesis), Bontd, E., March 2008.

2008-03 Interactive Theorem Provers: Issues Faced as a User and Tackled as a Developer (Ph.D. Thesis), Tassi, E.,
March 2008.

2008-04 Constraint Handling Rules Compositional Semantics and Program Transformation (Ph.D. Thesis), Tac-
chella, P., March 2008.

2008-05 Ewolutionary Methods for Self-Organizing Cooperation in Peer-to-Peer Networks (Ph.D. Thesis), Arteconi,
S., March 2008.

2008-06 Knowledge Management in Intelligent Tutoring Systems (Ph.D. Thesis), Riccucci, S., March 2008.
2008-07 A Tuple Space Implementation for Large-Scale Infrastructures (Ph.D. Thesis), Capizzi, S., March 2008.
2008-08 Cross-Layer Optimizations in Multi-Hop Ad Hoc Networks (Ph.D. Thesis), di Felice, M., March 2008.

2008-09 CoopNet: an Agent-based Model to Explore Knowledge Integration and Free Riding in Large, Mollona, E.,
Jesi, G. P., March 2008.

2008-10 Expressiveness of multiple heads in CHR, Di Giusto, C., Gabbrielli, M., Meo, M.C., April 2008.
2008-11 Programming service oriented applications, Guidi, C., Lucchi, R., June 2008.

2008-12 A Foundational Theory of Contracts for Multi-party Service Composition, Bravetti, M., Zavattaro, G.,
June 2008.

2008-13 A Theory of Contracts for Strong Service Compliance, Bravetti, M., Zavattaro, G., June 2008.

2008-14 A Uniform Approach for Expressing and Axiomatizing Maximal Progress and Different Kinds of Time in
Process Algebra, Bravetti, M., Gorrieri, R., June 2008.

2008-15 On the Expressive Power of Process Interruption and Compensation, Bravetti, M., Zavattaro, G., June
2008.

2008-16 Stochastic Semantics in the Presence of Structural Congruence: Reduction Semantics for Stochastic Pi-
Calculus, Bravetti, M., July 2008.

2008-17 Measures of conflict and power in strategic settings, Rossi, G., October 2008.

2008-18 Lebesgue’s Dominated Convergence Theorem in Bishop’s Style, Sacerdoti Coen, C., Zoli, E., November
2008.



Lebesgue’s Dominated Convergence Theorem
in Bishop’s Style!

Claudio Sacerdoti Coen? Enrico Zoli 2

Technical Report UBLCS-2008-18

November 2008

Abstract

We present a constructive proof in Bishop’s style of Lebesgue’s dominated convergence theorem in the
abstract setting of ordered uniform spaces. The proof generalises to this setting a classical proof in the
framework of uniform lattices presented by Hans Weber in “Uniform Lattices 1I: Order Continuity and
Exhaustivity”, in Annali di Matematica Pura ed Applicata (IV), Vol. CLXV (1993).
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1 Introduction

1 Introduction

Lebesgue’s dominated convergence theorem represents an important milestone for the develop-
ment of measure theory and probability theory. It provides sufficient conditions under which
two limit processes, namely Lebesgue integration and pointwise convergence, commute. Classi-
cally, this theorem shows the superiority of the Lebesgue integral over the Riemann one for many
theoretical purposes.

The most natural setting for this theorem is Lebesgue’s integration theory of real or complex
valued functions over a measure space. However, this is not the most general setting where the
core of the theorem can be proved. Nor it is the most convenient setting to understand the role
played by its side conditions.

A more satisfactory setting is that of topological Riesz spaces [5]. A Riesz space is an ordered
vector space where the order relation is induced by a lattice structure. Integrable real valued
functions over measure spaces form a Riesz space, which can be endowed with the topology
induced by the integral norm. Since in a Riesz space functions are abstracted as points, pointwise
convergence of sequences of function is abstracted by order convergence with respect to the order
relation. Thus, in this setting, the theorem provides sufficient conditions under which two limit
processes, namely the topological limit and order convergence, commute. The detailed proof of
this fact can be found, for instance, in [5].

One important condition for the theorem to hold is order continuity that ties order conver-
gence with topological convergence in the case of monotone sequences: a, — a (according to
the topology) whenever a,, T a (a,, is a given increasing sequence whose supremum is a). In the
setting of integrable real valued functions over a measure space, this condition corresponds to
the statement of the Beppo Levi theorem, whose proof is quite deep and relies on the definition
of Lebesgue’s integral. Moreover, Beppo Levi’s theorem fails for the Riemann integral. Thus we
may claim that it is Beppo Levi’s theorem, and not Lebesgue’s, that shows the superiority of the
Lebesgue integral over the Riemann integral. Indeed, once order continuity is assumed, the proof
of Lebesgue’s dominated convergence theorem becomes very easy and almost routine.

Hans Weber, during his studies on the generalisation of topological Riesz spaces and topo-
logical boolean rings [8], realized that even the setting of topological Riesz spaces is not the most
general one where Lebesgue’s dominated convergence theorem can be stated and proved. In-
deed, in [9] he proves the theorem in the setting of uniform lattices, namely lattices endowed
with a compatible uniform structure. With respect to a topological Riesz space, a uniform lattice
need not be a vector space. Moreover, Weber refines the order continuity condition into simpler
conditions (properties (¢) and exhaustivity), and superbly clarifies in this abstract setting where
all conditions for the theorem on measure spaces come from (in particular the property of being
dominated).

All the proofs and settings discussed so far are classical, but we are interested in obtaining
a constructive proof of the theorem in Bishop’s style in order to formalise it with an interactive
theorem prover, as a first step for the formalisation of measure theory and probability theory.
Moreover, we would like our proof to be stated in the most general setting where a constructive
proof can be given.

Lebesgue’s dominated convergence theorem has already been proved constructively by many
authors. Chapter 6 of [2] is a thorough study of constructive integration theory, and it comprises
a proof of the theorem in the setting of integration spaces. An integration space is a sort of
measurable space where a measure has already been fixed in advance. This is constructively
necessary since it is not constructively true that every measurable set can be measured by any
measure. Since integration spaces (and even more measure spaces, introduced at the end of the
chapter) are the best constructive counterparts of measure spaces, the proof of Bishop and Bridges
is the counterpart to the classical proof in the setting of real valued functions on measure spaces.
Instead, we are interested in a more general proof.

Spitters” PhD. thesis presents a study of integration theory in Bishop’s style in the context of
Riesz spaces. In [6, 7] he proposes two different proofs of Lebesgue’s dominated convergence
theorem under slightly different assumptions. In particular, the proof in the second paper is
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2 Preliminaries

especially valuable since it avoids the axiom of choice and any impredicative construction. In
principle, these proofs should correspond to the classical proofs for Riesz spaces. However, we
claim that what is called Lebesgue’s dominated convergence theorem in Spitters” work is actually
the proof of one of its corollaries, at least classically weaker than the theorem itself. Moreover, we
think that the “spirit” of the classical proof is lost in Spitters” analysis: he still provides sufficient
conditions under which two limit processes commute, but those are not topological convergence
and order convergence. Instead, he considers convergence in norm and convergence in measure,
thus avoiding any reference to order convergence and, consequently, to order continuity. The
resulting proof is thus very different, both in spirit and technically, from Fremlin’s one.

Spitters” proof cannot be adapted in the most general setting of uniform spaces since it is
given for an archimedean lattice vector space that is also an algebra with a multiplicative unit.
In fairness to him, it should be admitted that, at least in measure theory, all interesting models
are Riesz spaces with a rich structure. Moreover, constructively an order relation often depends
on a (pseudo-)metric or a uniformity. Finally, replacing convergence almost everywhere with
convergence in measure cannot be avoided in point-free topology (see [7], Sect. 8).

In this paper we provide a constructive proof in Bishop’s style of Lebesgue’s dominated
convergence theorem in the very general setting of ordered uniform spaces, i.e. ordered sets
equipped with a compatible uniform space structure. Our proofs generalise their counterparts
given by Weber, both in the sense that we weaken the underlying structure, and in the sense
that we use only intuitionistic logic. They are more general than Fremlin’s (and Spitters’) ones
since we only assume an ordered uniform space. Of course, such a drastic simplification of the
underlying structure has been possible since we are only interested in the (constructive) analysis
of Lebesgue’s theorem, and not in a thorough theory of integration.

In Section 2 we recall the basic constructive theory (in Bishop’s style) of partial orders (mainly
inspired by [1]) and uniform spaces (also investigated in [3]). Section 3 is devoted to ordered
uniform spaces and the proof of two versions of Lebesgue’s dominated convergence theorem,
respectively in the setting of uniform spaces (with property (o)) whose restrictions to intervals
are exhaustive, and in the setting of uniform spaces whose restrictions to intervals are order
continuous. Neither version implies the other. Thus, in Section 5, we compare the properties
(0), order continuity and exhaustivity. Before that, in Section 4 we show that Weber’s lattice
uniformities are models of ordered uniform spaces.

2 Preliminaries

21 Logic

Our proofs are carried out in Bishop’s style mathematics, that is standard mathematics devel-
oped with intuitionistic logic [2]. Moreover, we strive to avoid impredicative constructions. In
particular, instead of working with uniformities defined as families of subsets satisfying the usual
conditions, we prefer to work with set indexed bases, which is equivalent in the impredicative
setting. Moreover, we restrict ourselves only to constructions that preserve set indexing, and we
avoid axioms of choice.

We refrain from adopting a completely point-free approach by substituting formal basic en-
tourages for set indexed basic entourages and a “forces” relation for membership. Moreover, we
assume that the carriers of our structures form a set. However, in many interesting models we
are interested in, the carrier is likely to be just a class. Thus, instantiating our results (as well as
Spitters’) to these models in a predicative setting may require additional work.

2.2  Ordered sets

Definition 2.1 (Ordered set) An ordered set (C, &) is a data type C together with a propositional oper-
ation® ¥ (called excess [1]) such that the following properties hold:

3. We call C a data type and not a set since we will ignore its equality. Correspondingly, we require £ to be only a
propositional operation, in Bishop’s sense, and not a relation, since we are not interested in the preservation of any
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2 Preliminaries

1. Co-reflexivity: Va : C.=(z £ )
2. Co-transitivity: Va,y,z: Ca fy=>z £ zVz <Ly

As in the classical case, if £ is an excess operation, the same holds for £~!. This allows to
omit dualized definitions and statements in the sequel.
Definition 2.2 (Apartness, equality, less or equal) Let (C, £) be an ordered set.

1. x#yiffrLyVvy <L a.
2.z =yiff ~(x # y).
3 0 <yif-(ety)

(C,#) endowed with the equality relation induced by £ is a set in Bishop’s terminology.
Moreover, the excess and less or equal propositional operations are relations w.r.t. the equality.
From the co-reflexivity and co-transitivity properties of £ it immediately follows reflexivity and
transitivity of < and =, and co-reflexivity and co-transitivity of #.

Lemma 2.3 Let (C, <) be an ordered set and a,b,a’,b' € C such that a £ b, a < o/, b/ < b. Then

a £b.

Proof. By co-transitivity applied to the hypothesis a £ b we have a £ o’ V@’ £ b. Since a < d
by hypothesis, we have a’ £ b. By co-transitivity once more, we have @’ £ V' or &/ £ b. The latter
cannot be since b’ < b. [ |
Definition 2.4 (Strong supremum) Let (C, &) be an ordered set and (a;) a sequence in C. a € C'isa
strong supremum of (a;) if Vi € Nua; < aandVb € C.a £ b= 3i € Na; £ b.

This definition is a restriction to sequences of Baroni’s definition of strong supremum [1]. This
suffices for our aim and it also simplifies the quest for models.

A strong supremum, when it exists, is unique. More than this, a strong supremum is necessary
a weak supremum, i.e. the least upper bound of the sequence:

Fact 2.5 Let (C, £) be an ordered set, (a;) a sequence in C and a € C' the strong supremum of (a;). Then
forall b € C such that a; < b forall i € N, we have a < .

We write a; T a when (a;) is an increasing sequence, whose strong supremum is a.

Lemma 2.6 Let (C, &) be an ordered set and (m.,) a strictly increasing sequence of natural numbers. If
a and (ay,) are in C and a,, 1 a, then a,,, 1 a.

Proof. Obviously, for all n we have a,,, < asince a; < a for any i. We need to prove Vb € C.a ¢
b= 3i € N.a,, £b. Fixb € C such that a £ b. Since a,, 1 a, by definition of strong supremum
there exists n € N such that ap f b. Since (a,,) is increasing, Vi > f.az < a;. By Lemma 2.3,
Vi > n.a; £ b. Since (m,,) is a strictly increasing sequence of natural numbers, it is easy to prove
by induction that m; > 7 and therefore a,,,, £ b.

Definition 2.7 (Order convergence) Let (C, &) be an ordered set and a and (a;) in C. We say that (a;)
order converges to a (written a; ~ a) iff there exist an increasing sequence (1;) and a decreasing sequence
(u;) in C such that I; T a and w; | a and for all i € N the strong infimum of (a;yn)nen is l; and the
strong supremum is u;.

equivalence relation on C. Any ordered set will turn out to be a set with an excess relation when we will induce an
equality on C starting from the excess propositional operation.
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Definition 2.8 (Segment) Let (C, £) be an ordered set and a,b € C. The segment [a,b] is the set
{z|a < zand x < b}.

Clearly, the restriction of an ordered set to a segment is itself canonically endowed with an
order structure. Moreover, the following lemma shows that strong suprema are preserved.

Lemma 2.9 Let (C, &) be an ordered set, |, u € C and (a;) and ain CN[l,ul. Ifa; T ain C, then a; T a
inCNI[l,ul

Proof. Obviously (a;) is increasing and a is an upper bound of a also in C'N[l,u]. Letb € C'N[l, u]
such thata £ bin C'N[l,u]. Thena £ balso in C' and by definition of strong supremum in C there
exists i € N such that a; £ bin C. So it does also in C' N [1, u). |
Definition 2.10 (Convex set) Let (C, &) be an ordered set. We say that a set U C C x C'is convex iff
V(a,b) € Ua < b= [a,b]* CU.

Our definition of convex set is a slight restriction of the usual one (see, for instance, [8]) on the
cartesian product C' x C (endowed with the product order).

The following principle of upper locatedness for sequences always holds classically.
Definition 2.11 (Upper locatedness) Let (C, <) be an ordered set. The sequence (a;) is upper lo-
cated [1] if Ve,y € Cy ¢ = (Ji € Nug; £ 2) V (Fb e Cy £ bAVi € Nug; < b).

Lemma 2.12 Let (C, &) be an ordered set and (a;) and a in C such that a; 1 a. Then (a;) is upper located
inC.

Proof. Fix z,y € C such that y £ 2. We need to prove (3i € N.a; £ z) V (3b € C.y < bAVi €
N.a; < b). By co-transitivity, either y € a or a £ x. In the first case, we prove the right hand side
of the thesis by taking a for b. In the second case, by definition of strong supremum, there exists
i € Nsuch that a; £ z. n

2.3 Uniform spaces

Definition 2.13 (Uniform space) A uniform space (C,#, ®) is a set (C, #) equipped with an inhabited
family ® (called uniformity base) of subsets of the cartesian product C x C (called basic entourages) with
the following properties:

1. VU € o {(z,y)|~(x #y) € C} CU
2. VU, VeddWedWCUNV
3.VUe€e®IVed VoV U

4. VUedU=U""

Some authors do not require entourages to be symmetric, replacing property (4) above with
the following: YU € ®.U ! € ®. Our choice allows some technical simplifications and is adopted,
for instance, by Engelking in [4].

The usual definition of uniform spaces is in terms of (not necessarily basic) entourages. An
entourage is any superset of some basic entourage. We do not follow this approach since the
family of all entourages is necessarily a proper class in an impredicative setting. Indeed, the class
® of all entourages is closed w.r.t. the following property: VU € ®.¥V € 20X U CV =V € &
where the quantification of V' is on the powerset of the C' x C. On the contrary, to work in a
predicative setting it is sufficient to assume that the class ¢ of all basic entourages is set indexed
and that all quantifications in the definition of ® are on the set of indexes. In what follows, we
will tacitly assume this.

UBLCS-2008-18 5



3 Ordered uniform spaces and Lebesgue’s dominated convergence theorem

In [3], Bridges and Vita introduce a constructive version of uniform spaces that adds to the
usual definition the new condition VU € ®.3V € ®.Vx € CxC.(x € UV ¢ V'), always classically
valid. The condition is not required here.

Definition 2.14 (Cauchy sequence) A sequence (a;) of points of a uniform space (C, #, ®) is Cauchy
iffvU € ®.3n € NVi, j > n.(a;,a;) € U.

Definition 2.15 (Uniform convergence) A sequence (a;) of points of a uniform space (C,#, ®) con-
verges to a point a € C (written a;, — a) if VU € ®.3n € N.Vi > n.(a,a;) € U.

Lemma 2.16 Let (C,#, ®) be a uniform space and (a;) and a in C such that a; — a. Then (a;) is
Cauchy.

Proof. Fix U € ®. We need to prove 3n € N.Vi,j > n.(a;,a;) € U. By property (3) of a uniform

space, there exists V' € ® such that V o V' C U. By Definition 2.15, there exists n € N such that

Vi > n.(a;j,a) € V. Thus Vi,j > n.(aj,a;) EVoVl=VoV CU. |
An uniform space (C, #, ®) is complete if every Cauchy sequence in C' converges to a point

inC.

Definition 2.17 (Restricted uniformity) Let (C,#, ®) be a uniform space and X a subset of C. We

call the family {U N X x X|U € ®} the restricted uniformity base on X.

The definition is well posed, as the properties listed in Definition 2.13 hold.

Fact 2.18 Let (C,# @) be a uniform space, X a subset of C and (a;) in X. If (a;) is Cauchy in X, then
(a;) is Cauchy in C.

3  Ordered uniform spaces and Lebesgue’s dominated convergence
theorem

3.1 Ordered uniform spaces

Definition 3.1 (Ordered uniform space) A triple (C, &, ®) is an ordered uniform space iff (C, £) is
an ordered set, (C, ®) is a uniform space and every basic entourage U € ® is convex.

Lemma 3.2 Let (C, £, ®) be an ordered uniform space and l,u € C. Let (a;) and a in C N [, u]. If
a; — ain Cthena; — ain C N[l ul.

Proof. By Definition 2.15, VU € ®.3m € N.Vi > m.(a;,a) € U. Since a;,a € C N [, u] for each
i € N, the pair (a;,a) € U N [I,u]%. Thus VU € ®.3m € N.¥i > m.(a;,a) € U N [l,u]?. |
Theorem 3.3 (Sandwich) Let (C, £, ®) be an ordered uniform space. Let | € C and (a;), (z;), (b;) be
sequences in C such that Vi € N.a; < x; < b;and a; — land b; — 1. Then x; — 1.

Proof. We need to prove VU € ®.3m € N.Vi > m.(z;,l) € U. FixU € ® and let V' € ® such that
VoV CU. Let W € & suchthat Wo W C V. Thus 3m € N.Vi > m.(a;,l) € WA (b;,1) € W.
Therefore 3m € N.Vi > m.(a;,b;) € V. Since V is convex, Im € N.Vi > m.[a;,b;]> C V. Hence
Im € NVi > m.(z;,a;) €V A (a;,1) € W C V. Thus Im € NVi > m.(z;,1) e VoV CU. |
Definition 3.4 (Order continuity) Let the triple (C, £, ®) be an ordered uniform space. We say that
the uniformity is order continuous iff for all (a;) and ain C, a; 1 a = a; — aand a; | a = a; — a.

Order continuity is a very natural requirement since it tightens the connection between the
order and uniform structures in ordered uniform spaces. In [8, 9], Weber shows that order conti-
nuity is better understood as a consequence of the combination of properties (¢) and exhaustivity,
to be discussed in the following sections.
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3 Ordered uniform spaces and Lebesgue’s dominated convergence theorem

3.2 Uniformities with property (o)

Definition 3.5 (Property (o)) Let (C, &, ®) be an ordered uniform space. The uniformity satisfies prop-
erty (o) iff VU € ©.3(U,).V(a,).Va.a, T a = (Yn.Vi,j > n.(a;,a;) € Uy) = (a1,a) € U.

Classically, for I-groups, the uniformity induced by a Riesz pseudonorm satisfies (o) iff the
pseudonorm is o-subadditive ([8], Proposition 3.16). Similarly, the uniformity induced by a sub-
measure on a boolean ring satisfies (o) iff the submeasure is o-subadditive ([8], Proposition 3.17).
Thus property (o) captures the o-additivity of measure spaces in a way that is more faithful than
order continuity.

Lemma 3.6 Let (C, £, ®) be an ordered uniform space with property (o). Suppose (a;), a in C such that
a; T a. If (a;) is Cauchy, then a; — a.

Proof. Fix U € ®. We need to prove Im € N.Vi > m.(a;,a) € U. Let (U,) as in Definition 3.5
and let (my) in N be the sequence defined by recursion as follows. For the base case, since
(a;) is Cauchy, there exists k € N such that Vj,j' > k.(aj,a;/) € Uy; take k for mg. For the
inductive case, since (a;) is Cauchy, there exists k € N such that Vj, i’ > k.(a;,a;) € Uy41. Take
max{k, my + 1} for m, 1. The sequence (m,,) is strictly increasing by construction. Thus a,,, T a
by Lemma 2.6. Thus, by property (o), (am,,a) € U. Take m; and let i > m4. Since (a,,) is
increasing, a; € [am,,al. Since U is convex and (a,,,a) € U, also (a;,a) € U. |

It should be noted that the property (o) is not hereditary, in the sense that it is not preserved
under restrictions, even to closed intervals. This is a consequence of the fact that, even classi-
cally, a (strong) supremum in an ordered set restricted to a segment is not necessarily a (strong)
supremum in the whole set.

3.3 Exhaustive order uniformities

Lemma 3.6 is not sufficient to grant that an ordered uniform space with property (o) is also order
continuous. Classically, we also need exhaustivity: when restricted to sequences, this is precisely
the condition ensuring that any monotone sequence is Cauchy.

Constructively, the classical definition of exhaustivity does not admit interesting models. For
instance, consider the unit interval [0, 1] endowed with the usual complete uniformity and order
structure. Classically, its order uniformity is exhaustive. Constructively, this does not hold since it
is not true that any monotone sequence in [0, 1] has a least upper bound (otherwise: the sequence
would be Cauchy by exhaustivity; so it would converge by metric completeness to some limit;
finally, this limit would be a supremum since for any increasing sequence (a,,) of real numbers,
an, — a implies a,, T a).

We replace the classical definition of exhaustivity with the following one, which is classically
equivalent.

Definition 3.7 (Exhaustivity) The uniformity ® of the ordered uniform space (C, &, ®) is exhaustive if
any increasing sequence that is upper located, and any decreasing sequence that is lower located, is Cauchy.

For instance, Banach lattices are constructive models of exhaustive uniformities.

Usually we are interested in subspaces of a given ordered uniform space that are endowed
with an exhaustive uniformity. The following theorem provides in this case sufficient conditions
for a “local” version of order continuity.

Lemma 3.8 Let (C, £, ®) be an ordered uniform space with property (o). Let l,u € C such that the
uniformity induced on C N [I, u] is exhaustive. If (a;) is a sequence in C N [, u] and a a point in C such
that a; Tc a, then a € [l,u] and a; — ain C N [l,ul.

Proof. To prove a € [I, u], it suffices to notice that ! < a; < a and a < u by Fact 2.5. Thus a; 1 a in

C N [l,u] by Lemma 2.9 and (a;) is upper located in C' N [[, u] by Lemma 2.12. By exhaustivity of
the uniformity restricted to C N [I,u], (a;) is Cauchy w.r.t. C' N [I,u]. By Fact 2.18, (a;) is Cauchy
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4 Ordered uniform spaces induced by lattice uniformities

also w.r.t. C. Thus, by Theorem 3.6, a; —¢ a. Finally, by Lemma 3.2, we conclude a; — a in
Cnll,ul. |

3.4 Lebesgue’s dominated convergence theorem

We present two versions of Lebesgue’s dominated convergence theorem. The first deals with
ordered uniform spaces (with property (o)) whose restrictions to intervals are exhaustive. The
second deals with ordered uniform spaces whose restrictions to intervals are order continuous.
Even in spite of the fact that order continuity is implied by property (o) and exhaustivity (The-
orem 5.1), neither version implies the other. This is a consequence of property (¢) not being
hereditary, as already observed.

Theorem 3.9 (Lebesgue) Let (C, £, ®) be an ordered uniform space with property (o) and such that,
foralll,u € C, the uniformity induced on C'N[l, u] is exhaustive. Let (a;) be a sequence in C and l,u € C
such that Vi € N.a; € C N [l,u]. Finally, let a be a point in C such that a; = a in C. Then a € C N[, u]
and a; — ain C N [l,ul.

Proof. The uniformity induced on C N [/, u] is exhaustive by hypothesis. From a; % a in C, there
exist (x;) and (y;) such thatz; T aand y; | aand foralli € N, z; < a; < y;. Thus, by Lemma 2.12,
(x;) is upper located and (y;) is lower located. By Lemma 3.8 we havea € C N [l,u] and z; — a
inCNJl,uland y; — ain C N [l,u]. Since Vi € N.z; < a; < y;, by Theorem 3.3 we have a, — a in
Cnllyul. |
Theorem 3.10 (Lebesgue) Let (C, %, ®) be an ordered uniform space such that for all l,u € C the
uniformity induced on C' N (I, u] is order continuous. Let (a;) be a sequence in C and l,u € C such that
Vi € N.a; € C N [l,u]. Finally, let a be a point in C such that a; = a in C. Then a € C N [l,u] and
a; — ainCnNIl,ul

Proof. The uniformity induced on C N [I, u] is order continuous by hypothesis. From a; > a in
C, there exist (z;) and (y;) such that z; T aand y; | e and foralli € N, z; < a; < y;. Thus, by
definition of order continuity, z; — e in C N [l,u] and y; — a in C N [}, u]. To prove a € [, u], it
suffices to notice that [ < a; < a and that a < u by Fact 2.5. Finally, since Vi € N.&; < a; < y;, by
Theorem 3.3, a; — ain C N [I, u). |

4  Ordered uniform spaces induced by lattice uniformities

4.1 Lattices

Definition 4.1 (Lattice) A lattice is a tuple (C,#,V, \) where (C, #) is a set and vV and A are strongly
extensional functions of type C' — C — C's.t.:

1. Vv, A are idempotent, commutative and associative

2. V, A are absorbent

Definition 4.2 (Induced excess relation) Let (C,#,V, A) be a lattice. We write x & y for x # x A y.

Fact4.3 Let (C,#,V, A) be a lattice. Then (C, &) is an ordered set. Moreover, the apartness induced by
£ is #.

Fact 4.4 Let (C,#,V,land) be a lattice. For all a,b,c,d € C:
1. a<banda < cimplya < bAc

22b<aandc<aimplybVve<a
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Fact4.5 Let (C,#,V, A) be a lattice. For a,b € C such thata < b, a ANb = a.

Definition 4.6 (U7) Let (C,#,V, A) be a lattice and let U C C x C. We define U as {(a,b) € C x C|[a A
baVb? CU}.

When S is a set indexed family of subsets of C' x C, the family {U|U € S} is also set indexed.
Lemma 4.7 Let (C,#,V, A) be a lattice and let U C C x C. Then U C U and U is convex.

Proof.Let(a,b)eU. SinccaAb<a<aVbandaAb<b<aVb bothaandbarein|[aAb,aV bl
By definition of U, (a,b) € U and thus U C U.

Let (a,b) € U such that a < b. We need to prove [a,b]> C U. Let (a/,¥') € [a,b]>. Thus
a<a <banda <V < b Weneed to prove [a' Ab,a’ VI]> C U. Take (c,d) € [a' AV, a’ V]2
Thus o/ AV <c<ad' V¥ anda AV <d < a V. Weneed to prove (¢,d) € U. Froma < o/,
a <b,a <bb <band Fact44wehaveaAb<a<ad Ab <c<a V¥ <b<aVband
aAb<a<d AV <d<d VI VbAaVb By definition of U we have (c,d) € U. |

4.2 Product uniform spaces and uniformly continuous functions

Definition 4.8 (Uniform continuity) A function f from a uniform space (C,#, ®) to a uniform space
(C',#', @) is uniformly continuous if VU € ®'.3V € ®.V C f~1(U).

Fact 4.9 Any composition of uniformly continuous functions is uniformly continuous.

Definition 4.10 (Product uniform space) Suppose we are given two uniform spaces (C1, #1, ®1) and
(Ca, #2, Pa).

Let # the relation defined on Cy x C3 by (a1, az) # (b1, bs) iff a1 # by or ag # bo.

Let @ be the family of subsets of (Cy x Cs)? defined by U € ® iff there exist Uy € ®1 and Uy € P
such that for all a,,b, € Cy and for all as, by € Cy

((al,ag), (bl,bg)) el <— (al,bl) c Ui N (ag,bg) € Uy

We call (Cy x Ca,#, ®) the product uniform space.

The previous definition is well posed in the sense that the triple (C; x Cs, #, ®) is a uniform
space in the sense of Definition 2.13. Moreover, when the families of basic entourages ®; and ®»
are set indexed, the family ® is also set indexed.

Lemma 4.11 Let (C,#, @) be a uniform space and U a basic entourage of the product uniform space
C'xC. Then there exists a basic entourage V € ®s.t. {(a1, az), (b1,b2)|(a1,b1) € VA(az,b2) € V} CU.

Proof. Let U be a basic entourage of the product uniform space C' x C. By definition of product
uniform space, there exists V1, V, € @ such that U = {(a1, az2), (b1, b2)|(a1,b1) € V1 A(az,bs) € Va}.
By property (2) of a uniform space base, there exists V' € ® such that V' C V; N V5. |

4.3 Lattice uniformity and convex bases

Definition 4.12 (Uniform lattice) A uniform lattice (C,#,V, A, ®) is a lattice (C,#,V, \) such that
(C,#, ®) is a uniform space and V, A are uniformly continuous.

Theorem 4.13 (Existence of a convex base) Let (C,#,V, A, ®) be a uniform lattice. YU € .3V €
OV CUCU.

Proof. U is convex by Lemma 4.7. By property (3) of a uniform space base, let W € ® such that
W oW CU. Consider the uniformly continuous function f : C'x C' x C' — C (where the product
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C x C x C is endowed with the product uniformity) defined as f(z1,z2,z3) = (21 A (22 V 23)) V
(x2 A zg). The function f is uniformly continuous being a composition of uniformly continuous
functions (Fact 4.9). By definition of uniform continuity and by Lemma 4.11, there exists V' € ®
such that V((x1,2)), (x2, 25), (x3, %)) € V3.(f(x1, z0, 3), f(2), ), 2%)) € W. We prove V C U.
Let (a,b) € V and (z,y) € [a A b,a V b]?. Since f(z,a,b) = z and f(z,a,a) = a by Fact 4.5, we
have (z,a) € W, and similarly (y,a) € W. Thus (z,y) € W o W~! = W oW C U. We conclude
(a,b) € U,and thus V C U. |

When the family ® of basic entourages is set indexed, the family {U|U € ®} is also set in-
dexed. In view of the previous theorem, we have thus proved, constructively and predicatively,
that any uniform space with a set indexed base admits an equivalent set indexed base formed by
convex basic entourages.

5  Order continuity, exhaustivity and property (o)

In this section we show that the classical relations between order continuity, exhaustivity and
property (o) also hold constructively.

Theorem 5.1 If the uniformity ® of an ordered uniform space (C, £, ®) is exhaustive and satisfies (o),
then it is order continuous.

Proof. Assume (a;) and a in C such that a; T a. By Lemma 2.12, (a;) is upper located. Thus, by
exhaustivity, (a;) is Cauchy and so a; — a by Theorem 3.6. |

Theorem 5.2 If an ordered uniform space (C, £, @) is order continuous, then it satisfies (o).

Proof. Fix U € ®and let V € & suchthat VoV C U. Take U,, = V for each n € N. Now
consider (a;) and a in C such that a; T ¢ and suppose Vn.Vi,j > n.(a;,a;) € U,. In particular,
Vi, j.(ai,a;) € Uy = V. We need to prove (ai,a) € U. By order continuity and the hypothesis
a; T a we have a; — a. Thus Vn.3m.Vi > m.(a;,a) € U, = V. Let m such that Vi > m.(a;,a) € V.
Then (a,,a) € V and (a1, an,) € V. Thus (aj,a) € VoV CU. |

Exhaustivity and property (o) are sufficient, but not necessary, conditions for order continuity.
Indeed, order continuity fails to imply exhaustivity as the following counter-example shows,
even classically.

Example 5.3 Consider the real numbers with the complete uniformity induced by the usual metric and
order structures. By definition, a £ b iff |a — b] = a — b > 0 and order continuity holds. Consider now
the monotone sequence (i);en. The sequence is upper located: let x,y € R such that y £ x; since the reals
are Archimedean, there exists n € N such that i,, = n £ x. The sequence is not Cauchy since it diverges.
Thus, the real numbers uniformity is not exhaustive.

Order completeness coincides with exhaustivity together with property (o) under the addi-
tional hypothesis of order completeness.
Definition 5.4 (Order completeness) The ordered set (C, &) is order complete iff all upper located se-
quences have a strong supremum and all lower located sequences have a strong infimum.

Theorem 5.5 If an order complete ordered uniform space (C, £, ®) is order continuous, then its unifor-
mity is exhaustive.
Proof. Let (a;) be an increasing sequence in C that is upper located. By order completeness, there

exists a € C such that (a;) 1 a. By order continuity, a; — a. By Lemma 2.16, (a;) is Cauchy. Since
(a;) was chosen arbitrarily, the order uniformity is exhaustive. [ &
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