On the Expressiveness of Polyadic and Synchronous
Communication in Higher-Order Process Calculi

Ivan Lanesé, Jorge A. Pérez Davide Sangiordi and Alan Schmit

! Laboratory FOCUS (University of Bologna / INRIA)
2 CITI - Department of Computer Science, FCT New University.isbon
® INRIA

Abstract. Higher-order process calculare calculi in which processes can be
communicated. We study the expressivenesstridtly higher-order process cal-
culi, and focus on two issues well-understood for first-oagculi but not in the
higher-order settingsynchronouss. asynchronousommunication angolyadic
vs. monadiccommunication. First, and similarly to the first-order w&ff syn-
chronous process-passing is shown to be encodable intatasymous process-
passing. Then, the absence of name-passing is shown toeiradhirarchy of
higher-order process calculi based on the arity of polyadiomunication, thus
revealing a striking point of contrast with respect to fostler calculi. Finally,
the passing ofbstractiondi.e., functions from processes to processes) is shown
to be more expressive than process-passing alone.

1 Introduction

Higher-order process calcubire calculi in which processes can be communicated. In
this paper, we study the expressive powestictly higher-order process calculi, and
concentrate on fundamental questions of expressivenegmaess calculi at large:
asynchronouwys. synchronousommunication angbolyadic vs. monadiccommuni-
cation. These are well-understood issues for first-ordecgss calculi: several works
(see, e.g.[lL]2}3]) have studied thgynchronousr-calculus[4l5] and its relationship
with the (synchronousj-calculus. Also, the encoding of polyadic communicatidio in
monadic communication in the-calculus|[®] is simple and very robuBi{l¥,8]. However,
analogous studies are lacking for calculi in the highereosgtting.

We approach these questions in the context ofrti&strictly higher-order process
calculus (i.e., it has no name-passing featurlgs) [9]#H®very expressive: it is Tur-
ing complete and several modelling idioms are expressibieas derived constructs.
Hence, answers to the questions we are interested in areofardbvious. We shall
consider SHO and AHO, the synchronous and asynchronouswsirdf HQr with
polyadic communication (Sectidh 2). SHO and AHO repressatamiliesof higher-
order process calculi: given > 0, SHO" (resp. AHC") denotes the synchronous
(resp. asynchronous) higher-order process calculusiwétlic communication.

A fundamental consideration in strictly higher-order mss calculi is that scope
extrusions have a limited effect. In a process-passingngetteceived processes can
only be executed, forwarded, or discarded. Hence, an iqntegt cannot gain access
to the (private) names of the processes it receives; to thiext received processes are

much like a “black box”. Although higher-order communiceats might lead to scope
extrusion of the private namesntainedin the transmitted processes, such extrusions
are of little significance: without name-passing, a recgjwtontext can only use the
names contained in a process in a restricted way, namelydafielecreed by the sender
procesﬂ In a process-passing setting, sharing of (private) namtbsissrather limited.

We begin by investigating the relationship between synapend asynchrony. Our
first contribution is arencodabilityresult: an encoding of SHOinto AHO™ (Section
B). This reveals a similarity between first- and higher-omtecess calculi. Intuitively,
a synchronous output is encoded by an asynchronous outgutdimmunicates both
the communication object and its continuation. In Sedilomesmove to examine the
situation for polyadic communication. We consider varsasftSHO with different arity
in communications, and study their relative expressivegyoimterestingly, in the case
of polyadic communication, the absence of name-passingesaal loss in expressive
power. Our second contribution isr@n-encodabilityesult: for everyn > 1, SHO"
cannot be encoded into SHO!. We thus obtain &ierarchyof higher-order process
calculi of strictly increasing expressiveness. Henceygaic communication is a strik-
ing point of contrast between first- and higher-order pre@adculi. Finally, in Section
B we consider the extension of SHO witihstraction-passingAn abstraction is an
expression parametric on processes; the expressivenasstodction-passing is thus
specific to the higher-order setting. We consider SHMe extension of SHOwith
abstractions of order one (i.e., functions from processgwdcesses). We show that
SHO" can be encoded into SHOOUr final contribution uses this result to show that
there is no encoding of SHGInto SHO™ for n, m > 0.

Our notion of encoding exploits a refined account of inteawdlons: in SHO, the
internal actions that result from synchronizations onrietetd names are distinguished
from those resulting from synchronizations on public nan@ady the former are con-
sidered as internal actions; the latter are regarded dsersctions. While this distinc-
tion might appear as demanding in the light of recent projsdsa “good encodings”
(e.g., [10]), we find it useful to focus ccompositionakencodings that armbust with
respect to interferenceghat is, encodings that work in an arbitrary context of e t
get language (i.e., not necessarily a context in the imaglesoéncoding). Further, the
distinction is crucial in certain technical details of ouopfs.

Extended discussions and full technical details can bedauf{iL1, Chapter 6].

2 The Calculi

We define SHO and AHO", the two families of higher-order process calculi we shall
be working with.

Definition 1 Letx,y range over process variables, andb, ... r, s, . .. denote names.
The language o8HO processes is given by the following syntax:

PQ,...:=a@.P | a@).P | PP | vrP|z]|o0

4 Here we refer to process-passimghoutpassing of abstractions, i.e. functions from processes
to processes. As we shall see, the situation is rather diffavith abstraction-passing.

P % P cond(a, Ps)

INp ——————— OuT AcTl —
P P || P2 Pl Py

a(@.p 22 p a(Q). P

a(Q)
—_—

ws)a(r") ’ 5% ~
PP rdn(a) OPENP—)P r#a,r €fn(P’) -3

«
vrP = urP vr P

wd)a(P) o, a@ 5 o~
P P P, snN fn(Pg) =0 at /
Taul P = INTRES u
P1HP2—’V5(P1/HP2I{P/$}) vaP — vaP

(vr)a(P") P’

Fig.1.The LTS of SHO. Symmetric rules@&2 and Tau2 are omitted.

Using standard notations and properties for tuples of syietalements, polyadicity
in process-passing is interpreted as expected: an outpfitgu procesa(Q). P sends
the tuple of processe9 on name (or channeb and then continues aB; an input

prefixed process(z). P can receive a tupl€ on namez and continue a®{Q/z}. In
both casey is said to be theubjectof the action. We writé z | for the length of tuple
Z; the length of the tuples that are passed around deterntiaestuahrity in polyadic
communication. In interactions, we assume inputs and ¢sitpave the same arity; we
shall rely on notions ofypesandwell-typed processess in [9]. Parallel composition
allows processes to interact, and P makesr private (or restricted) to the proceBs
Notions of bound and free names and variabbeg-{, fn(-), bv(-), andfv(-), resp.) are
defined in the usual way: an inpufz). P binds the free occurrences of variablein
in P; similarly, vr P binds the free occurrences of namie P. We abbreviate(z). P
asa. P when none of the variables iis in fv(P); a(0). P asa. P; a(Q). 0 asa(Q);
andvavb P asvab P. Notationl_[k P stands fork copies of proces® in parallel.

The semantics for SHO is given by the Labelled Transitiont&8ugLTS) in Figure
[M; we usecond(a, P) to abbreviatév(a) N fv(P) = @ A bn(a) N fn(P) = (. As an-
ticipated, we distinguish betweémternal andpublic synchronizations. The former are
given by synchronizations aestrictednames, are the only source of internal behavior,
and are denoted as—. The latter are given by synchronization puoblic names: a
synchronization on the public naméeads to the visible actiof™. We thus have four
kinds of transitions: in addition to internal and public siinonizations, there are input
transitionsP LON P’, and output transition® LLOLICIN P’ (with extrusion of the
tuple of names), which have the expected meaning. We us® range over actions.
The signatureof «, sig(«a), is defined asig(a(z)) = ain, sig((vs)a(Q)) = aout,
siglaT) = ar, sig(t) = 7, and is undefined otherwise. Notions of bound/free names
and variables extend to actions as expected. Weiisedenote a sequence of actions
ay, ..., a,. Weak transitions are defined in the usual way. We witéor the reflexive,
transitive closure of—. Given an actiony # 7, notation== stands for=-"= and

T . . a. [%1 Qo
= stands for=-. Given a sequence = «ag, .. ., a,, we define= as— - - - ==.
By varying the arity in polyadic communication, Definitidlattually gives damily
of higher-order process calculi. We have the following tiotaal convention:

Convention 2 For eachn > 0, SHO" corresponds to the calculus obtained from the
syntax given in Definitiofl 1 in which polyadic communicatias arity at most.

Definition 3 AHO corresponds to the fragment 8HO where output actions have no
continuations. All the definitions extendAd1O processes as expectediHO" is thus
the asynchronous calculus withadic communication.

The following definition is standard.

Definition 4 (Barbs) Given a proces$’ and a name:, we write (i) P |, —astrong
input barb— if P can perform an input action with subjectand (ii) P |z —astrong
output bark— if P can perform an output action with subjectGivenu € {a,a}, we
define awveakbarb P |}, if, for someP’, P = P’ |,,.

3 The Notion of Encoding

Our definition of encoding is inspired by the notion of “goatteding” in [10]. We
say that danguage” is given by: (i) an algebra gfrocessesP, with an associated
functionfn(-); (i) a labeled transition relatior— on P, i.e., a structuréP, 4, —)
for some setd of actions(or label9 with an associated functiaig(-); and (iii) a weak

behavioral equivalence such that: ifP ~ Q andP = P’ thenQ é Q,P ~qQ,
andsig(a) = sig(a’). Given languagefs = (Ps, —s, ~s) and Ly = (P, —, &),
atranslationof £ into £, is a function[-] : P — P;. We shall callencodingany
translation that satisfies the following syntactic and setaaonditions.

Definition 5 (Syntactic Conditions) Let[-] : Ps — P; be a translation o into L.
We say thaj-] is:

1. compositionalif for every k-ary operatorop of £ and for all Sy,..., S, with
fn(S1,...,Sk) = N, there exists &-ary contexth}{ € P, that depends oV and
op such thaffop(Sy,...,Sk)] = CTIIS1], - -, [Skll;

2. name invarianif Jo(P)] = o([P]), for any injective renaming of names

Definition 6 (Semantic Conditions) Let[-] : Ps — P: be a translation o, into L.
We say thaj-] is:

1. completeif for every S, S’ € P, anda € A, such thatS =, $’, it holds that
[S] 2~ [S'], wheres € A, andsig(a) = sig(3);

2. soundif for everyS € P, T € Py, 8 € A, such that]S] :ﬁn T there exists an
S" € Psand ana € A such thatS =, S’, T =~ [S’], andsig(a) = sig(3);

3. adequatéf for everyS, S’ € P, if S ~; S" then[S] ~; [S'];

4. diverge-reflectingf for everyS € P, [S] diverges only ifS diverges.

Adequacy is crucial to obtaicomposabilityof encodings (see Prof. 7 below). We
stress that we always useakbehavioral equivalences. Some properties of our notion
of encoding are given in the following proposition, whosegdfrwe omit for space
reasons.

Proposition 7 Let[-] be an encoding of; into £;. Then[-] satisfies:

Barb preservation For everyS € P it holds thatS |}z (resp.S |,) if and only if
[[S]] llﬁ (reSp.[[S]] “a)'

Preservation of free namesLeta be a name. I € fn(P) thena € fn([P]).

Composability If C[-] is an encoding of; into £z, and D[] is an encoding oL,
into £3 then their compositio(iD - C)[-] is an encoding of; into L.

4 An Encodability Result for Synchronous Communication

Here we study the relationship between synchronous ancdchsymous communica-
tion. While it is easy to define an encoding of SH@to AHO" ™ (i.e., by sending
the communication object and the continuation of the ouwdption in a single synchro-
nization, the continuation being an additional paramegarencoding of asynchronous
process-passing into synchronous communication ofainge arityis much more chal-
lenging. We now describe such an encoding. Intuitively, ithea is to send aingle
processconsisting of a guarded choice between a communicatiorcoajel the con-
tinuation of the synchronous output. For the monadic casetitoding is as follows:

[a(P).] =vki(@k. (IP] 1 %)+ 1. (ISTI1R) 1) [a(z). R] = a(z). (= || [R])

where 4" stands for the encoding of disjoint choice proposed for¢t@E [12]; %,

are names not ifn (P, S); and[-] is an homomorphism for the other operatorsin SHO
The encoding exploits the fact that the continuation shbwglaéxecuted exactly once,
while the communication object can be executed zero or marest In fact, there is
only one copy of, the trigger that executes the encoding of the continuatimice
that/ releases both the encoding of the continuation and a trifyggeexecuting the
encoding of the communication object (denoigdsuch an execution will only occur
when the choice sent by the encoding of output appears abpHeel. This way, it is
easy to see that a triggkris always available. This idea can be generalized as follows

Definition 8 (Synchronous to Asynchronous)For eachn > 0, the encoding dcsHO"
into AHO" is defined as follows:

[[§<P1,..,,Pn>.5]] = Vkl(aq[Pl]]v"'7[[Pn—1]]aTk,l[[[Pn]]7 [[S]]]> ” Z)

[a(x1,...,zn). R] = a(xy,...,xn). (zn || [R])
with Ty, [My, Ma) < k. (My || B) + 1. (Ma | B), {k, 1} N fn(P1,. .., Py, S) = 0, and
where[-] is an homomorphism for the other operatorsSHO".

Correctness of the encoding (i.e. proofs that the encoditigfies the conditions
in SectiorB) is presented iA-J11]. The encoding providesmelimg evidence on the
expressive power of (asynchronous) process-passing. B$enation that the encod-
ing of synchronous into asynchronous communication is &iqudar case of that of
polyadic into monadic communication leaves open the pdigithat an encoding as
in the r-calculus might exist in a process-passing setting. In thé section we prove
that this isnotthe case.

5 Separation Results for Polyadic Communication

Here we present the separation results for SHO. SeCiidm&dduces the notion of
disjoint forms which are useful to capture a numberstébility conditionsi.e., in-
variant properties of higher-order processes with redpetteir sets of private names.
Stability conditions are essential in defining the hiergroh SHO calculi based on
polyadic communication, which is reported in Secfiod 5.2.

5.1 Disjoint Forms

The disjoint formsfor SHO processes are intended to capture the invariartdtsteu

of processes along communications, focusing on the privatees shared among the
participants. Their definition exploitontextsthat is, processes with a hole. We shall
considemulti-hole contextghat is, contexts with more than one hole. More precisely,
a multi-hole context isi-ary if at mostn different holes]]4, .. ., []», occur in it. (A
process is a 0-ary multi-hole context.) We will assume thatfeole[-]; can occur more
than once in the context expression. Notions of free and éhoames for contexts are
as expected and denotkal(-) andfn(-), respectively.

Definition 9 The syntax of (quarded, multihole) contexts is defined as:
C,C',...:=a(@).D | a(D).D | c|lc | vC | P
D,D,...:=[], | ¢ | DD | vrD

Definition 10 (Disjoint Form) LetT = vii(P || C[R]) be aSHO™ process where

1. 7 is a set of names such thatC fn(P, R) and7 N fn(C) = 0;
2. Cis ak-ary (guarded, multihole) context;
3. R containsk closed processes.

We then say thdf’ is in k-adic disjoint form with respect ta, R, andP.

A disjoint form captures the fact that procesgmnd contextC do not share private
names, i.e., that their sets of namesdisgoint A disjoint form can arise as the result of
the communication between two processes that do not shaatgonames; processe&s
would be then components of some procEsshat evolved intaP by communicating
R to C. The above definition decrees an arbitrary (but fixed) adtyttie context. We
shall say that processes in such a form are-adic disjoint form or NDF. By restricting
the arity of the context, this general definition can be intitded:

Definition 11 (Monadic and Zero-adic Disjoint Forms) Let 7" be a process in dis-
joint form with respect to somg, R, and P. If | R |= 1 thenT is said to be in
monadic disjoint forn{or MDF) with respect ta:, R, and P. If | R |= 0thenT is said

to be inzero-adic disjoint fornfor ZDF) with respect ta: and P.

Proposition 12 (Encodings preserve ZDFs) et [-] be an encoding. If" is in ZDF
with respect to som# and P then[T'] is in ZDF with respect t&: and [P].

Properties of Disjoint Forms |: Stability Conditions. Stability conditions are central
to capture the following insight: without name-passing Het of names private to a
process remains invariant along computations. Hence, twoegses that interact re-
specting the stability conditions and do not share any tgimame will never be able to
establish a private link. The distinction on internal antids essential to define stability
conditions for internal synchronizations (Lemma 13) antpatiactions (Lemm@a14).

Lemma 13 LetT = v (P || C[R]) be a process in NDF with respecto R, and P.

If T = T’ then:T' = vin (P || C'[R]); fn(P’, R) C fn(P, R) andfn(C’) C fn(C);

T’ is in NDF with respect ta, R, and P’.

The following results state that there is a stability coiedifor output actions, and
the way in which a ZDF evolves aftempaiblic synchronization.

Lemma 14 LetT = v (P || C[R]) be a process in NDF with respect fg &, and
Pt T %9 7 then: there exis?’, ¢7, i such thatl” = vit' (P! || C'[R));
fn(P',R) C fn(P, R), fn(C") C fn(C) and?n’ C 7 hold; T” is in NDF with respect to

n', R,andP’.

Lemma 15 LetT be aSHO" process in ZDF with respect toand P. Supposd -
T’ where =% is a publicn-adic synchronization withP ADLICN
ThenT" is in n-adic disjoint form with respect tg, R, and P’.

P’ as a premise.

Properties of Disjoint Forms II: Origin of Actions. We now give some properties
regarding the order and origin of internal and output agtiohprocesses in DFs.

Definition 16 LetT = v7 (A || C[R]) be a process in NDF with respectio R, and
A. Suppos& = T for some actiony.

— Let« be an output action. We say thatoriginates inA if A ', A’ occurs as a
premise in the derivation &f % 7", and that originates inC' if C[R] <~ C'[R]
occurs as a premise in the derivationBf% T”. In both casesy = (v5)a’ for
SOMEs.

— Leta = 7. We say that originates inA if, for somea € 7, A %% A’ occurs as
a premise in the derivation & = 77, orif A 5 A’ occurs as a premise in the
derivation of7" % T". We say thaty originates inC' if C[R] = C’[R] occurs as a
premise in the derivation 6f = 77,

The lemma below formalizes when two actions of a disjointrf@an beswapped

Lemma 17 (Swapping Lemma)LetT = v (A | C[R]) be a process in NDF with
respect ton, R, and A. Consider two actions and 5 that can be either output actions
or internal synchronizations. Suppose thabriginates in A, § originates inC', and

that there exists &” such thatl’ 2. 7. ThenT 2% 77 also holds, i.e., actior
can be performed before without affecting the final behavior.

The converse of the Swapping Lemma does not hold: since exmgtoriginated in
C can enable an actiam originated in4, these cannot be swapped. We now generalize
the Swapping Lemma to a sequence of internal synchronimaéind output actions.

Lemma 18 (Commuting Lemma) LetT = v7i (A || C[R]) be a NDF with respect to

71, R, and A. Supposd’ N T’, whered is a sequence of output actions and internal
synchronizations. Lefo (resp.d 4) be its subsequence without actions originatedin
(resp.C) or in its derivatives. Then, there exists a procéssuch that

1. 7S A, ~
22.Thv=v (AITI™ Ry || -+ || [T™ Rx || C'[R]), for somemy, ..., my > 0.

5.2 A Hierarchy of Synchronous Higher-Order Process Calcul

Here we introduce a hierarchy of synchronous higher-ordeegss calculi. The hier-
archy is defined in terms of the impossibility of encoding SHiBto SHO* . We
first present the result that sets the basic case of the btigranamely that biadic
process-passing cannot be encoded into monadic process@gTheoreri 19). The
proof exploits the notion of MDF and its associated stapdibnditions. We then state
the general result, i.e., the impossibility of encoding SH®into SHO* (Theorem
20).

Theorem 19 There is no encoding 8HO? into SHO'.

Proof (Sketch)Assume, towards a contradiction, that an encodifig: SHO? —
SHO' does indeed exist. In what follows, we usg to range over 1,2}, assuming
that: # j. Assume processes, = 51 andS; = 53. Consider the SH?)process
P =E® || F®, whereE® andF®? are defined as follows:

E(Q) = E<Sl, SQ> 0
F® = vb(a(xy, x2). (b(b1. 21).0 || b(bg. 22).0 || b(y1). b(y2). y1))

where botth;, by & fn(E?)) (with by # by) andsy, so & fn(F)) (with s; # s5) hold.
P can perform only the following computations:

P p L T.p (1)
P p I pl 2 pr B, (2)

In P, there is an internal choice dn which has direct influence on: (i) the output
action onb; and (ii) the output action ow;. Notice that each of these actions enables
the following one, and that an output dnprecludes the possibility of actions énpand

sj. The behavior of P] —the encoding ofP— can thus be described as follows:

[P] o~ [Po] =~ [P1] 2~ [R,] =5~ 0 and 3)
[P] “Zon [Ry] =~ [P]] 2~ [P] =~ 0. 4)

Actually, outputs may have parameters, but this does natgdaur results. The first
(weak) transition, nameljP] ==~ [Fy], is the same in both possibilities. For SHO
processed’,T’, andTy, it holds

[Pl=T5T =Ty~ [R]. (5)

By examining the disjoint forms in the processedlih (5) aridgithe stability con-
ditions (Prop[IR, Lemmal5, Lemmal 13) one can show Thas in MDF with re-
spect to a set of namésand some processésand 4. Indeed, for some contexi,
(with private name), we have thaf, = vl (4 || Co[R]). Notice that[[5) ensures that
Ty = [Fo]. Hence, by definition of, T, should be able to match each action frpR]
by performing either the sequence of actions giveriin (3herdne in[(#). Crucially,
both [3) and[{¥4) involve only internal synchronizations andput actions. Therefore,
by LemmadIB anl14, every derivative®f intended to mimic the behavior ¢#;]
(and its derivatives) is in MDF with respect I somel; and someA;.

By analyzing the bisimilarity game betwe&h and[F], it is possible to infer the
following behavior starting iffy:

To =T, % Ty “L~0 and (6)
Ty = T] =2 T} =2~ 0. @)

where, by definition o, [P;] ~ T; fori € {0,1,2} and[P]] ~ T} for j € {1, 2}.
Call Cy andC, the derivatives o in T» andT}, respectively. It is worth noticing that
by conditions on names, output actionssgrands, cannot originate irC; andC,.

The behavior ofy described in{6) and{7) can be equivalently describethass-

0 andT}, == 0, wherex; contains outputs oby ands;, andas contains outputs oby
ands,, respectively. Using the Commuting Lemma (Lenimh 18Yprwe know there
exist processes;’, andTy such that

117 = vy (Ao | [T™ R || C5[R]) and Ty = viia (Ao || II™ R || C3[R)), for
somem,m’ > 0. Recall thatl’; andT are the results of performing every output
action and internal synchronization originated(ip. Since the encoding does not
introduce divergence, we have ti@t[R] 4 andC3[R] 4.

2. Ty (resp.Ty) can only perform an output action an (resp.s2) and internal ac-
tions. Hence, we have tha} |z, 77 s andTy |5, 15 = should hold.

Item (1) allows to observe that the only difference betw&gnand Ty is in the
number of copies oR (the sets of restricted names are also different, but thesetd
involve the names we are interested in). This number hastdiméuence on performing
an output action or¥; or on sq; as such, it has influence on the bisimulation game
between[P] and Tz, and that betweefP;] andT3. More precisely, we have both

Ty 2 Ty (with Ty s:) and Ty =2 T3 (with T3 |s;). By assumingn > m’,
we obtain thafl;* corresponds to the compositionBf and a number of copies @.

Hence T} |s; andTy L T with T s By operational correspondence, we have
Py = P’ such thall™ = T" with T’ ~ [P']. Notice that since the strong barb en

in T* cannot disappear (there is no receptiorsgnit is still in 77. ThusP’ has a weak
barb onss, which is impossible. O

The scheme used in the proof of Theoreth 19 can be generabizesltuli with
arbitrary polyadicity. Therefore we have the following.

Theorem 20 For everyn > 1, there is no encoding @HO" into SHO" !,

Remark 21 (A hierarchy for asynchronous calculi) TheorenZ20 holds for calculi in
AHO as well. The main structure of the proof is the same, but oeesié adapt the
different pieces.

6 The Expressive Power of Abstraction-Passing

In this section we show that abstraction-passing, i.e.¢ctilemunication of parameter-
izable processes, is strictly more expressive than pregassing. We consider SHO
the extension of SHOwith the communication of abstractions of order one, imgf
tions from processes to processes. The language of Spt@cesses is obtained by
extending the syntax of SHOprocesses (Definitidd 1) in the following way:

PQ,...:=-- | ()P | PP

That is, we consideabstractiongz) P andapplicationsP; | P» |, that allow to ap-
ply an abstraction?; to an argumenf%. As usual,(z1) ... (x,)P is abbreviated as
(1,...,2n)P. The LTS of SHQ extends that of SHOwith the rule:

P .
(2)P|Q] — P{9Y=}
Moreover, for SHG we rely on types and well-typed processes as_in [9]; roughly
speaking, the type system ensures consistent uses ofappliov.r.t. abstractions.
We now show that abstraction-passing increases the exm@@ssver of pure process-
passing in SHO. The result is based on the encoding below.

Definition 22 (Monadic abstraction-passing can encode poadic communication)
The encoding-] : SHO* — SHO) is defined as:

[@(P1, Po). R] = a(z). ([R] [| vmnc (@ || z[n. (| m) + m. ([P1] || m)]
| c.z[[P]]))
[a(z1,22). Q] = vb (@((y)b(y)) || b(x1). (21 || bz2). [Q]))

where[-] is an homomorphism for the other operatorsSa O*.

The encoding is correct, except that it does not preservesiges (as inputs are
translated into outputs and viceversa); a correct encamtindye written by resorting to
abstractions with abstractions as parameters. This emgdeds also to the separation
result below. The result is remarkable since it formalizes fact that the expressive
power of abstraction-passing is beyond any arity of polyadimmunication.

10

Theorem 23 For everyn, m > 1, there is no encoding 8HCO] into SHO™.

Proof. Suppose, for the sake of contradiction, there is an encadjpp: SHO! —
SHO™. Thanks to Def22, we have an encodljg] : SHO" ' — SHO.H Now, the
composition of two encodings is an encoding (PEdp. 7), and4sd)[:] is an encoding

of SHO™ ! into SHO™. However, by Theoref20 such an encoding does not exist,
and we reach a contradiction. O

7 Concluding Remarks

Summary.In first-order process calculi (a)synchronous and polyadimmunication
are well-understood mechanisms. In this paper, we havéestulde expressiveness of
these mechanisms in the contextstfictly higher-orderprocess calculi. Our results
strengthen and complement expressiveness studies fagrhdgtier process calculi in
[L2[1311.9,74]. We have studied two families of highetesrprocess calculi: the first
one, called AHQ, is the asynchronous higher-order process calculusmwitic com-
munication; the second, called SHQs the synchronous variant of AHOOur first
contribution was amencodabilityresult of SHO into AHO™. We then moved to ana-
lyze polyadic communication, and showed that in this cas@bsence of name-passing
does entail a loss in expressiveness; this is representdtehbiynpossibility of encod-
ing SHO" into SHO" L. This non-encodabilityesult induces #ierarchyof higher-
order process calculi based on the arity allowed in propessing communications.
This hierarchy holds for AHO as well. Finally, we showed acading of SHC into
SHO! extended with abstraction-passing, and used it in our finairibution: the non-
existence of an encoding of abstraction-passing into gopassing of any arity.

Related Work.Sangiorgi [9] proposed a hierarchy of HGragments, based on the
degree of the abstractions allowed (the level of arrow ngsti the type of the abstrac-
tion). This hierarchy is shown to match the expressivenéashierarchy of first-order
calculi with only internal mobility. The argument that thietarchy is strict is however
intensional, counting the causal dependencies among namentrast, the hierarchy
we consider here is given by the size of the tuples that camésgal around in polyadic
communications. Also related ale [12/13,11], in which esgiveness/decidability is-
sues of H@oRrE—roughly, the fragment of H®@ without restriction— are addressed.
Other works have used the distinction between internal abtiggsynchronizations
that we have used in the LTS for SHO. [n]15], labels of intéatdions are annotated
with the name on which the synchronization occurs so as toeleftatedsemantics
for the w-calculus; such semantics are then used to study conclseemntics using
a standard LTS. In the higher-order setting] [16] definesrembof CHOCS in which
synchronizations on so-calledttivation channel$i.e., the fresh channels used in the
encoding of CHOCS into the-calculus to trigger a copy of a process) are distinguished
from other synchronizations. An LTS based on such a distinés shown to be finitely
branching; its induced bisimilarity is shown to coincidgmwbisimulation in CHOCS.

® The fact that the encoding does not preserve signaturesecavencome with a direct proof.

11

Future Work. It would be interesting to explore whether the hierarchyéct®n®% can
be presented without resorting to the distinction on irdéagtions. This would require
to formalize the concept of encoding robust with respecinterferences. Also, the
result in Sectiofll6 gives the base case of a hierarchy basahistraction-passing. Here
we have considered abstractions of order one; we plan torgleresuch a result to
abstractions of arbitrary order so as to define a hierarchgdan abstraction-passing.

AcknowledgmentsWe are grateful to J. Aranda and F. Valencia for discussiorthe
topics of this paper, and to the anonymous reviewers for fugjgestions. This research
was carried out while the second author was a PhD studentiaetdity of Bologna.
This research has been partially supported by INRIA Equipsog&iée BACON, by
Project FP7- 231620 HATS, and by FCT / MCTES (CMU-PT/NGN£92-12).

References

1. Palamidessi, C.: Comparing the expressive power of thelsgnous and asynchronous
pi-calculi. Mathematical Structures in Computer Sciehgg) (2003) 685-719
2. Nestmann, U.: What is a "good" encoding of guarded choliscEZomput.1561-2) (2000)
287-319 A preliminary version appeared in EXPRESS'97.
3. Cacciagrano, D., Corradini, F., Palamidessi, C.: Sejparaf synchronous and asyn-
chronous communication via testing. Theor. Comput. 32(3) (2007) 218-235
4. Boudol, G.: Asynchrony and the-calculus (note). Technical report, Rapport de Recherche
1702, INRIA, Sophia-Antipolis (1992)
5. Honda, K., Tokoro, M.: An object calculus for asynchros@ommunication. In: Proc. of
ECOOP. Volume 512 of Lecture Notes in Computer Sciencein§er (1991) 133-147
6. Milner, R.: The Polyadic pi-Calculus: A Tutorial. Techal Report ECS-LFCS-91-180,
University of Edinburgh (1991)
7. Quaglia, P., Walker, D.: Types and full abstraction folypdic pi-calculus. Inf. Comput.
200(2) (2005) 215-246
8. Yoshida, N.: Graph types for monadic mobile processe®roc. of FSTTCS. Volume 1180
of Lecture Notes in Computer Science., Springer (1996) 386—
9. Sangiorgi, D.:w-calculus, internal mobility and agent-passing calcule®dr. Comput. Sci.
1672) (1996) 235-274
10. Gorla, D.: Towards a unified approach to encodability semhration results for process cal-
culi. In: Proc. of CONCUR. Volume 5201 of Lecture Notes in Qaiter Science., Springer
(2008) 492-507
11. Pérez, J.A.: Higher-Order Concurrency: Expressiveaad Decidability Results. PhD the-
sis, University of Bologna (2010) Draft y/wwv. | aper ez. phi pages. conT|.
12. Lanese, |, Pérez, J.A., Sangiorgi, D., Schmitt, A.: nexpressiveness and decidability of
higher-order process calculi. In: Proc. of LICS’08, IEEEngmuter Society (2008) 145-155
13. DiGiusto, C., Pérez, J.A., Zavattaro, G.: On the exjiressss of forwarding in higher-order
communication. In: Proc. of ICTAC. Volume 5684 of Lecturet®in Computer Science.,
Springer (2009) 155-169
14. Sangiorgi, D.: Expressing Mobility in Process Algebrisst-Order and Higher-Order
Paradigms. PhD thesis CST-99-93, University of EdinbuBgpt. of Comp. Sci. (1992)
15. Lanese, |.: Concurrent and located synchronizatioms-@alculus. In: Proc. of SOFSEM.
Volume 4362 of Lecture Notes in Computer Science., Spri(2@07) 388—-399
16. Amadio, R.M.: On the reduction of Chocs bisimulationrtoalculus bisimulation. In: Proc.
of CONCUR. Volume 715 of Lecture Notes in Computer Scier8pringer (1993) 112-126

12

www.japerez.phipages.com/

	On the Expressiveness of Polyadic and Synchronous Communication in Higher-Order Process Calculi
	Ivan Lanese, Jorge A. Pérez, Davide Sangiorgi, and Alan Schmitt

