
On the Origins of Bisimulation and Coinduction

DAVIDE SANGIORGI

University of Bologna, Italy

The origins of bisimulation and bisimilarity are examined, in the three fields where they have been
independently discovered: Computer Science, Philosophical Logic (precisely, Modal Logic), Set
Theory.

Bisimulation and bisimilarity are coinductive notions, and as such are intimately related to
fixed points, in particular greatest fixed points. Therefore also the appearance of coinduction and
fixed points is discussed, though in this case only within Computer Science. The paper ends with
some historical remarks on the main fixed-point theorems (such as Knaster-Tarski) that underpin
the fixed-point theory presented.

Categories and Subject Descriptors: F.4.1 [Mathematical logic and formal languages]: Math-
ematical Logic—Computational logic; Modal logic; Set theory; F.4.0 [Mathematical logic and

formal languages]: General

General Terms: Theory, Verification

Additional Key Words and Phrases: Bisimulation, coinduction, fixed points, greatest fixed points,
history

Contents

1 Introduction 112

2 Background 114

2.1 Bisimulation . 114
2.2 Approximants of bisimilarity . 116
2.3 Coinduction . 116

3 Bisimulation in Modal Logic 119

3.1 Modal logics . 119
3.2 From homomorphism to p-morphism 120
3.3 Johan van Benthem . 122
3.4 Discussion . 125

4 Bisimulation in Computer Science 125

4.1 Algebraic theory of automata . 125
4.2 Robin Milner . 128

Author’s address: Dipartimento di Scienze dell’Informazione Universita’ di Bologna Mura Anteo
Zamboni, 7 40126 Bologna, ITALY.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20?? ACM 0164-0925/20??/0500-0111 $5.00

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, ?? 20??, Pages 111–151.

112 · Davide Sangiorgi

4.3 David Park . 130
4.4 Discussion . 131

5 Set Theory 132

5.1 Non-well-founded sets . 133
5.2 The stratified approach to set theory 133
5.3 Non-well-founded sets and extensionality 134
5.4 Marco Forti and Furio Honsell . 135
5.5 Peter Aczel . 136
5.6 Jon Barwise . 138
5.7 Extensionality quotients: Roland Hinnion and others 138
5.8 Discussion . 139

6 The introduction of fixed points in Computer Science 141

7 Fixed-point theorems 144

1. INTRODUCTION

Bisimulation and coinduction are generally considered as one of the most important
contributions of Concurrency Theory to Computer Science. In concurrency, the
bisimulation equality, called bisimilarity, is the most studied form of behavioural
equality for processes, and is widely used, for a number of reasons, notably the
following ones.

—Bisimilarity is accepted as the finest behavioural equivalence one would like to
impose on processes.

—The bisimulation proof method is exploited to prove equalities among processes.
This occurs even when bisimilarity is not the behavioural equivalence chosen for
the processes. For instance, one may be interested in trace equivalence and yet
use the bisimulation proof method since bisimilarity implies trace equivalence.

—The efficiency of the algorithms for bisimilarity checking and the compositionality
properties of bisimilarity are exploited to minimise the state-space of processes.

—Bisimilarity, and variants of it such as similarity, are used to abstract from certain
details of the systems of interest. For instance, we may want to prove behavioural
properties of a server that do not depend on the data that the server manipulates.
Further, abstracting from the data may turn an infinite-state server into a finite
one.

Bisimulation has also spurred the study of coinduction; indeed bisimilarity is an
example of a coinductive definition, and the bisimulation proof method an instance
of the coinduction proof method.

Bisimulation and, more generally, coinduction are employed today in a num-
ber of areas of Computer Science: functional languages, object-oriented languages,
types, data types, domains, databases, compiler optimisations, program analysis,
verification tools, etc.. For instance, in Type Theory bisimulation and coinductive
techniques have been proposed: to prove the soundness of type systems [Milner
and Tofte 1991]; to define the meaning of equality between (recursive) types and
then to axiomatise and prove such equalities [Amadio and Cardelli 1993; Brandt

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, ?? 20??.

On the Origins of Bisimulation and Coinduction · 113

and Henglein 1997]; to define coinductive types and manipulate infinite proofs in
theorem provers [Coquand 1993; Giménez 1996].

Also, the development of Final Semantics [Aczel 1988; 1993; Rutten and Turi
1992; Jacobs and Rutten 1996], an area of Mathematics based on coalgebras and
category theory and used in the semantics of programming languages, has been
largely motivated by the interest in bisimulation. Final Semantics also gives us
a rich and deep perspective on the meaning of coinduction and its duality with
induction.

In this paper, we look at the origins of bisimulation (and bisimilarity). We show
that bisimulation has been discovered not only in Computer Science, but also—
and roughly at the same time—in other fields: Philosophical Logic (more precisely,
Modal Logic), and Set Theory. In each field, we discuss the main steps that led to
the discovery, and introduce the people who made these steps possible.

In Computer Science, and in Philosophical Logic, and in Set Theory, bisimula-
tion has been derived through refinements of notions of morphism between algebraic
structures. Roughly, morphisms are maps that are “structure-preserving”. The no-
tion is therefore fundamental in all mathematical theories in which the objects of
study have some kind of structure, or algebra. The most basic forms of morphism
are the homomorphisms. These essentially give us a way of embedding a structure
(the source) into another one (the target), so that all the relations in the source are
present in the target. The converse however, need not be true; for this, stronger
notions of morphism are needed. One such notion is isomorphism, which is how-
ever extremely strong—isomorphic structures must be essentially the same, i.e.,
“algebraically identical”. It is a quest for notions in between homomorphism and
isomorphism that led to the discovery of bisimulation.

The kind of structures studied in Computer Science, in Philosophical Logic, and
in Set Theory were forms of rooted directed graphs. On such graphs bisimulation
is coarser than graph isomorphism because, intuitively, bisimulation allows us to
observe a graph only through the movements that are possible along its edges.
By contrast, with isomorphisms the identity of the nodes is observable too. For
instance, isomorphic graphs have the same number of nodes, which need not be the
case for bisimilar graphs (bisimilarity on two graphs indicates that their roots are
related in a bisimulation).

The independent discovery of bisimulation in three different fields suggests that
only limited exchanges and contacts among researchers existed at the time. The
common concept of bisimulation has somehow helped to improve this situation. An
example of this are the advances in Set Theory and Computer Science derived from
Aczel’s work.

Bisimilarity and the bisimulation proof method represent examples of a coin-
ductive definition and the coinduction proof method, and as such are intimately
related to fixed points, in particular greatest fixed points. We therefore also discuss
the introduction of fixed points, and of coinduction. In this case, however, with
a more limited breadth: we only consider Computer Science—fixed points have a
much longer history in Mathematics—and we simply discuss the main papers in
the introduction of coinduction and fixed-point theory in the field. We conclude
with some historical remarks on the main fixed-point theorems that underpin all

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, ?? 20??.

114 · Davide Sangiorgi

the fixed-point theory presented.
In each section of the paper, we focus on the origins of the concept dealt with

in that section, and do not attempt to follow the subsequent developments. The
style of presentation is generally fairly informal, but—we hope—technical enough
to make the various contributions clear, so that the reader can appreciate them.

Structure of the paper In Section 2 we recall basic notions and results, whose
history is then examined in the paper: bisimulation, bisimilarity, inductive char-
acterisations of bisimilarity, coinduction, fixed-point theorems. In Section 3 to 5
we examine the origins of bisimulation and bisimilarity in Modal Logic, Computer
Science, and Set Theory. In Section 6 we report on the introduction of coinduc-
tion and fixed points in Computer Science. Finally, in Section 7, we discuss the
fixed-point theorems.

2. BACKGROUND

In this section we recall some basic notations, definitions, and results, including the
definition of bisimulation, that are important in the remainder of the paper.

2.1 Bisimulation

We present bisimulation on Labelled Transition Systems (LTSs) because these are
the most common structures on which bisimulation has been studied. LTSs are es-
sentially labelled directed graphs. Bisimulation can be defined on variant structures,
such as relational structures (i.e., unlabeled directed graphs) or Kripke structures,
in a similar way; we will meet some of the variants in the following sections.

We let R range over relations on sets, i.e., if ℘ denotes the powerset construct,
then a relation R on a set W is an element of ℘(W × W). The composition
of relations R1 and R2 is R1R2 (i.e., (s, s′) ∈ R1R2 holds if for some s′′, both
(s, s′′) ∈ R1 and (s′′, s′) ∈ R2 hold). We often use the infix notation for relations;
hence s R t means (s, t) ∈ R.

Definition 2.1 Relational structures. A relational structure is a pair (W, T) where
W is a non-empty set called the domain of the structure, and T is a relation on W .

We can think of LTSs as a kind of multi-relational structures.

Definition 2.2 Labelled Transition Systems. A Labelled Transition System is a
triple (W,Act, {

a
−→ : a ∈ Act}) with domain W as above, set of labels Act, and for

each label a, a relation
a
−→ on W called the transition relation.

In the two definitions above, the elements of W will be called states or points,
sometimes even processes as this is the usual terminology in concurrency. We use
s, t to range over such elements, and µ to range over the labels in Act. Following

the infix notation for relations, we write s
µ
−→ t when (s, t) ∈

µ
−→; in this case we

call t a µ-derivative of s, or sometimes simply a derivative of s.

Definition 2.3 Bisimulation. A binary relation R on the states of an LTS is a
bisimulation if whenever s1 R s2:

—for all s′1 with s1
µ
−→ s′1, there is s′2 such that s2

µ
−→ s′2 and s′1 R s′2;

—the converse, on the transitions emanating from s2.

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, ?? 20??.

On the Origins of Bisimulation and Coinduction · 115

Bisimilarity, written ∼, is the union of all bisimulations; thus s ∼ t holds if there
is a bisimulation R with s R t.

The definition of bisimilarity has a strong impredicative flavor, for bisimilarity itself
is a bisimulation and is therefore part of the union from which it is defined. Also,
the definition immediately suggests a proof technique: to demonstrate that s1 and
s2 are bisimilar, find a bisimulation relation containing the pair (s1, s2). This is the
bisimulation proof method.

We will not discuss here the effectiveness of this proof method; the interested
reader may consult concurrency textbooks in which bisimilarity is taken as the main
behavioural equivalence for processes, such as [Milner 1989; Sangiorgi and Walker
2001]. We wish however to point out two features of the definition of bisimulation
that make its proof method practically interesting:

—the locality of the checks on the states;

—the lack of a hierarchy on the pairs of the bisimulation.

The checks are local because we only look at the immediate transitions that emanate
from the states. An example of a behavioural equality that is non-local is trace
equivalence (two states are trace equivalent if they can perform the same sequences
of transitions). It is non-local because computing a sequence of transitions starting
from a state s may require examining other states, different from s.

There is no hierarchy on the pairs of a bisimulation in that no temporal order
on the checks is required: all pairs are on a par. As a consequence, bisimilarity
can be effectively used to reason about infinite or circular objects. This is in sharp
contrast with inductive techniques, that require a hierarchy, and that therefore are
best suited for reasoning about finite objects. For instance, here is a definition of
equality that is local but inherently inductive:

s1 = s2 if:
for all s′1 with s1

µ
−→ s′1, there is s′2 such that s2

µ
−→ s′2 and s′1 = s′2;

the converse, on the transitions from s2.

This definition requires a hierarchy, as the checks on the pair (s1, s2) must follow
those on derivative pairs such as (s′1, s

′
2). Hence the definition is ill-founded if the

state space of the derivatives reachable from (s1, s2) is infinite or includes loops.
In the paper we also sometimes mention simulations, which are “half bisimula-

tions”.

Definition 2.4 Simulation. A binary relation R on the states of an LTS is a

simulation if s1 R s2 implies that for all s′1 with s1
µ
−→ s′1 there is s′2 such that

s2
µ
−→ s′2 and s′1 R s′2. Similarity is the union of all simulations.

We have presented the standard definitions of bisimulation and bisimilarity. A
number of variants have been proposed and studied. For instance, on LTSs in
which labels have a structure, which may be useful when processes may exchange
values in communications; or on LTSs equipped with a special action to represent
movements internal to processes, in which case one may wish to abstract from such
action in the bisimulation game yielding the so-called weak bisimulations and weak
bisimilarity. Examples of these kinds may be found, e.g., in [Milner 1989; Sangiorgi

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, ?? 20??.

116 · Davide Sangiorgi

and Walker 2001; Aceto et al. 2007; Sangiorgi et al. 2007]. Also, we do not discuss
in this paper enhancements of the bisimulation proof method, intended to relieve
the amount of work needed to prove bisimilarity results, such as bisimulation up-to
techniques; see, e.g., [Milner 1989; Sangiorgi 1998; Pous 2007].

2.2 Approximants of bisimilarity

We can approximate bisimilarity using the following inductively-defined relations
and their meet. Similar constructions can be given for similarity.

Definition 2.5 Stratification of bisimilarity. Let W be the states of an LTS. We
set:

—∼0
def
= W ×W

—s ∼n+1 t, for n ≥ 0, if

(1) for all s′ with s
µ
−→ s′, there is t′ such that t

µ
−→ t′ and s′ ∼n t

′;

(2) the converse, i.e., whenever for all t′ with t
µ
−→ t′, there is s′ such that s

µ
−→ s′

and s′ ∼n t
′.

—∼ω
def
=

⋂
n≥0 ∼n

In general, ∼ω does not coincide with ∼, as the following example shows.

Example 2.6. Suppose a ∈ Act, and let a0 be a state with no transitions, aω a
state whose only transition is

aω a
−→ aω ,

and an, for n ≥ 1, states with only transitions

an a
−→ an−1 .

Also, let s, t be states with transitions

s
a
−→ an for all n ≥ 0

and

t
a
−→ an for all n ≥ 0

t
a
−→ aω

It is easy to prove, by induction on n, that, for all n, s ∼n t, hence also s ∼ω t.
However, it holds that s 6∼ t: the transition t

a
−→ aω can only be matched by s with

one of the transitions s
a
−→ an. But, for all n, we have aω 6∼ an, as only from the

former state n+ 1 transitions are possible.

In order to reach ∼, in general we need to replace the ω-iteration that defines
∼ω with a transfinite iteration, using the ordinal numbers. However, the situation

changes if the LTS is finitely branching, meaning that for all s the set {s′ : s
µ
−→

s′, for some µ} is finite. (In Example 2.6, the LTS is not finitely branching.) In
this case, the natural numbers are sufficient: Indeed we have:

Theorem 2.7. On finitely branching LTSs, relations ∼ and ∼ω coincide.

The theorem also holds with the weaker condition of image finiteness, requiring

that for all s and µ the set {s′ : s
µ
−→ s′} is finite.

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, ?? 20??.

On the Origins of Bisimulation and Coinduction · 117

2.3 Coinduction

Intuitively, a set A is defined coinductively if it is the greatest solution of an in-
equation of a certain form; then the coinduction proof principle just says that
any set that is a solution of the same inequation is contained in A. Dually, a
set A is defined inductively if it is the least solution of an inequation of a certain
form, and the induction principle then says that any other set that is a solution
to the same equation contains A. Familiar inductive definitions and proofs can be
formalised in this way. To see how bisimulation and its proof method fit the coin-
ductive schema, let (W,Act, {

a
−→ : a ∈ Act}) be an LTS, and consider the function

F∼ : ℘(W ×W) → ℘(W ×W) so defined:
F∼(R) is the set of all pairs (s, t) such that:

(1) for all s′ with s
µ
−→ s′, there is t′ such that t

µ
−→ t′ and s′ R t′.

(2) for all t′ with t
µ
−→ t′, there is s′ such that s

µ
−→ s′ and s′ R t′.

We call F∼ the functional associated to bisimulation, for we have:

Proposition 2.8. (1) ∼ is the greatest fixed point of F∼;

(2) ∼ is the largest relation R such that R ⊆ F∼(R); thus R ⊆ ∼ for all R with
R ⊆ F∼(R).

Proposition 2.8 is a simple application of fixed-point theory, in particular the
Knaster-Tarski Theorem, that we discuss below. We recall that a complete lattice
is a partially ordered set with all joins (i.e., all its subsets have a supremum, also
called least upper bound); this implies that there are also all meets (i.e., all subsets
have an infimum, also called greatest lower bound). Using ≤ to indicate the partial
order, a point x in the lattice is a post-fixed point of an endofunction F on the
lattice if x ≤ F (x); it is a pre-fixed point if F (x) ≤ x.

Theorem 2.9 Knaster-Tarski. On a complete lattice, a monotone endofunc-
tion has a complete lattice of fixed points. In particular the greatest fixed point of
the function is the join of all its post-fixed points, and the least fixed point is the
meet of all its pre-fixed points.

We deduce from the theorem that:

—a monotone endofunction on a complete lattice has a greatest fixed point;

—for an endofunction F on a complete lattice the following rule is sound:

F monotone x ≤ F (x)

x ≤ gfp (F)
(1)

where gfp (F) indicates the greatest fixed point of F .

The existence of the greatest fixed point justifies coinductive definitions, while rule
(1) expresses the coinduction proof principle, à la Knaster-Tarski.

Proposition 2.8 is a consequence of the Knaster-Tarski theorem because the func-
tional associated to bisimulation gives us precisely the clauses of a bisimulation, and
is monotone on the complete lattice of the relations on W ×W , in which the join is
given by relational union, the meet by relational intersection, and the partial order
by relation inclusion:

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, ?? 20??.

118 · Davide Sangiorgi

Lemma 2.10. —R is a bisimulation iff R ⊆ F∼(R);

—F∼ is monotone (that is, if R ⊆ S then also F∼(R) ⊆ F∼(S)).

For such functional F∼, (1) asserts that any bisimulation only relates pairs of bisim-
ilar states. Example 2.6 shows that ∼ω is not a fixed point for it.

Also Theorem 2.7, about approximating bisimilarity using the natural numbers,
can be seen as an application of fixed-point theory, in which one uses the extra
hypothesis of cocontinuity of the functional. Let

⋂
denote the meet operation of

the complete lattice; then an endofunction on such a lattice is cocontinuous if for
all sequences α0, α1 . . . of decreasing points in the lattice (i.e., αi ≥ αi+1, for i ≥ 0)
we have F (

⋂
i αi) =

⋂
i F (αi).

Theorem 2.11. For a cocontinuous endofunction F on a complete lattice we
have:

gfp (F) =
⋂

n≥0

Fn(⊤)

where ⊤ is the top element of the lattice, and Fn(⊤) indicates the n-th iteration of
F on ⊤:

F 0(⊤)
def
= ⊤

Fn+1(⊤)
def
= F (Fn(⊤))

The cocontinuity of the functional associated to bisimilarity is guaranteed by the
finitely branching property of the LTS, and thus Theorem 2.7 becomes an instance
of Theorem 2.11.

Without cocontinuity, to reach the greatest fixed point using inductively-defined
relations we need to iterate over the transfinite ordinals, as the following theorem
shows.

Theorem 2.12. If F is a monotone endofunction on a complete lattice, then
there is an ordinal α of cardinality less than or equal to that of the lattice such that
for β ≥ α the greatest fixed point of F is F β(⊤) where ⊤ is the top element of the
lattice and Fλ(⊤), where λ is an ordinal, is so defined:

F 0(⊤)
def
= ⊤

Fλ(⊤)
def
= F (

⋂
β<λ F

β(⊤)) for λ > 0

As the ordinals are linearly ordered, and each ordinal is either the successor of
another ordinal or the least upper bound of all its predecessors, the above definition
can also be given thus:

F 0(⊤)
def
= ⊤

Fλ+1(⊤)
def
= F (Fλ(⊤)) for a successor ordinal

Fλ(⊤)
def
= F (

⋂
β<λ F

β(⊤)) for a limit ordinal

Theorem 2.12 tells us that at some ordinal α the function reaches its greatest fixed
point. On ordinals larger than α, of course, the function remains on such fixed
point. Therefore essentially the theorem tells us that Fλ(⊤) returns the greatest
fixed point of F for all sufficiently large ordinals λ. In case F is cocontinuous,

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, ?? 20??.

On the Origins of Bisimulation and Coinduction · 119

Theorem 2.11 assures us that we can take α to be the first limit ordinal, ω (not
counting 0 as a limit ordinal). The property dual to cocontinuity, on increasing
sequences, least fixed points and joins, is called continuity.1

Theorems 2.11 and 2.12 give us constructive proofs of the existence of greatest-
fixed points. The constructions are indeed at the heart of the algorithms used today
for bisimilarity checking.

Complete lattices are “dualisable” structures: we can reverse the partial order
and get another complete lattice. Thus the definitions and results above about
joins, post-fixed points, greatest fixed points, cocontinuity have a dual in terms
of meets, pre-fixed points, least fixed points, and continuity. As the results we
gave justify coinductive definitions and the coinductive proof method, so the dual
theorems can be used to justify familiar inductive definitions and inductive proofs
for sets. However, to go deeper into coinduction and to fully appreciate the duality
of concepts found in the theory of induction and in that of coinduction, it can
be useful to go beyond the simple fixed-point theory above, and use the theory
of algebras and coalgebras [Aczel 1988; 1993; Jacobs and Rutten 1996; Turi and
Plotkin 1997]. The fixed-point approach outlined in this section will be however
sufficient for this paper.

Another well-known example of application of coinduction is in definition and
proofs involving divergence. Divergence represents an infinite computation and can
be elegantly defined coinductively; then the coinduction proof method can be used
to prove that specific computations diverge.

3. BISIMULATION IN MODAL LOGIC

3.1 Modal logics

Philosophical Logic studies and applies logical techniques to problems of interest
to philosophers, somewhat similarly to what Mathematical Logic does for problems
that interest mathematicians. Of course, the problems do not only concern philoso-
phers or mathematicians; for instance nowadays both philosophical and mathemat-
ical logics have deep and important connections with Computer Science.

Strictly speaking, in Philosophical Logic a modal logic is any logic that uses
modalities. A modality is an operator used to qualify the truth of a statement, that
is, it creates a new statement that makes an assertion about the truth of the original
statement. Originally, modal logic was just the logic of necessity and possibility,
to express assertions of the form “it is possible that”, or “it is necessary that”.
Nowadays it has a broader connotation, as the term is used also to refer to other
logics: temporal logics (also called tense logics), that talk about future and past
(to express assertions such as “it always will be that”, or “it was the case that”);
epistemic logics, that talk about the certainty of sentences (to express assertions
such as “it is certainly true that”, or “it may be true that [given the available
knowledge]”); deontic logics, that talk about obligation and morality (to express
assertions such as “it is obligatory that”, “it is permitted that”, etc.); and so forth.

For the discussion below we use a simple modal language, defined by means of
the usual operators of propositional logic, a set of proposition letters {pi}i∈I , and

1In some textbooks, cocontinuitiy is called lower-continuity, the dual property upper-continuity.

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, ?? 20??.

120 · Davide Sangiorgi

a unary modal operator 3:

φ
def
= p | ¬φ | φ1 ∧ φ2 | 3φ | ⊥

where p is a proposition letter. The arguably simplest form of semantics for modal
languages is the Kripke semantics. Here, models are directed graphs whose nodes
are labelled with sets of proposition letters. Formally, a model is a triple (W, T , G)
where (W, T) is a relational structure (Definition 2.1; relational structures are usu-
ally called frames in Modal Logic); and G is a function that assigns to each point
in W a set of proposition letters, to be thought of as the atomic formulas that hold
at that point. As usual for relations, we write s T t if (s, t) ∈ T ; in this case we say
that there is a transition between s and t. The notion of satisfaction for a formula
at a point t of a model M is defined inductively thus:

M, t |= p if p ∈ G(t)
M, t |= ⊥ never holds
M, t |= φ1 ∧ φ2 if both M, t |= φ1 and M, t |= φ2

M, t |= ¬φ if not M, t |= φ
M, t |= 3φ if for some s such that t T s we have M, s |= φ

Thus 3φ holds at t if φ holds in at least one of the successors of t; and p holds at
t if p is among the letters assigned to t; the interpretation of the other operators
is the standard one of propositional logic. While models are used to investigate
questions of satisfaction of formulas, relational structures are used for questions of
validity.

To keep things simple we have assumed a single transition relation T and a sin-
gle modality 3, but in fact one could have a set of modalities, say 〈a〉, where a is
taken from some special alphabet, and for each modality 〈a〉 a corresponding tran-
sition relation Ta; thus Labelled Transition Systems become special cases of models,
namely models with a separate modality and transition relation for each different
form of action, and without proposition letters. In the examples we will give, when
we do not mention proposition letters it is intended that no proposition letters hold
at the states under consideration. Further, we write T M for the transition relation
of a model M .

3.2 From homomorphism to p-morphism

Today, some of the most interesting results in the expressiveness of modal logics
rely on the notion of bisimulation. Bisimulation is indeed discovered in Modal
Logic when researchers begin to investigate seriously issues of expressiveness for the
logics, in the 1970s. For this, important questions tackled are: When is the truth of
a formula preserved when the model changes? Or, even better, under which model
constructions are modal formulas invariant? Which properties of models can modal
logics express? (When moving from a model M to another model N , preserving a
property means that if the property holds in M then it holds also when one moves
to N ; the property being invariant means that also the converse is true, that is, the
property holds in M iff it holds when one moves to N .)

To investigate such questions, it is natural to start from the most basic structure-
preserving construction, that of homomorphism. A homomorphism from a model
M to a model N is a function F from the points of M to the points of N such that

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, ?? 20??.

On the Origins of Bisimulation and Coinduction · 121

—whenever a proposition letter holds at a point s of M then the same letter also
holds at F (s) in N ;

—whenever there is a transition between two points s, s′ in M then there is also a
transition between F (s) and F (s′) in N .

Thus, contrasting homomorphism with bisimulation, we note that

(i) homomorphism is a functional, rather than relational, concept;

(ii) in the definition of homomorphism there is no back condition; i.e., the reverse
implication, from transitions in N to those in M , is missing.

Homomorphisms are too weak to respect the truth of modal formulas. That is,
a homomorphism H from a model M to a model N does not guarantee that if a
formula holds at a point t of M then the same formula also holds at H(t) in N . For
instance, consider a model M with just one point and no transitions, and a model
N with two points and transitions between them. A homomorphism can send the
point of M onto any of the points of N . The formula ¬3¬⊥, however, which holds
at points that have no transitions, will be true in M , and false in N .

The culprit for the failure of homomorphisms is the lack of a back condition.
We can therefore hope to repair the invariance by adding some form of reverse
implication. There are two natural ways of achieving this:

(1) turning the “implies” of the definition of homomorphism into an “iff” (that is,
a propositional letter holds at s in M iff it holds at F (s) in N ; and s T M s′ in
M iff F (s) T N F (s′) in N);

(2) explicitly adding a back condition (that is, if in N there is a transition F (s) T N

t, for some point t, then in M there exists a point s′ such that s T M s′ and
t = F (s′).

Solution (1) is the requirement of strong homomorphisms. Solution (2) is first
formalised by Krister Segerberg in his famous dissertation [1971], as the requirement
of p-morphisms.

Segerberg starts the study of morphisms between models of modal logics that pre-
serve the truth of formulas in [Segerberg 1968]. Initially, p-morphisms are called
pseudo-epimorphims [Segerberg 1968], and are indeed surjective mappings. Later
[Segerberg 1970; 1971], the term is shortened to p-morphisms, and thereafter used
to denote also non-surjective mappings. A notion similar to p-morphisms had also
occurred earlier, in a work of Jongh and Troelstra [1966], for certain surjective map-
pings on partial orders that were called strongly isotone. These were in fact essen-
tially pseudo-epimorphisms on frames, rather than on models; they had been used
to study relationships between partial orders and algebraic models of intuitionistic
propositional logic. Sometimes, today, p-morphisms are called bounded morphisms,
after Goldbatt [1989]. The p-morphisms can be regarded as the natural notion of
homomorphism in Kripke models; indeed other reasons make p-morphisms inter-
esting for modal logics, for instance they are useful in the algebraic semantics of
modal logics (e.g., when relating modal algebras).

With either of the additions in (1) or (2), the invariance property holds: modal
formulas are invariant both under surjective strong homomorphisms and under p-
morphisms. Thus, if H is a surjective strong homomorphism, or a p-morphism,

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, ?? 20??.

122 · Davide Sangiorgi

M = s

��
t

N = u

 A
AA

AA
AA

A

~~~~
~~

~~
~

v w

Fig. 1. On p-morphisms and p-relations

from M to N , then for any point s in M and formula φ, we have M, s |= φ iff
N,H(s) |= φ. (The surjective condition is necessary for strong homomorphisms,
but not for p-morphisms.)

As far as invariance is concerned, the surjective strong homomorphism condition
is certainly a very strong requirement—we are not far from isomorphism, in fact
(the only difference is injectivity of the function, but even when functions are not
injective only states with essentially the “same” transitions can be collapsed, that is,
mapped onto the same point). In contrast, p-morphisms are much more interesting.
Still, they do not capture all situations of invariance. That is, there can be states
s of a model M and t of a model N that satisfy exactly the same modal formulas
and yet there is no p-morphisms that take s into t or vice versa.

3.3 Johan van Benthem

The next step is made by Johan van Benthem in his PhD thesis [1976] (the book
[Benthem 1983] is based on the thesis), who generalises the directional relationship
between models in a p-morphism (the fact that a p-morphism is a function) to a
symmetric one. This leads to the notion of bisimulation, which van Benthem calls
p-relation. (Later [Benthem 1984] he renames p-relations as zigzag relations.) On
Kripke models, a p-relation between models M and N is a total relation S on the
states of the models (the domain of S are the states of M and the codomain the
states of N) such that whenever v S t then: a propositional letter holds at s iff it
holds at t; for all s′ with s T M s′ there is t′ such that t T N t′ and s′ S t′; the
converse of the previous condition, on the transitions from t.

To appreciate the difference between p-morphisms and p-relations, consider the
models in Figure 1 (where the letters are used to name the states, they do not
represent proposition letters—there are no proposition letters, in fact). There is
no p-morphisms from M to N : the image of t must be either v or w; in any case,
there is always a transition from u that s cannot match. We can however establish
a p-relation on the models, relating s with u, and t with both v and w. (There is
a p-morphism in the opposite direction, from N to M ; but the example could be
developed a bit so that there is no p-morphisms in either direction.)

Van Benthem defines p-relations while working on Correspondence Theory, pre-
cisely the relationship between modal and classical logics. Van Benthem’s objec-
tive is to characterise the fragment of first-order logic that “corresponds” to modal
logic—an important way of measuring expressiveness. He gives a sharp answer
to the problem, via a theorem that is today called “van Benthem Characterisa-
tion Theorem”. We explain van Benthem’s result in some detail because both its
assertion and its proof are interesting.

Van Benthem is not the first one to compare modal logic and first-order logic.

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, ?? 20??.



On the Origins of Bisimulation and Coinduction · 123

There is a straightforward translation of modal logic into first-order logic, usu-
ally called the “standard translation” that had been known for a long time (since
the 1960s, at least). That such a translation should exist is by no means sur-
prising: Kripke models—the models of modal logic—can also be talked about
using classical logic. With first-order logic, for instance, we simply need a re-
lational symbol to match the relations on the points of the model and a set of
predicates to match the proposition letters that hold at such points. Thus the
standard translation maps modal formulas to the formulas of the language FO
of first-order logic that has equality, a binary relation U , and unary predicates
{Pi : pi is a proposition letter in the modal logic}. The translation, [|φ|], is de-
fined as follows on the structure of φ:

[|p|]x
def
= Px

[|⊥|]x
def
= x 6= x

[|¬φ|]x
def
= ¬[|φ|]x

[|φ ∨ ψ|]x
def
= [|φ|]x ∨ [|ψ|]x

[|3φ|]x
def
= ∃y.(x U y ∧ [|φ|]y) with x 6= y

The free variable x in [|φ|]x is needed for evaluation of the formula: the evaluation
of φ at a point t corresponds to the evaluation of [|φ|]x where t replaces x. Indeed
in any Kripke model, φ holds at a point t iff [|φ|]x{t/x} holds. Note the translation
of the modality 3, which makes it explicit that a modal logic implicitly gives us a
form of quantification, yet—in contrast with first-order logic—the quantification is
achieved without the use of variables.

Although known for a long time, the importance of the translation emerges only
in the 1970s, notably in works of Thomason [1972] and in those of van Benthem
mentioned above. Van Benthem Characterisation Theorem relates modal logic to
first-order logic via the translation and bisimulation. In the first-order language
FO defined above, a formula A with one free variable, say x, is invariant for bisim-
ulations if the evaluation of A at bisimilar points is always the same; that is, for all
models M,N , and all states s in M and t in N , and all bisimulations S between M
and N such that s S t, we have M |= A{s/x} iff N |= A{t/x} (where M |= A{s/x}
means the formula A is satisfied in M , in the usual manner of first-order logics,
when s is assigned to the free variable x; similarly for N |= A{t/x}). In nowadays’s
terminology, van Benthem’s theorem says: a first-order formula A containing one
free variable is equivalent to the standard translation of a modal formula iff A is
invariant for bisimulations. That is, modal logic is the fragment of first-order logic
whose formulas have one free variable and are invariant for bisimulation.

The standard translation therefore defines a proper fragment of first-order logic
(not just syntactically, but also semantically). Indeed, with first-order logic one can
define very intensional properties of states in the models. For instance the formula
∃y.((x 6= y) ∧ (xU y) ∧ (y U x)) says that there are 2 connected points, and the
formula xU x says that there is at least one state with a transition onto itself. These
properties can distinguish states that are bisimilar. For example the second formula
distinguishes a state that has a transition onto itself from a bisimilar state that has
non-terminating sequences of transitions but no transitions onto itself. Hence the

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, ?? 20??.



124 · Davide Sangiorgi

formulas are not definable in modal logic since, as van Benthem’s theorem shows,
modal logic respects bisimulation. It is not so surprising that modal logic should
correspond to a proper fragment of first-order logic. The strength of van Benthem’s
theorem is that it tells us precisely what this fragment is.

The actual assertion in van Benthem’s original theorem is a bit different: in
place of “invariant for bisimulations” van Benthem required that the formula is
“invariant for p-relations and generated submodels”. The reason for this is that
p-relations are “total bisimulations”, not arbitrary ones. Hence in general it is
not possible to establish a p-relation between a model and submodels of it. Thus
van Benthem, who heavily plays with models and submodels in the proof, needs a
further restriction for the theorem to be true, namely the invariance for generated
submodels. (Intuitively, M is a generated submodel of a modelN ifM is a subgraph
of N that is transition closed, i.e., all transitions in N emanating from a point s
that is also in M are also transitions of M .) Generated submodels represent an
important construction on models of modal logics, and the property of invariance
under generated submodels had already been used by other researchers before van
Benthem (for instance, Feferman and Kreisel, in the 1960s).

The original proof of the theorem is also interesting. The implication from left
to right is easy: one shows that modal formulas are invariant for bisimulation
proceeding by induction on the depth of the formulas. The opposite implication is
the difficult one. Here a key part of the proof is to show that a point s in a model M
and a point t in a model N satisfy the same modal formulas if there are extensions
M ′ and N ′ of the models M and N in which s and t are bisimilar. The extensions
are obtained as the limits of appropriate elementary chains of models, starting from
the original models. Further, the embedding of the original models into the limits of
the chains preserves modal formulas. The reason why it is necessary to move from
the original modelsM andN to the extended modelsM ′ andN ′ is that on arbitrary
models two points may satisfy the same set of formulas without being bisimilar.
This may occur if the models are not finitely branching. By contrast, the extended
modelsM ′ andN ′ are “saturated”, in the sense that they have “enough points”. On
such models, two points satisfy the same modal formulas iff they are bisimilar. As
all finitely branching models are saturated, van Benthem’s construction also yields
the familiar Hennessy-Milner Theorem for modal logics [Hennessy and Milner 1985]
(an earlier version is [Hennessy and Milner 1980]): on finitely branching models, two
points are bisimilar iff they satisfy the same modal formulas. Saturated models need
not be finitely branching, however, thus van Benthem’s construction is somewhat
more general. Note that the need for saturation also would disappear if the logic
allowed some infinitary constructions, for instance infinite conjunction.

Van Benthem does not isolate the above part of the proof as a separate lemma
and this may have contributed to the result remaining unknown to researchers
in other fields. (The Hennessy-Milner Theorem, for instance, appears some years
later.)

For more details on van Benthem’s proof, see [Benthem 1976; 1983]; in modern
textbooks, such as [Blackburn et al. 2001], the proof is sometimes presented in a
different way, by directly appealing to the existence of saturated models; however
elementary chains are employed to show the existence of such saturated models.

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, ?? 20??.



On the Origins of Bisimulation and Coinduction · 125

After van Benthem’s theorem, bisimulation has been used extensively in Modal
Logic, for instance, to analyze the expressive power of various dialects of modal
logics, to understand which properties of models can be expressed in modal logics,
to define operations on models that preserve the validity of modal formulas.

3.4 Discussion

In Philosophical Logic we see, historically, the first appearance of the notion of
bisimulation. We do not find here, however, coinduction, at least not in an explicit
way. Thus total relations between models that represent bisimulations are defined—
the p-relations—but there is no explicit definition and use of bisimilarity. Similarly
no links are made to fixed-point theory.

In retrospective, today we could say that bisimulation, as a means of characteris-
ing equivalence of modal properties “was already there” in the Ehrenfeucht-Fräıssé
games. In the 1950s, Roland Fräıssé [1953] gave an algebraic formulation, as a
weak form of isomorphism, of indistinguishability by formulas of first-order logic.
Andrzej Ehrenfeucht [1961] then extended the result and gave it a more intuitive
game theoretic formulation, in what is now called the Ehrenfeucht-Fräıssé games.
Such games are today widely used in Computer Science, notably in Logic, Finite
Model Theory, but also in other areas such as Complexity Theory, following Im-
merman [1982]. It is clear that the restriction of the Ehrenfeucht-Fräıssé games to
modal logic leads to game formulations of bisimulation. However, such a connection
has been made explicit only after the discovery of bisimulation. See for instance
Thomas [1993].

4. BISIMULATION IN COMPUTER SCIENCE

4.1 Algebraic theory of automata

In Computer Science, the search for the origins of bisimulation takes us back to
the algebraic theory of automata, well-established in the 1960s. A good reference
is Ginzburg’s book [1968]. Homomorphisms can be presented on different forms
of automata. From the bisimulation perspective, the most interesting notions are
formulated on Mealy automata. In these automata, there are no initial and final
states; however, an output is produced whenever an input letter is consumed. Thus
Mealy automata can be compared on the set of output strings produced. Formally,
a Mealy automaton is a 5-tuple (W,Σ,Θ, T ,O) where

—W is the finite set of states ;

—Σ is the finite set of inputs ;

—Θ is a finite set of outputs ;

—T is the transition function, that is a set of partial functions {Ta : a ∈ Σ} from
W to W ;

—O is the output function, that is, a set of partial functions {Oa : a ∈ Σ} from
W to Θ.

The output string produced by a Mealy automaton is the translation of the input
string with which the automaton was fed; of course the translation depends on the
state on which the automaton is started. Since transition and output functions of
a Mealy automaton are partial, not all input strings are consumed entirely.

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, ?? 20??.



126 · Davide Sangiorgi

Homomorphism is defined on Mealy automata following the standard notion in
algebra, e.g., in group theory: a mapping that commutes with the operations defined
on the objects of study. Below, if A is an automaton, then WA is the set of states
of A, and similarly for other symbols. As we deal with partial functions, it is
convenient to view these as relations, and thereby use for them relational notations.
Thus fg is the composition of the two function f and g where f is used first (that
is, (fg)(a) = g(f(a))); for this, one requires that the codomain of f be included in
the domain of g. Similarly, f ⊆ g means that whenever f is defined then so is g,
and they give the same result.

A homomorphism from the automaton A to the automaton B is a surjective
function F from WA to WB such that for all a ∈ Σ:

(1) T A
a F ⊆ FT B

a (condition on the states); and

(2) OA
a ⊆ FOB

a (condition on the outputs).

(We assume here for simplicity that the input and output alphabets are the same,
otherwise appropriate coercion functions would be needed.)

At the time (the 1960s), homomorphism and alike notions are all expressed in
purely algebraic terms. Today we can make an operational reading of them, which

for us is more enlightening. Writing s
a
→
b
t if the automaton, on state s and input a,

produces the output b and evolves into the state t, and assuming for simplicity that
OA

a and T A
a are undefined exactly on the same points, the two conditions above

become:

—for all s, s′ ∈ WA, if s
a
→
b
s′ then also F (s)

a
→
b
F (s′).

Homomorphisms are used in that period to study a number of properties of au-
tomata. For instance, minimality of an automaton becomes the condition that the
automaton has no proper homomorphic image. Homomorphisms are also used to
compare automata. Mealy automata are compared using the notion of covering
(written ≤): A ≤ B (read “automaton B covers automaton A”) if B can do, state-
wise, at least all the translations that A does. That is, there is a total function ψ
from the states of A to the states of B such that, for all states s of A, all transla-
tions performed by A when started in s can also be performed by B when started in
ψ(s). Note that B can however have states with a behaviour completely unrelated
to that of any state of A; such states of B will not be the image of states of A. If
both A ≤ B and B ≤ A hold, then the two automata are deemed equivalent.

Homomorphism implies covering, i.e., if there is a homomorphism from A to
B then A ≤ B. The converse result is (very much) false. The implication be-
comes stronger if one uses weak homomorphisms. These are obtained by relaxing
the functional requirement of homomorphism into a relational one. Thus a weak
homomorphism is a total relation R on WA ×WB such that for all a ∈ Σ:

(1) R−1T A
a ⊆T B

a R−1 (condition on the states); and

(2) R−1OA
a ⊆ OB

a (condition on the outputs).

where relational composition, inverse, and inclusion are defined in the usual way for
relations (and functions are taken as special forms of relations). In an operational
interpretation as above, the conditions give:

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, ?? 20??.



On the Origins of Bisimulation and Coinduction · 127

s1

a

  B
BB

BB
BB

B
s2

b

~~||
||

||
||

s3

t1

a

��

t2

b

��
t3 t4

Fig. 2. On homomorphisms and weak homomorphisms

—whenever s R t and s
a
→
b
s′ hold in A, then there is t′ such that t

a
→
b
t′ holds in B

and s′ R t′.

(On the correspondence between the algebraic and operational definitions, see also
Remark 4.1 below.) Weak homomorphism reminds us of the notion of simulation for
Labelled Transition Systems (LTSs). The former is however stronger, because the
relation R is required to be total. (Also, in automata theory, the set of states and
the sets of input and output symbols are required to be finite, but this difference
is less relevant.)

Remark 4.1. To understand the relationship between weak homomorphisms and
simulations, we can give an algebraic definition of simulation on LTSs, taking these
to be triples (W,Σ, {Ta : a ∈ Σ}) whose components have the same interpretation
as for automata. A simulation between two LTSs A and B becomes a relation R
on WA ×WB such that, for all a ∈ Σ, condition (1) of weak homomorphism holds,
i.e.

—R−1T A
a ⊆T B

a R−1

This is precisely the notion of simulation defined operationally in Definition 2.4.
Indeed, given a state t ∈ WB and a state s′ ∈ WA, we have tR−1 T A

a s′ whenever

there is s ∈ WA such that s
a
−→ s′. Then, requiring that the pair (t, s′) is also in

T B
a R−1 is the demand that there is t′ such that t

a
−→ t′ and s′ R t′.

As homomorphisms, so weak homomorphisms imply covering. The result for
weak homomorphism is stronger as the homomorphisms are strictly included in the
weak homomorphisms. An example of the strictness is given in Figure 2, where the
states si belong to an automaton and the states ti to another one, there are two
input letters a and b, and for simplicity we ignore the automata outputs. We cannot
establish a homomorphism from the automaton on the left to the automaton on
the right, since a homomorphism must be surjective. Even leaving the surjective
condition aside, a homomorphism cannot be established because the functional
requirement prevents us from relating s3 with both t3 and t4. By contrast, a weak
homomorphism exists, relating s1 with t1, s2 with t2, and s3 with both t3 and t4.

As weak homomorphisms are total relations, however, the converse is still false:
covering does not imply weak homomorphism. Indeed I have not found, in the
literature of that time, characterisations of covering, or equivalence, in terms of
notions akin to homomorphism. Such characterisations would have taken us closer
to the idea of bisimulation.

In conclusion: in the algebraic presentation of automata in the 1960s we find
concepts that remind us of bisimulation, or better, simulation. However there are
noticeable differences, as we have outlined above. But the most important difference

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, ?? 20??.



128 · Davide Sangiorgi

is due to the fact that the objects are deterministic. To see how significant this is,
consider the operational reading of weak homomorphism, namely “whenever s R t
... then there is t′ such that....”. As automata are deterministic, the existential in
front of t′ does not play a role. Thus the alternation of universal and existential
quantifiers—a central aspect of the definitions of bisimulation and simulation—does
not really show up on deterministic automata.

4.2 Robin Milner

Decisive progress towards bisimulation is made by Robin Milner in the 1970s. Mil-
ner transplants the idea of weak homomorphism into the study of the behaviour
of programs in a series of papers in the early 1970s ([Milner 1970; 1971b; 1971a],
with [Milner 1971a] being a synthesis of the previous two). He studies programs
that are sequential, imperative, and that may not terminate. He works on the com-
parisons among such programs. The aim is to develop techniques for proving the
correctness of programs, and for abstracting from irrelevant details so that it is clear
when two programs are realisations of the same algorithm. In short, the objective
is to understand when and why two programs can be considered “intensionally”
equivalent.

To this end, Milner proposes—appropriately adapting it to his setting—the al-
gebraic notion of weak homomorphism that we have described in Section 4.1. He
renames weak homomorphism as simulation, a term that better conveys the idea
of the application in mind. Although the definition of simulation is still algebraic,
Milner now clearly spells out its operational meaning. But perhaps the most impor-
tant contribution in his papers is the proof technique associated to simulation that
he strongly advocates. This techniques amounts to exhibiting the set of pairs of
related states, and then checking the simulation clauses on each pair. The strength
of the technique is precisely the locality of the checks that have to be made, in the
sense given to locality in Section 2.1. The technique is proposed to prove not only
results of simulation, but also results of input/output correctness for programs, as
a simulation between programs implies appropriate relationships on their inputs
and outputs. Besides the algebraic theory of automata, other earlier works that
have been influential for Milner are those on program correctness, notably Floyd
[1967], Manna [1969], and Landin [1969], who pioneers the algebraic approach to
programs.

Milner’s simulation is used by other authors, notably by Tony Hoare, in a pa-
per [1972] widely cited in the literature on programming languages, especially the
object-oriented ones. Hoare uses simulation as a basis for a method of proving
correctness of concrete representations of program data with respect to abstract
versions of them.

Formally, however, Milner’s simulation remains the same as weak homomorphism
and as such it is not today’s simulation. Programs for Milner are deterministic, with
a total transition function, and these hypotheses are essential. Non-deterministic
and concurrent programs or, more generally, programs whose computations are
trees rather than sequences, are mentioned in the conclusions for future work. It is
quite possible that if this challenge had been quickly taken up, then today’s notion
of simulation (or even bisimulation) would have been discovered much earlier.

Milner himself, later in the 1970s, does study concurrency very intensively, but

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, ?? 20??.



On the Origins of Bisimulation and Coinduction · 129

under a very different perspective: he abandons the view of parallel programs as
objects with an input/output behaviour akin to functions, in favor of the view of
parallel programs as interactive objects. This leads Milner to develop a new the-
ory of processes and a calculus—CCS—in which the notion of behavioural equiva-
lence between processes—observational equivalence—is fundamental. Milner how-
ever keeps, from his earlier works, the idea of ”locality”, that is, the interest in
notions of equivalence in which outcomes are local to states, rather than global to
programs like their traces.

The behavioural equivalence that Milner puts forward, and that is prominent in
the first book on CCS [Milner 1980], is inductively defined. It is the stratification of
bisimilarity, ∼ω, that we discuss in Section 2.2. Technically, in contrast with weak
homomorphisms, ∼ω has also the reverse implication (on the transitions of the sec-
ond components of the pairs in the relation), and can be used on non-deterministic
structures. The addition of a reverse implication was not obvious. For instance,
a natural alternative would have been to maintain an asymmetric basic definition,
possibly refine it, and then take the induced equivalence closure to obtain a sym-
metric relation (if needed). Indeed, among the main behavioural equivalences in
concurrency—there are several of them, see [Glabbeek 1993; 1990])—bisimulation
is the only one that is not naturally obtained as the equivalence-closure of a pre-
order (which incidentally also explains why giving denotational interpretations of
bisimulation can be hard).

With Milner’s advances, the notion of bisimulation is almost there: it remained
to turn an inductive definition into a coinductive one. This will be David Park’s
contribution.

It is worth pointing out that, towards the end of the 1970s, homomorphisms-like
notions appear in other attempts at establishing “simulations”, or even “equiva-
lences”, between concurrent models—usually variants of Petri Nets. Good examples
are John S. Gourlay, William C. Rounds, and Richard Statman [1979] and Kurt
Jensen [1980], which develop previous work by Daniel Brand [1978] and Y. S. Kwong
[1977]. Gourlay, Rounds, and Statman’s homomorphisms (called contraction) re-
late an abstract system with a more concrete realisation of it—in other words, a
specification with an implementation. Jensen’s proposal (called simulation), which
is essentially the same as Kwong’s strict reduction [1977], is used to compare the ex-
pressiveness of different classes of Petri Nets. The homomorphisms in both papers
are stronger than today’s simulation or bisimulation; for instance they are functions
rather than relations. Interestingly, in both cases there are forms of “reverse im-
plications” on the correspondences between the transitions of related states. Thus
these homomorphisms, but especially those in [Gourlay et al. 1979], remind us of
bisimulation, at least in the intuition behind it. In [Gourlay et al. 1979] and [Jensen
1980], as well as other similar works of that period, the homomorphisms are put
forward because they represent conditions sufficient to preserve certain important
properties (such as Church-Rosser and deadlock freedom). In contrast with Milner,
little emphasis is given to the proof technique based on local checks that they bear
upon. For instance the definitions of the homomorphisms impose correspondence
on sequences of actions from related states.

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, ?? 20??.



130 · Davide Sangiorgi

4.3 David Park

In 1980, Milner returns to Edinburgh after a six-month appointment at Aarhus
University, and completes his first book on CCS2. Towards the end of that year,
David Park begins a sabbatical in Edinburgh, and stays at the top floor of Milner’s
house.

Park is one of the top experts in fixed-point theory at the time. He makes the
final step in the discovery of bisimulation precisely guided by fixed-point theory.
Park notices that the inductive notion of equivalence that Milner is using for his
CCS processes is based on a monotone functional over a complete lattice. And by
adapting an example by Milner, he sees that Milner’s equivalence is not a fixed
point for the functional, and that therefore the functional is not cocontinuous. He
then defines bisimilarity as the greatest fixed point of the functional, and derives
the bisimulation proof method from the theory of greatest fixed points. Further,
Park knows that, to obtain the greatest fixed point of the functional in an inductive
way, the ordinals and transfinite induction, rather then the naturals and standard
induction, are needed (see also the discussion on Theorem 2.12 in Section 7). Milner
immediately and enthusiastically adopts Park’s proposal, and in the years to come
makes it popular and the cornerstone of the theory of CCS [Milner 1989]. Here is
the discovery of bisimulation, and the choice of the name for it, in Milner’s own
words:

He [i.e., David Park] came down during breakfast one morning carrying
my CCS book and said ”there’s something wrong!”. So I prepared to
defend myself. He pointed out the non coinductive way that I had set up
observation equivalence, as the limit of a decreasing ω-chain of relations,
which didn’t quite reach the maximal fixed point.

After about 10 minutes I realised he was right, and through that day I
got excited about the coinductive proof technique.

That was what David meant by ”something’s wrong”. Not only had
I missed the (fixed!) point—which I had realised—but also my proof
technique (involving induction on the iteration of the functions) for es-
tablishing instances of the equivalences was clumsy. I immediately saw
that he had liberated me from a misconception, and that the whole the-
ory was going to look very much better by using maximal fixed points
and (what I now recognise as) coinduction. [...]

That same day we went for a walk in the hills around Edinburgh, and the
express purpose was to agree what the pre-fixed points and the maximal
fixed point should be called. We thought of a lot of words; David at one
point liked ”mimicry”, which I vetoed. I think ”bisimulation” was my
suggestion; in any case, we both liked it, partly because we could use that
word for the pre-fixed points and ”bisimilarity” for the maximal fixed
point itself. I think David demurred because there are five syllables; but
we then thought that they were a lot easier to pronounce than the three
syllables of ”mimicry”!

2The first part of this section is based on personal communications with R. Milner.

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, ?? 20??.



On the Origins of Bisimulation and Coinduction · 131

Milner knew that ∼ω is not invariant under transitions. Indeed he is not so much
struck by the difference between ∼ω and bisimilarity as behavioural equivalences, as
the processes exhibiting such differences can be considered rather artificial. What
excites him is the coinductive proof technique for bisimilarity. Both bisimilarity and
∼ω are rooted in the idea of locality, but the coinductive method of bisimilarity
further facilitates proofs.

In Computer Science, the standard reference for bisimulation and the bisimu-
lation proof method is Park’s paper “Concurrency on Automata and Infinite Se-
quences” [Park 1981a] (one of the most quoted papers in concurrency). While the
reference to Park is justified, mentions of that particular paper can be questioned.

Park’s discovery is only partially reported in [Park 1981a]. The main topic of
that paper is a different one, namely omega-regular languages (extensions of regu-
lar languages containing also infinite sequences) and operators for fair concurrency.
And the main contributions, as claimed by Park, are: characterisations of these lan-
guages as sets of recursive equations involving minimal and maximal fixed points,
something fairly novel at the time (Park in fact had already proposed similar con-
structions in previous years, see for instance [Park 1979]); characterisations of these
languages as the languages accepted by certain variants of Büchi automata (the
main difference over Büchi automata is that Park’s automata also recognise finite
words, but this does not affect much of the theory of the automata); properties of
closure of the languages under a fair-concurrency operator.

Bisimulation appears at the end, as a secondary contribution, as a proof technique
for trace equivalence on automata. Park himself does not seem to believe much in
it. He writes, for instance:

This provides motivation to be interested in proof principles for au-
tomata such as those involved here [cf: bisimulation] even though their
utility for the purposes of operational semantics of programs is obviously
limited.

Bisimulation is first given on finite automata, but only as a way of introducing the
concept on the Büchi-like automata investigated in the paper. Here, bisimulation
has additional clauses that make it non-transitive and different from the definition
of bisimulation we know today. Further, bisimilarity and the coinduction proof
method are not mentioned in the paper.

Indeed, Park never writes a paper to report on his findings about bisimulation.
It is possible that this does not appear to him a contribution important enough
to warrant a paper: he considers bisimulation a variant of the earlier notion of
simulation by Milner [1970; 1971a]; and it is not in Park’s style to write many
papers. The best account I have found of Park’s discovery of bisimulation are the
summary and the slides of his talk at the 1981 Workshop on the Semantics of
Programming Languages [Park 1981b].

4.4 Discussion

In Computer Science, the move from homomorphism to bisimulation follows some-
how an opposite path with respect to Modal Logic: first homomorphisms are made
relational, then they are made symmetric, by adding a reverse implication.

It remains puzzling to me why bisimulation has been discovered so late in Com-

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, ?? 20??.



132 · Davide Sangiorgi

puter Science. For instance, in the 1960s weak homomorphism is well-known in
automata theory and, as discussed in Section 4.1, this notion is not that far from
simulation. Another emblematic example, again from automata theory, is given by
the algorithm for minimisation of deterministic automata, already known in the
1950s [Huffman 1954; Moore 1956] (also related to this is the Myhill-Nerode theo-
rem [Nerode 1958]). The aim of the algorithm is to find an automaton equivalent
to a given one but minimal in the number of states. The algorithm proceeds by
progressively constructing a relation S with all pairs of non-equivalent states. It
roughly goes as follows. First step (a) below is applied, to initialise S; then step
(b), where new pairs are added to S, is iterated until a fixed point is reached, i.e.,
no further pairs can be added.

a. For all states s, t,: if s final and t is not, or vice versa, then s S t

b. For all states s, t, such that ¬(s S t): if there is a such that Ta(s) S Ta(t) then
s S t

The final relation gives all pairs of non-equivalent states. Then its complement, say
S, gives the equivalent states. In the minimal automaton, the states in the same
equivalence class for S are collapsed into a single state.

The algorithm strongly reminds us of the Paige-Tarjan’s partition refinement
algorithm [Paige and Tarjan 1987], the best known algorithm for computing bisim-
ilarity and for minimisation modulo bisimilarity. Indeed, the complement relation S
that one wants to find has a natural coinductive definition, as a form of bisimilarity,
namely the largest relation R such that

(1) if s R t then either both s and t are final or neither is;

(2) for each a, if s R t then Ta(s) R Ta(t).

Further, any relation R that satisfies the conditions (1) and (2)—that is, any
bisimulation—only relates pairs of equivalent states and can therefore be used to
determine equivalence of specific states.

The above definitions and algorithm are for deterministic automata. Bisimula-
tion would have been interesting also on non-deterministic automata. Although on
such automata bisimilarity does not coincide with trace equivalence—the standard
equality on automata—at least bisimilarity implies trace equivalence and the algo-
rithms for bisimilarity have a better complexity (P-complete [Alvarez et al. 1991;
Balcázar et al. 1992], rather than PSPACE-complete [Meyer and Stockmeyer 1972;
Kanellakis and Smolka 1990]).

5. SET THEORY

In Mathematics, bisimulation and concepts similar to bisimulation are formulated in
the study of properties of extensionality of models. Extensionality guarantees that
equal objects cannot be distinguished within the given model. When the structure
of the objects, or the way in which the objects are supposed to be used, are non-
trivial, the “correct” notion of equality may be non-obvious. This is certainly
the case for non-well-founded sets, as they are objects with an infinite depth, and
indeed most of the developments in Set Theory towards bisimulation are made in a
line of work on the foundations of theories of non-well-founded sets. Bisimulation

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, ?? 20??.



On the Origins of Bisimulation and Coinduction · 133

is derived from the notion of isomorphism (and homomorphism), intuitively with
the objective of obtaining relations coarser than isomorphism but still with the
guarantee that related sets have “the same” internal structure.

Bisimulation is first introduced by Forti and Honsell and, independently, by Hin-
nion, around the same time (beginning of the 1980s). It is recognised and becomes
important with the work of Aczel and Barwise. Some earlier constructions, how-
ever, have a clear bisimulation flavor, notably Mirimanoff’s isomorphism at the
beginning of the 20th century.

5.1 Non-well-founded sets

Non-well-founded sets are, intuitively, sets that are allowed to contain themselves.
As such they violate the axiom of foundation, according to which the membership
relation on sets does not give rise to infinite descending sequences

. . . An ∈ An−1 ∈ . . . ∈ A1 ∈ A0 .

For instance, a set Ω which satisfies the equation Ω = {Ω} is circular and as such
non-well-founded. A set can also be non-well-founded without being circular; this
can happen if there is an infinite membership chain through a sequence of sets all
different from each other.

If the axiom of foundation is used, the sets are well-founded. On well-founded
sets the notion of equality is expressed by Zermelo’s extensionality axiom: two
sets are equal if they have exactly the same elements. In other words, a set is
precisely determined by its elements. This is very intuitive and naturally allows
us to reason on equality proceeding by (transfinite) induction on the membership
relation. For instance, we can thus establish that the relation of equality is unique.
Non-well-founded sets, by contrast, may be infinite in depth, and therefore inductive
arguments may not be applicable. For instance, consider the sets A and B defined
via the equations A = {B} and B = {A}. If we try to establish that they are equal
via the extensionality axiom we end up with a tautology (“A and B are equal iff A
and B are equal”) that takes us nowhere.

Different formulations of equality on non-well-founded sets appear during the
20th century, together with proposals for axioms of anti-foundation.

5.2 The stratified approach to set theory

The first axiomatisation of set theory by Ernst Zermelo in 1908 [Zermelo 1908]
has seven axioms, among which is the axiom of extensionality. However, it has no
axioms of foundation, and the possibility of having circular sets is in fact left open
(page 263, op. cit.).

In the same years, Bertrand Russell strongly rejects all definitions that can involve
forms of circularity (“whatever involves all of a collection must not be one of the
collection”, in one of Russell’s formulations [1908]). He favors a theory of types
that only allows stratified constructions, where objects are hereditarily constructed,
starting from atoms or primitive objects at the bottom and then iteratively moving
upward through the composite objects. A preliminary version of the theory is
announced by Russell already in 1903 [Russell 1903, Appendix B]; more complete
and mature treatments appear in 1908 [Russell 1908] and later, in 1910, 1912, 1913,
in the monumental work with Alfred North Whitehead [Russell and Whitehead

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, ?? 20??.



134 · Davide Sangiorgi

1913].
Russell’s approach is followed by the main logicians of the first half of the 20th

century, including Zermelo himself, Abraham Fraenkel, Thoralf Skolem, Johann
von Neumann, Kurt Gödel, Paul Bernays. Their major achievements include the
formulation of the axiom of foundation, and the proofs of its consistency and inde-
pendence. An axiom of foundation is deemed necessary so to have a “canonical”
universe of sets. Without foundation, different interpretations are possible, some
including circular sets. This possibility is clearly pointed out as a weakness by
Skolem [1923], and by Fraenkel [1922], where circular sets (precisely, Mirimanoff’s
“ensembles extraordinaires”, see below) are labelled as “superfluous”. It will be
formally proved by Bernays only in 1954 [Bernays 1954] that the existence of cir-
cular sets does not lead to contradictions in the Zermelo-Fraenkel system without
axiom of foundation.

Remark 5.1. The axiom of foundation forces the universe of sets in which the
other axioms (the basic axioms) should be interpreted to be the smallest possible
one; i.e., to be an “inductive universe”. By contrast, axioms of anti-foundation
lead to the largest possible universe, i.e., a “coinductive universe”. Indeed, referring
to the algebraic/coalgebraic interpretation of induction/coinduction, the foundation
axiom can be expressed as a requirement that the universe of sets should be an initial
algebra for the powerset functor, whereas anti-foundation (as in Forti and Honsell,
Aczel, and Barwise) can be expressed as a requirement that the universe should be
a final coalgebra for the same functor. The former is an inductive definition of the
universe, whereas the latter is a coinductive one.

The motivations for formalising and studying the stratified approach advocated
by Russell were strong at the beginning of the 20th century. The discovery of
paradoxes such as Burali-Forti’s and Russell’s had made the set theory studied by
Cantor and Frege shaky, and circularity—with no distinction of cases—was gen-
erally perceived as the culprit for these as well as for paradoxes known in other
fields. Further, the stratified approach was in line with common sense and percep-
tion (very important in Russell’s conception of science), which denies the existence
of circular objects.

The stratified approach remains indeed the only approach considered (in Logics
and Set Theory), up to roughly the 1960s; with the exception of Mirimanoff and
Finsler that we discuss below. The stratified approach has also inspired—both in
the name and in the method—type theory in Computer Science, notably in the
works of Church, Scott, and Martin-Löf. It will be first disputed by Jean-Yves
Girard and John Reynolds, in the 1970s, with the introduction of impredicative
polymorphism.

5.3 Non-well-founded sets and extensionality

Dimitry Mirimanoff first introduces in 1917 the distinction between well-founded
and non-well-founded sets, the “ensembles ordinaires et extraordinaires” in Mi-
rimanoff’s words [1917a] (on the same topic are also the two successive papers
[Mirimanoff 1917b] and [Mirimanoff 1920]). Mirimanoff realises that Zermelo’s set
theory admitted sophisticated patterns of non-well-foundedness, beyond the “sim-
ple” circularities given by self-membership as in the purely reflexive set Ω = {Ω}.

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, ?? 20??.



On the Origins of Bisimulation and Coinduction · 135

In [Mirimanoff 1917b], Mirimanoff also tries to give an intuition for the non-well-
founded sets; he recalls the cover of a children book he had seen, with the image
of two children looking at the cover of a book, which in turn had the image of two
children, in a supposedly infinite chain of nested images.

Mirimanoff defines an interesting notion of isomorphism between sets, that we
report in Section 5.8. Mirimanoff does not however go as far as proposing an ax-
iom of extensionality more powerful than Zermelo’s. This is first attempted by
Paul Finsler, in 1926 [Finsler 1926]. Finsler presents 3 axioms for a universe of sets
equipped with the membership relation. The second one is an extensionality axiom,
stipulating that isomorphic sets are equal. Finsler’s notion of isomorphism between
two sets X and Y—which is different from Mirimanoff’s—is, approximately, a bi-
jection between the transitive closures of X and Y (more precisely, the transitive
closures of the unit sets {X} and {Y }; the precise meaning of isomorphism for
Finsler can actually be debated, for it appears in different forms in his works).3

Finsler uses graph theory to explain properties and structure of sets, something
that later Aczel will make more rigorous and at the heart of his theory of non-well-
founded sets.

Mirimanoff and Finsler’s works are remarkable: they go against the standard
approach to set theory at the time; and against the common sense according to
which objects are stratified and circular sets are “paradoxical”. For Mirimanoff
and Finsler, not all circular definitions are dangerous, and it is a task for the
logicians to isolate the “good” ones.

The attempts by Mirimanoff and Finsler remain little known. We have to wait
till around the 1960s with, e.g., Specker [1957] and Scott [1960], to see a timid
revival of the interest in non-well-founded structures, and the late 1960s, and then
the 1970s and 1980s, for a wider revival, with Boffa (with a number of papers,
including [1968; 1969; 1972]) and many others. New proposals for anti-foundation
axioms are thus made, and with them, new interpretations of extensionality on
non-well-founded sets, notably from Scott [1960], and Forti and Honsell [1983].
Forti and Honsell obtain bisimulation; their work is then developed by Aczel and
Barwise. We discuss Forti and Honsell, Aczel, and Barwise’s contributions below.
On the history of non-well-founded sets, the reader may also consult Aczel [Aczel
1988, Appendix A].

5.4 Marco Forti and Furio Honsell

Marco Forti and Furio Honsell’s work on non-well-founded sets [1981; 1983] (and
various papers thereafter) is spurred by Ennio De Giorgi, a well-known analyst who,
in the 1970s and 1980s, organises regular weekly meetings at the Scuola Normale
Superiore di Pisa, on logics and foundations of Mathematics. In some of these
meetings, De Giorgi proposes constructions that could yield infinite descending
chains of membership on sets, that Forti and Honsell then go on to elaborate and

3A set A is transitive if each set B that is an element of A has the property that all the elements
of B also belong to A; that is, all composite elements of A are also subsets of A. The transitive
closure of a set C is the smallest transitive set that contains C. Given C, its transitive closure is
intuitively obtained by copying at the top level all sets that are elements of C, and then recursively
continuing so with the new top-level sets.

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, ?? 20??.



136 · Davide Sangiorgi

develop.
The most important paper is [Forti and Honsell 1983]. Here Forti and Honsell

study a number of anti-foundation axioms, derived from a “Free Construction Prin-
ciple” proposed by De Giorgi. They include axioms that already appeared in the
literature (such as Scott’s [Scott 1960]), and a new one, called X1, that gives the
strongest extensionality properties, in the sense that it equates more sets. (We
recall X1 in the next section, together with Aczel’s version of it.) The main ob-
jective of the paper is to compare the axioms, and define models that prove their
consistency. Bisimulations and similar relations are used in the constructions to
guarantee the extensionality of the models.

Forti and Honsell use, in their formulation of bisimulation, functions f : A 7→
℘(A) from a set A to its powerset ℘(A). Bisimulations are called f -conservative rela-
tions and are defined along the lines of the fixed-point interpretation of bisimulation
in Section 2.3. We can make a state-transition interpretation of their definitions,
for a comparison with today’s definition (Definition 2.3). If f is the function from
A to ℘(A) in question, then we can think of A as the set of the possible states, and
of f itself as the (unlabeled) transition function; so that f(x) indicates the set of
possible “next states” for x. Forti and Honsell define the fixed point behaviour of
f on the relations on A, via the functional F defined as follows4. If R is a relation
on A, and s, t ∈ A, then (s, t) ∈ F (R) if:

—for all s′ ∈ f(s) there is t′ ∈ f(t) such that s′ R t′;

—the converse, i.e. for all t′ ∈ f(t) there is s′ ∈ f(s) such that s′ R t′.

A reflexive and symmetric relation R is f -conservative if R ⊆ F (R); it is f -
admissible if it is a fixed point of F , i.e., R = F (R). The authors note that
F is monotone over a complete lattice, hence it has a greatest fixed point (the
largest f -admissible relation). They also prove that such greatest fixed point can
be obtained as the union over all f -conservative relations (the coinduction proof
principle), and also, inductively, as the limit of a sequence of decreasing relations
over the ordinals that starts with the universal relation A×A (akin to the character-
isation in Theorem 2.12). The main difference between f -conservative relations and
today’s bisimulations is that the former are required to be reflexive and symmetric.

However, while the bisimulation proof method is introduced, as derived from the
theory of fixed points, it remains rather hidden in Forti and Honsell’s works, whose
main goal is to prove the consistency of anti-foundation axioms. For this the main
technique uses the f -admissible relations.

5.5 Peter Aczel

In Mathematics, bisimulation and non-well-founded sets are made popular by Pe-
ter Aczel, notably with his book [Aczel 1988]. Aczel is looking for mathematical
foundations of processes, prompted by the work of Milner on CCS and his way of
equating processes with an infinite behaviour via a bisimulation quotient. Aczel
reformulates Forti and Honsell’s anti-foundation axiom X1. In Forti and Honsell
[1983], the axiom says that from every relational structure there is a unique homo-
morphism onto a transitive set. Aczel calls the axiom AFA and expresses it with

4We use a notation different from Forti and Honsell here.

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, ?? 20??.



On the Origins of Bisimulation and Coinduction · 137

2

��>
>>

>>
>>

����
��

��
�

0 1oo

c

����
��

��
��

��
a b

PP

Fig. 3. Sets as graphs

the help of graph theory, in terms of graphs whose nodes are decorated with sets.
For this, sets are thought of as (pointed) graphs, where the nodes represent sets,
the edges represent the converse membership relation (e.g., an edge from a node x
to a node y indicates that the set represented by y is a member of the set repre-
sented by x), and the root of the graph indicates the starting point, that is, the
node that represents the set under consideration. For instance, the sets {∅, {∅}}
and D = {∅, {D}} naturally corresponds to the graphs of Figure 3 (where for con-
venience nodes are named) with nodes 2 and c being the roots. The graphs for the
well-founded sets are those without infinite paths or cycles, such as the graph on
the left in Figure 3. AFA essentially states that each graph represents a unique
set. This is formalised via the notion of decoration. A decoration for a graph is an
assignment of sets to nodes that respects the structure of the edges; that is, the
set assigned to a node is equal to the set of the sets assigned to the children of the
node. For instance, the decoration for the graph on the left of Figure 3 assigns ∅ to
node 0, {∅} to node 1, and {∅, {∅}} to node 2, whereas that for the graph on the
right assigns ∅ to a, {D} to b, and {∅, {D}} to c. Axiom AFA stipulates that every
graph has a unique decoration. (In Aczel, the graph plays the role of the relational
structure in Forti and Honsell, and the decoration the role of the homomorphism
into a transitive set.) In this, there are two important facts: the existence of the
decoration, and its uniqueness. The former tells us that the non-well-founded sets
we need do exist. The latter tell us what is equality for them. Thus two sets are
equal if they can be assigned to the same node of a graph. For instance the sets
Ω, A and B in Section 5.1 are equal because the graph

•
��
•__

has a decoration in which both nodes receive Ω, and another decoration in which
the node on the left receives A and that on the right B. Bisimulation comes out
when one tries to extract the meaning of equality. A bisimulation relates sets A
and B such that

—for all A1 ∈ A there is B1 ∈ B with A1 and B1 related; and the converse, for the
elements of B1.

Two sets are equal precisely if there is a bisimulation relating them. The bisimula-
tion proof method can then be used to prove equalities between sets, for instance
the equality between the sets A and B above. This equality among sets is also
referred to as strong extensionality because it is the most generous, or the coarsest,
equality that is compatible with the membership structure of sets: two sets are
different only if there they present some genuine, observable, structural difference.

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, ?? 20??.



138 · Davide Sangiorgi

Aczel formulates AFA towards end 1983; he does not publish it immediately
having then discovered the earlier work of Forti and Honsell and the equivalence
between AFA and X1. Instead, he goes on developing the theory of non-well-
founded sets, mostly through a series of lectures in Stanford between January and
March ’85, which leads to the book [Aczel 1988]. Aczel shows how to use the
bisimulation proof method to prove equalities between non-well-founded sets, and
develops a theory of coinduction that sets the basis for the coalgebraic approach to
semantics (Final Semantics).

Up to Aczel’s book [Aczel 1988], all the works on non-well-founded sets had
remained outside the mainstream. This changes with Aczel, for two main reasons:
the elegant theory that he develops, and the concrete motivations for studying
non-well-founded sets that he brings up.

Something that influences the developments of non-well-founded sets, and that is
manifest in Aczel’s work is Mostowski’s Collapse Lemma (proved probably some-
time in the 1940s and today recognised as fundamental in the study of models of set
theory). The original statement of the lemma talks about well-founded relations;
roughly it says that given any such relation there is a unique set that faithfully rep-
resents the relation in its membership structure. Aczel reformulates the collapse on
graphs. It becomes the assertion that every well-founded graph has a unique deco-
ration. Axiom AFA is then obtained by removing the well-foundedness hypothesis
(of course now, on the non-well-founded sets, it is an axiom, whereas Mostowski’s
collapse on the well-founded sets is a lemma). The collapse is also fundamental
for the formal representation of sets as graphs, as it allows us to conclude that we
can associate a unique set to each pointed graph, via the decoration. When Finsler
writes his 1926 paper [Finsler 1926], the collapse construction is not known and
indeed Finsler’s use of graph theory remains informal.

5.6 Jon Barwise

Aczel’s original motivation for the study on non-well-founded sets is to provide
set-theoretic models for CCS. Jon Barwise brings up other applications, notably
the study of paradoxes such as the Liar paradox in Philosophical Logic and more
broadly the study of meaning in natural (i.e., human spoken) languages [Barwise
and Etchemendy 1987].

Further, Barwise develops a theory of non-well-founded sets that is not based on
the relationship between sets and graph theory as Aczel, but, instead, on systems
of equations. The axiom AFA becomes a requirement that appropriate systems of
equations have a unique solution. To understand this point consider that, as the
purely reflexive set Ω can be seen as the solution to the equation x = {x}, so all non-
well-founded sets arise from systems of equations with variables on the left-hand
side, and well-founded sets possibly containing such variables on the right-hand
side. In Aczel [1988] this is expressed as the Solution Lemma. Barwise makes it the
base assumption from which all the theory of sets is derived. For more details, the
reader may consult Barwise’s book with Lawrence Moss [Barwise and Moss 1996].

5.7 Extensionality quotients: Roland Hinnion and others

More or less at the same time as Forti and Honsell, and independently from them,
bisimulation-like relations are used by Roland Hinnion [1980; 1981] (a related,

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, ?? 20??.



On the Origins of Bisimulation and Coinduction · 139

but later, paper is also [Hinnion 1986]). Hinnion follows Mostowski’s collapse;
Mostowski’s construction allows one to obtain, from a well-founded relational struc-
ture, a model of set theory in which Zermelo’s axiom of extensionality holds. Hin-
nion aims at generalising this to arbitrary (i.e., not necessarily well-founded) struc-
tures. Thus he defines forms of bisimulation on relational structures, as usual the
“transitions” of the bisimulation game being dictated by the relation on the struc-
ture. He considers two such forms. The final equivalences (later [Hinnion 1986]
called increasing) are the bisimulations that are also equivalences. The contrac-
tions are the final equivalences whose quotient on the original structure satisfies
the extensionality axiom. Roughly we can think of contractions as bisimulation
equivalences that are also congruences, in that they are preserved by the operators
of the model, i.e, by the addition of external structure.

Hinnion does not formulate axioms of anti-foundation. Thus while imposing the
AFA axiom makes equality the only possible bisimulation for any structure, Hinnion
uses bisimulations to define new structures, via a quotient.

Although Hinnion points out that final equivalences and contractions form a
complete lattice, he does not put emphasis on the maximal ones. The equalities
obtained via his quotients can indeed be finer than the equality that the AFA
axiom yields (which corresponds to the quotient with bisimilarity, the maximal
bisimulation). Consequently, he also does not put emphasis on the coinduction
proof principle associated to bisimulation.

Constructions similar to Hinnion’s, that is, uses of relations akin to bisimulation
to obtain extensional quotient models, also appear in works by Harvey Friedman
[1973] and Lev Gordeev [1982]. In this respect, however, the first appearance of
a bisimulation relation I have seen is in a work by Jon Barwise, Robin O. Gandy,
and Yiannis N. Moschovakis [1971], and used in the main result about the char-
acterisation of the the structure of the next admissible set A+ over a given set A.
(Admissible Sets form a Set Theory weaker than Zermelo-Fraenkel’s in the princi-
ples of set existence; it was introduced in the mid 1960s by Saul Kripke and Richard
Platek with the goal of generalising ordinary recursion theory on the integers to
ordinals smaller than a given “well-behaved” one.) A stronger version of the result
is found in Moschovakis’s book [1974] (where the main result is Theorem 9E.1, in
Chapter 9, and the bisimulation relation is used in the proof of Lemma 9). As most
of the results we have mentioned in Set Theory, so the Barwise-Gandy-Moschovakis
Theorem is inspired by Mostowski’s Collapse Lemma. While the papers [Barwise
et al. 1971; Friedman 1973; Gordeev 1982] make use of specific bisimulation-like
relations, they do not isolate or study the concept.

5.8 Discussion

It may appear surprising that also in Mathematics it takes so long for the notion
of bisimulation to appear. This is partly explained by the limited attention to
non-well-founded structures up-to the 1980s, as discussed in Section 5.2.

It is fair to say, however, that some of the very early constructions had already
a definite bisimulation flavor. An enlightening example is Mirimanoff’s pioneering
work on non-well-founded sets. Mirimanoff [1917a] defines a notion of isomorphism
for sets that have atoms (often called urelements), i.e., elements that cannot be
decomposed and that are not the empty set. Two such sets E and E′ are deemed

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, ?? 20??.



140 · Davide Sangiorgi

isomorphic when the two conditions below hold:

(1) The sets E and E′ are equivalent; that is, a perfect correspondence can be
established between the elements of E and E′

(2) Further, the above correspondence can be established in such a way that each
atom e in E corresponds to an atom e′ in E′ and conversely; and each element-
set F of E corresponds to an element-set F ′ of E′ (an element-set of a set G is
an element of G that is a set). The perfect correspondence between F and F ′

can then be established in a way that each atom in F corresponds to an atom
in F ′, and each element-set of F corresponds to an element-set of F ′; and so
forth.

Although today we would give this definition in a different way, its meaning is clear.
Mirimanoff’s isomorphism abstracts from the nature and identity of the atoms. His
intention—clearly stated in [Mirimanoff 1917b]—is to relate sets with the same tree
structure, as determined by the membership relation. (In other words, if we think
of sets as trees, along the lines of the representation of sets as graphs mentioned in
Section 5.5, then Mirimanoff’s isomorphism is essentially an isomorphism between
such trees.)

Mirimanoff’s isomorphism is not far from the equality on sets given by Finsler’s
and Scott’s anti-foundation axioms. These equalities too, indeed, are based on
notions of isomorphism. The peculiarity of Mirimanoff’s definition is that it is built
on the idea of equating potentially infinite objects by decomposing, or observing,
them top-down, from a composite object to its constituents. This idea is also at the
heart of the definition of bisimulation (where, for instance, decomposing a process
is observing its transitions). The “perfect correspondence” used by Mirimanoff is
however a bijection between the components of the sets, rather than a relation,
and as such the resulting notion of equality is finer than bisimilarity. For instance,
consider the purely reflexive set Ω and the set U = {Ω, U}. It is easy to see that
they are bisimilar. However they are not isomorphic for Mirimanoff as their trees,
in Figure 4, are quite different. (The two sets are also different under Finsler’s and
Scott’s equalities; bisimilarity is indeed strictly coarser than Finsler’s and Scott’s
equalities, see [Aczel 1988].)

What really makes Mirimanoff’s isomorphism different from bisimulation is that
Mirimanoff fails to promote isomorphism to equality for sets. For instance the sets
A = {B} and B = {A} are isomorphic but not equal, hence the set {A,B} has two
elements and is not isomorphic to the set {A} or to the set {B}, which have only
one element. To identify isomorphism and equality, the clause of isomorphism, in
establishing the “perfect correspondence” between the elements of two isomorphic
sets, should take into account the collapse given by isomorphism itself. This can
be easily obtained by weakening the requirements of injectivity and surjectivity in
the correspondences, for instance making the correspondences total relations—i.e.,
making them bisimulations. In conclusion, had Mirimanoff investigated the impact
of isomorphism on extensionality, while retaining the spirit of his definition, he
would have probably discovered bisimulation.

However, Mirimanoff pays little attention to extensionality. His main interest,
motivated by Burali-Forti and Russell’s paradoxes, is understanding what are the
conditions for the existence of a set of objects. And his main results are theo-

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, ?? 20??.



On the Origins of Bisimulation and Coinduction · 141

•

��
•

��
.
..

•

��@
@@

@@
@@

��~~
~~

~~
~

•

��

•

��@
@@

@@
@@

��~~
~~

~~
~

•

��

•

��

•

��:
::

::
::

:

����
��

��
��

...
•

��

...
...

.

..

Fig. 4. Tree unfolding of the sets Ω and U

rems asserting—using modern terminology—that certain classes are not sets. In
Set Theory, even more than in Modal Logic or Computer Science, the move from
the “functional” concepts of homomorphism and isomorphism to the “relational”
concept of bisimulation will take time.

6. THE INTRODUCTION OF FIXED POINTS IN COMPUTER SCIENCE

Bisimulation and the bisimulation proof method, as coinductive concepts, are in-
timately related to fixed points. We therefore also examine coinduction and fixed
points. We do not attempt, however, to trace the general history of fixed-point
theory—in Mathematics this is a story stretching far back in time. Instead, we
concentrate on Computer Science, and recall some papers that well witness the
introduction of coinduction and fixed-point theory for the design and analysis of
programming languages. Knaster-Tarski Theorem 2.9, about the existence of least
and greatest fixed point for a monotone function on a complete lattice, or variations
of this such as Theorem 2.11, are the starting point for all the works we mention.

The earliest uses of fixed points in Computer Science, in the form of least fixed
points, can be found in: recursive function theory, see for instance Rogers’s book
[1967] and references therein; formal language theory, as in the work of Arden
[1960] and Ginsburg and Rice [1962]. However, distinguishing Computer Science
from recursive function theory, the importance of fixed points in Computer Science
really comes up only at the end of the 1960s, with four independent papers, roughly
at the same time, by Dana Scott and Jaco de Bakker [1969], Hans Bekič [1969],
David Park [1969], and Antoni Muzurkiewicz [1971] (however [Mazurkiewicz 1971]
does not make explicit reference to fixed-point theory). Although [Mazurkiewicz
1971] is published in 1971, it is already made available, as a working paper, in
December 1969 to the IFIP Working Group 2.2, whose members included some of
the most influential researchers on programming language concepts at that time;
this paper also had an impact on the discovery of continuations in denotational se-
mantics, see [Reynolds 1993]. It might sound surprising that [Scott and de Bakker

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, ?? 20??.



142 · Davide Sangiorgi

1969] and [Bekič 1969] should be considered “independent”, given that both ap-
pear as manuscripts from the same place, the Vienna IBM Laboratory. The rea-
son is that Bekič’s work is mainly carried out during a one-year visit (November
1968–November 1969) at Queen Mary College, London, where Bekič stays in Peter
Landin’s group (indeed Landin has a strong influence on [Bekič 1969]). Thus when
Scott and de Bakker’s work is presented at the Vienna IBM Laboratory in August
1969, Bekič—who is a member of the Laboratory—is still in London. The first time
when the two works can be discussed and compared is the IFIP Working Group 2.2
meeting in Colchester in September 1969. (Indeed, if we were to fix a date and a
place for the introduction of fixed points in Computer Science it should probably
be those of this meeting.)

The above four papers bring out the importance of least fixed points for the
semantics of programs, the relevance of lattice theory and the Knaster-Tarski The-
orem 2.9, and propose various rules for reasoning about least fixed points. Programs
take the form of recursive function definitions or of flowcharts. Further, [Scott and
de Bakker 1969] paves the way for the fundamental work on denotational seman-
tics by Scott and Strachey in Oxford in the 1970s, where least fixed points, and
continuity of functions, are essential. Influential on the above four papers are ear-
lier works on program correctness and on uses of the “paradoxical combinator” Y
of the λ-calculus, notably papers by Landin such as [1964], by McCarthy such as
[1961; 1963], and by Floyd such as [1967]. For instance, McCarthy [1961; 1963] pro-
poses the first method for proving properties of recursive programs, called recursion
induction; variants and stronger versions of the method are formulated in [Scott
and de Bakker 1969], [Bekič 1969], and [Park 1969]. Also, the fixed-point proper-
ties of the Y combinator of the λ-calculus had been known for a long time (used
for instance by Curry, Feys, Landin, and Strachey), but the precise mathematical
meaning of Y as fixed point remains unclear until Scott works out his theory of re-
flexive domains, at the end of 1969 [Scott 1969a; 1969b]; see [Park 1970]. (Another
relevant paper is [Scott 1969c], in which fixed-points appear but which preceds the
discovery of reflexive domains. We may also recall James H. Morris, who earlier
[1968] had proved a minimal fixed-point property for the Y combinator; in the same
document, Morris had considered the relationship between least fixed points and
functions computed by first-order recursive definitions of programs.)

During the 1970s, further fixed-point techniques and rules are put forward. A
number of results on fixed points and induction rules, and the basic theory of
continuous functions, are due to Scott, e.g. [1972b; 1972a; 1976]. On uses of least
fixed points in semantics and in techniques for program correctness, we should
also mention the work of de Bakker and his colleagues in The Netherlands, e.g.
[Bakker and Roever 1973; Bakker 1975; 1971]; the Polish school, with Mazurkiewicz,
Blikle, and colleagues, e.g., [Mazurkiewicz 1971; 1973; Blikle 1977]; the work of Ugo
Montanari and colleagues in Pisa, such as [Giarratana and Montanari 1976] that
contains notions of observations and equivalence of representations in abstract data
types that today we recognize as related to fixed points via the concept of finality.
Other references to the early works on fixed points can be found in Zohar Manna’s
textbook [1974].

The above works all deal with least fixed points. Greatest fixed points, and

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, ?? 20??.



On the Origins of Bisimulation and Coinduction · 143

related coinductive techniques, begin to appear as well in the 1970s. It is hard to
tell what is the first appearance. One reason for this is that the rules for greatest
fixed points are not surprising, being the dual of rules for least fixed points that
had already been studied. I would think however that the first to make explicit
and non-trivial use of greatest fixed points is David Park, who, throughout the
1970s, works intensively on fairness issues for programs that may contain constructs
for parallelism and that may not terminate. The fixed-point techniques he uses
are rather sophisticated, possibly involving alternation of least and greatest fixed
points. Park discusses his findings in several public presentations. A late overview
paper is [Park 1979]; we already pointed out in Section 4.3 that Park did not publish
much.

Other early interesting uses of greatest fixed points are made by the following
authors. Mazurkiewicz [1973] studies properties of computations from processes,
where processes are modelled via forms of LTSs; the properties studied include di-
vergence and termination. The way in which Mazurkiewicz defines divergent states
(i.e., the states from which a computation may not terminate) and the technique
proposed to prove divergence of states are coinductive, though—as in his earlier
paper [Mazurkiewicz 1971]—there is no explicit reference to fixed-point theory.

Edmund Clarke [1977] shows that the correctness proofs for Floyd-Hoare ax-
iom systems—deductive systems for partial correctness based on invariance asser-
tions intensively investigated in the 1970s—could be elegantly formalised by means
of fixed-point theory, whereby: program invariants become greatest fixed points;
completeness of a system becomes the proof of the existence of a fixed point for
an appropriate functional; and soundness is derived from the maximality of such
fixed point. Thus soundness is a coinductive proof. Willem-Paul de Roever [1977]
strongly advocates the coinduction principle as a proof technique (he calls it “great-
est fixed point induction”). De Roever uses the technique to reason about diver-
gence, bringing up the duality between this technique and inductive techniques that
had been proposed previously to reason on programs.

Coinduction and greatest fixed points are implicit in a number of earlier works in
the 1960s and 1970s. Important examples, with a huge literature, are the works on
unification, for instance on structural equivalence of graphs, and the works on in-
variance properties of programs. Fixed points are also central in stream processing
systems (including data flow systems). The introduction of streams in Computer
Science is usually attributed to Peter Landin, in the early 1960s (see [Landin 1965a;
1965b] where Landin discusses the semantics of Algol 60 as a mapping into a lan-
guage based on the λ-calculus and Landin’s SECD machine [Landin 1964], and
historical remarks in [Burge 1975]). However, fixed points are explicitly used to
describe stream computations only after Scott’s theory of domain, with the work
of Gilles Kahn [1974].

I do not know when and who first used the word “coinduction”. The first ap-
pearance of the term I am aware of is in Barwise and Etchemendy’s 1987 book
[1987]; I am therefore led to think that the term has been introduced by Barwise.
The term “coinduction” also occurs in earlier papers and textbooks in Mathematics
(e.g., [Moschovakis 1974]), but simply to indicate the complement of an inductively-
defined structure. In Computer Science, the term is widely used after Milner and

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, ?? 20??.



144 · Davide Sangiorgi

Tofte [1991], who use coinduction to prove the soundness of a type system, and de-
scribe coinduction to explain the analogy between the technique for types in their
paper and the bisimulation techniques. The main objective of the paper is indeed
to advocate the proof technique and to suggest the name coinduction for it. At
the time of the writing, the authors of [Milner and Tofte 1991] were not aware of
the other occurrences of the name.5 Given the duality with induction, the term
“coinduction” is so natural to appear a kind of folklore term, and this makes it
hard, today, to trace back its introduction.

7. FIXED-POINT THEOREMS

We conclude with a few remarks on the fixed-point theorems of Section 2.3. Theo-
rem 2.9 is usually called the “Knaster-Tarski fixed-point theorem”. The result was
actually obtained by Tarski, who, in a footnote to [Tarski 1955] (footnote 2, page
286), where the result appears as Theorem 1, explains its genesis:

In 1927 Knaster and the author [i.e., Tarski] proved a set-theoretical
fixed point theorem by which every function on and to the family of
all subsets of a set, which is increasing under set-theoretical inclusion
has at least one fixed point; see [Knaster 1928] where some applications
of this result in set theory [...] and topology are also mentioned. A
generalisation of this result is the lattice-theoretical fixed point theorem
stated above as Theorem 1. The theorem in its present form and its
various applications and extensions were found by the author in 1939
and discussed it in a few public lectures in 1939–1942. (See, for example,
a reference in the American Mathematical Monthly 49(1942), 402.) An
essential part of Theorem 1 was included in [Birkhoff 1948, p. 54];
however the author was informed by Professor Garret Birkhoff that a
proper historical reference to this result was omitted by mistake.

Tarski first properly publishes the theorem in 1955 [Tarski 1955], together with a
few related results, proofs, and applications to boolean algebras and topology. He
had anticipated a summary of [Tarski 1955] in 1949, as [Tarski 1949]. Credit for
the theorem is also given to Bronislaw Knaster because of the following result in
[Knaster 1928]:

Lemma 7.1. If F is monotone function over sets such that there is a set W with
F (W ) ⊆W then there is a subset Q of W such that F (Q) = Q.

While Theorem 2.9 describes the structure of the fixed points for a function,
Lemma 7.1 only asserts the existence of at least one fixed point. Moreover Theo-
rem 2.9 is on arbitrary lattices, whereas we can think of Lemma 7.1 as being on
the special lattices given by the powerset construction. [Knaster 1928] is actually
a very short note—about one page—in which the lemma is used to derive, as a
special case, a theorem on monotone functions over sets. The note itself confirms
that the results presented had been obtained by Knaster together with Tarski.

5Personal communications with R. Milner and M. Tofte; the idea of using the name “coinduction”
came up to them most likely sometime between 11 February 1988 and 17 March 1988.

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, ?? 20??.



On the Origins of Bisimulation and Coinduction · 145

It would not be so surprising if Theorem 2.9 had been obtained around the same
period also by Stephen C. Kleene or Leonid V. Kantorovich6, although the writings
from these authors that we have today only deal with constructive proofs of the
existence of least and greatest fixed points along the lines of Theorem 2.11 (see
below).

In Computer Science, Theorem 2.11 is often called the “Kleene fixed-point the-
orem”, with reference to Kleene’s first recursion theorem [Kleene 1952], and often
presented on pointed complete partial orders and for least fixed points. The first
recursion theorem is obtained by Kleene around the end of the 1930s, as reported in
[Kleene 1952; 1970]. Around that time, or anyhow before the 1950s, Theorem 2.11
is independently known to other authors, first of all Tarski and Kantorovich (for
instance Theorem I in [Kantorovich 1939] is similar to Theorem 2.11), but possibly
others—see also the discussion in [Cousot and Cousot 1979, page 56]. It is indeed
unclear who should be credited for the theorem. Lassez, Nguyen, and Sonenberg
[1982] consider the origins of this theorem (as well as of the other fixed-point the-
orems) and conclude that it should be regarded as a “folk theorem”.

Theorem 2.12 is from Hitchcock and Park [1973]. Similar versions are also given
by Devidé [1963], Pasini [1974], Cadiou [1972], Cousot and Cousot [1979]. A related
theorem also appears in Bourbaki [1950].

ACKNOWLEDGMENT

I am very grateful to the following people who helped me to find relevant papers
and materials or helped me in tracing back bits of history: P. Aczel, G. Boudol,
J. van Benthem, E. Clarke, Y. Deng, R. Hinnion, F. Honsell, A. Mazurkiewicz, Y.
N. Moschovakis, L. Moss, R. Milner, U. Montanari, W.P. de Roever, W. Thomas,
M. Tofte. Thanks also to L. Aceto and to the referees for many comments and
suggestions on an earlier draft.

REFERENCES

Aceto, L., Inglfsdttir, A., Larsen, K. G., and Srba, J. 2007. Reactive Systems: Modelling,
Specification and Verification. Cambridge University Press.

Aczel, P. 1988. Non-well-founded Sets. CSLI lecture notes, no. 14.

Aczel, P. 1993. Final universes of processes. In Proc. Mathematical Foundations of Programming
Semantcs (MFPS’93), B. et al., Ed. Lecture Notes in Computer Science, vol. 802. Springer,
1–28.

Alvarez, C., Balcázar, J. L., Gabarró, J., and Santha, M. 1991. Parallel complexity in
the design and analysis on conurrent systems. In Proc. PARLE ’91: Parallel Architectures
and Languages Europe, Volume I: Parallel Architectures and Algorithms. Lecture Notes in
Computer Science, vol. 505. Springer, 288–303.

Amadio, R. M. and Cardelli, L. 1993. Subtyping recursive types. ACM Transactions on
Programming Languages and Systems 15, 4, 575–631. A preliminary version appeared in POPL
’91 (pp. 104–118), and as DEC Systems Research Center Research Report number 62, August
1990.

Arden, D. N. 1960. Delayed logic and finite state machines. In Theory of Computing Machine
Design. Univ. of. Michigan Press, 1–35.

6Leonid Vitalyevich Kantorovich (1912–1986) was a Russian mathematician who obtained the
Nobel Prize for Economics in 1975 for his work on the allocation and optimisation of resources,
in which he pioneers the technique of linear programming.

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, ?? 20??.



146 · Davide Sangiorgi

Bakker, J. W. d. 1971. Recursive Procedures. Mathematical Centre Tracts 24, Mathematisch

Centrum, Amsterdam.

Bakker, J. W. d. 1975. The fixed-point approach in semantics: theory and applications. In Foun-
dations of Computer Science, J. de Bakker, Ed. Mathematical Centre Tracts 63, Mathematisch
Centrum, Amsterdam, 3–53.

Bakker, J. W. d. and Roever, W. P. d. 1973. A calculus for recursive program schemes. In
Proc. IRIA symposium on on Automata, Languages and Programming, Paris, France, July,
1972, M. Nivat, Ed. North-Holland, 167–196.

Balcázar, J. L., Gabarró, J., and Santha, M. 1992. Deciding Bisimilarity is P-Complete.
Formal Asp. Comput. 4, 6A, 638–648.

Barwise, J. and Etchemendy, J. 1987. The Liar: an Essay in Truth and Circularity. Oxford
University Press.

Barwise, J., Gandy, R. O., and Moschovakis, Y. N. 1971. The next admissible set. J. Symb.
Log. 36, 108–120.

Barwise, J. and Moss, L. 1996. Vicious Circles: On the Mathematics of Non-Wellfounded
Phenomena. CSLI (Center for the Study of Language and Information).

Bekič, H. 1969. Definable operations in general algebras and the theory of automata and
flowcharts. Unpublished Manuscript, IBM Lab. Vienna 1969. Also appeared in [Jones 1984].

Benthem, J. v. 1976. Modal correspondence theory. Ph.D. thesis, Mathematish Instituut &
Instituut voor Grondslagenonderzoek, University of Amsterdam.

Benthem, J. v. 1983. Modal Logic and Classical Logic. Bibliopolis.

Benthem, J. v. 1984. Correspondence theory. In Handbook of Philosophical Logic, D. Gabbay
and F. Guenthner, Eds. Vol. 2. Reidel, 167–247.

Bernays, P. 1954. A system of axiomatic set theory–Part VII. J. Symb. Log. 19, 2, 81–96.

Birkhoff, G. 1948. Lattice theory (revised edition). Vol. 25 of American Mathematical Society
Colloquium Publications. American Mathematical Society.

Blackburn, P., Rijke, M. d., and Venema, Y. 2001. Modal Logic. Cambridge University Press.

Blikle, A. 1977. A comparative review of some program verification methods. In 6th Symposium
on Mathematical Foundations of Computer Science (MFCS’77), J. Gruska, Ed. Lecture Notes
in Computer Science, vol. 53. Springer, 17–33.

Boffa, M. 1968. Les ensembles extraordinaires. Bulletin de la Société Mathmatique de Bel-
gique XX, 3–15.

Boffa, M. 1969. Sur la théorie des ensembles sans axiome de fondement. Bulletin de la Société
Mathmatique de Belgique XXXI, 16–56.

Boffa, M. 1972. Forcing et negation de l’axiome de fondement. Académie Royale de Belgique,
Mémoires de la classe des sciences, 2e série XL, 7, 1–53.

Bourbaki, N. 1950. Sur le théorème de Zorn. Arch. Math.. 2, 434–437.

Brand, D. June 1978. Algebraic simulation between parallel programs. Research Report RC
7206, Yorktown Heights, N.Y., 39 pp.

Brandt, M. and Henglein, F. 1997. Coinductive axiomatization of recursive type equality and
subtyping. In Proc. 3rd Conference on Typed Lambda Calculi and Applications (TLCA’97),
R. Hindley, Ed. Lecture Notes in Computer Science, vol. 1210. Springer, 63–81.

Burge, W. H. 1975. Stream processing functions. IBM Journal of Research and Develop-
ment 19, 1, 12–25.

Cadiou, J. M. 1972. Recursive definitions of partial functions and their computations. Ph.D.
thesis, Computer Science Department, Stanford University.

Clarke, E. M. 1977. Program invariants as fixed points (preliminary reports). In FOCS. IEEE,
18–29. Final version in Computing, 21(4):273–294, 1979. Based on Clarke’s PhD thesis, ”Com-
pleteness and Incompleteness Theorems for Hoare-like Axiom Systems, Cornell University, 1976.

Coquand, T. 1993. Infinite objects in type theory. In TYPES, H. Barendregt and T. Nipkow,
Eds. Lecture Notes in Computer Science, vol. 806. Springer, 62–78.

Cousot, P. and Cousot, R. 1979. Constructive versions of Tarski’s fixed point theorems. Pacific
Journal of Mathematics 81, 1, 43–57.

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, ?? 20??.



On the Origins of Bisimulation and Coinduction · 147

de Roever, W. P. 1977. On backtracking and greatest fixpoints. In Fourth Colloquium on

Automata, Languages and Programming (ICALP), A. Salomaa and M. Steinby, Eds. Lecture
Notes in Computer Science, vol. 52. Springer, 412–429.

Devidé, V. 1963. On monotonous mappings of complete lattices. Fundamenta Mathematicae LIII,
147–154.

Ehrenfeucht, A. 1961. An application of games to the completeness problem for formalized
theories. Fundamenta Mathematicae 49, 129–141.

Finsler, P. 1926. Über die Grundlagen der Mengenlehre. I. Math. Zeitschrift 25, 683–713.

Floyd, R. W. 1967. Assigning meaning to programs. In Proc. Symposia in Applied Mathematics.
Vol. 19. American Mathematical Society, 19–32.

Forti, M. and Honsell, F. 1983. Set theory with free construction principles. Annali Scuola
Normale Superiore, Pisa, Serie IV X, 3, 493–522.

Fraenkel, A. 1922. Zu den Grundlagen der Cantor-Zermeloschen Mengenlehre. Math. An-
nalen 86, 230–237.

Fräıssé, R. 1953. Sur quelques classifications des systm̀es de relations. Ph.D. thesis, University
of Paris. Also in Publications Scientifiques de l’Universit d’Alger, series A 1, 35–182, 1954.

Friedman, H. 1973. The consistency of classical set theory relative to a set theory with intu-
itionistic logic. J. Symb. Log. 38, 315–319.

Giarratana, V. Gimona, F. and Montanari, U. 1976. Observability concepts in abstract data
type specification. In 5th Symposium on Mathematical Foundations of Computer Science,
A. Mazurkievicz, Ed. Lecture Notes in Computer Science, vol. 45. Springer, 576–587.

Giménez, E. 1996. Un calcul de constructions infinies et son application a la verification des
systemes communicants. Ph.D. thesis, Laboratoire de l’Informatique du Parallélisme, Ecole
Normale Supérieure de Lyon.

Ginsburg, S. and Rice, H. G. 1962. Two families of languages related to algol. J. ACM 9, 3,
350–371.

Ginzburg, A. 1968. Algebraic Theory of Automata. Academic Press.

Glabbeek, R. v. 1990. The linear time-branching time spectrum (extended abstract). In First
Conference on Concurrency Theory (CONCUR’90), J. C. M. Baeten and J. W. Klop, Eds.
Lecture Notes in Computer Science, vol. 458. Springer, 278–297.

Glabbeek, R. v. 1993. The linear time — branching time spectrum II (the semantics of sequential
systems with silent moves). In Fourth Conference on Concurrency Theory (CONCUR’93),
E. Best, Ed. Lecture Notes in Computer Science 715, 66–81.

Goldblatt, R. 1989. Varieties of complex algebras. Ann. Pure Applied Logic 44, 173–242.

Gordeev, L. 1982. Constructive models for set theory with extensionality. In The L.E.J. Brouwer
Centenary Symposium, A. Troelstra and D. van Dalen, Eds. 123–147.

Gourlay, J. S., Rounds, W. C., and Statman, R. 1979. On properties preserved by contraction
of concurrent systems. In International Symposium on Semantics of Concurrent Computation,
G. Kahn, Ed. Lecture Notes in Computer Science, vol. 70. Springer, 51–65.

Heijenoort (Ed.), J. v. 1967. From Frege to Gödel: A source book in mathematical logic 1879-
1931. Harvard University Press.

Hennessy, M. and Milner, R. 1980. On observing nondeterminism and concurrency. In Proc.
7th Colloquium Automata, Languages and Programming, J. W. de Bakker and J. van Leeuwen,
Eds. Lecture Notes in Computer Science, vol. 85. Springer, 299–309.

Hennessy, M. and Milner, R. 1985. Algebraic laws for nondeterminism and concurrency. Journal
of the ACM 32, 137–161.

Hinnion, R. 1980. Contraction de structures et application à NFU. Comptes Rendus Acad. des
Sciences de Paris 290, Sér. A, 677–680.

Hinnion, R. 1981. Extensional quotients of structures and applications to the study of the axiom
of extensionality. Bulletin de la Société Mathmatique de Belgique XXXIII (Fas. II, Sér. B),
173–206.

Hinnion, R. 1986. Extensionality in Zermelo-Fraenkel set theory. Zeitschr. Math. Logik und
Grundlagen Math. 32, 51–60.

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, ?? 20??.



148 · Davide Sangiorgi

Hitchcock, P. and Park, D. 1973. Induction rules and termination proofs. In Proc. IRIA

symposium on on Automata, Languages and Programming, Paris, France, July, 1972, M. Nivat,
Ed. North-Holland, 225–251.

Hoare, T. 1972. Proof of correctness of data representations. Acta Informatica 1, 271–281.

Honsell, F. 1981. Modelli della teoria degli insiemi, principi di regolarità e di libera costruzione.
Tesi di Laurea, Universita’ di Pisa.

Huffman, D. 1954. The synthesis of sequential switching circuits. Journal of the Franklin
Institute (Mar. 1954) and (Apr. 1954) 257, 3–4, 161–190 and 275–303.

Immerman, N. 1982. Upper and lower bounds for first order expressibility. J. Comput. Syst.
Sci. 25, 1, 76–98.

Jacobs, B. and Rutten, J. 1996. A tutorial on (co)algebras and (co)induction. Bulletin of the
EATCS 62, 222–259.

Jensen, K. 1980. A method to compare the descriptive power of different types of petri nets. In
Proc. 9th Mathematical Foundations of Computer Science 1980 (MFCS’80), Rydzyna, Poland,
September 1980, P. Dembinski, Ed. Lecture Notes in Computer Science, vol. 88. Springer, 348–
361.

Jones, C. B., Ed. 1984. Programming Languages and Their Definition – Hans Bekic (1936-1982).
Lecture Notes in Computer Science, vol. 177. Springer.

Jongh, D. d. and Troelstra, A. 1966. On the connection of partially ordered sets with some
pseudo-boolean algebras. Indagationes Mathematicae 28, 317–329.

Kahn, G. 1974. The semantics of simple language for parallel programming. In IFIP Congress.
North-Holland, 471–475.

Kanellakis, P. C. and Smolka, S. A. 1990. CCS expressions, finite state processes, and three
problems of equivalence. Inf. Comput. 86, 1, 43–68.

Kantorovich, L. V. 1939. The method of successive approximations for functional equations.
Acta Math. 71, 63–97.

Kleene, S. C. 1952. Introduction to Metamathematics. Van Nostrand.

Kleene, S. C. 1970. The origin of recursive function theory. In 20th annual Symposium on
Foundations of Computer Science. IEEE, 371–382.

Knaster, B. 1928. Un théorèm sur les fonctions d’ensembles. Annals Soc. Pol. Math 6, 133–134.

Kwong, Y. S. 1977. On reduction of asynchronous systems. Theoretical Computer Science 5, 1,
25–50.

Landin, P. 1969. A program-machine symmetric automata theory. Machine Intelligence 5,
99–120.

Landin, P. J. 1964. The mechanical evaluation of expressions. The Computer Journal 6, 4,
308–320.

Landin, P. J. 1965a. Correspondence between ALGOL 60 and Church’s Lambda-notation: Part
I. Commun. ACM 8, 2, 89–101.

Landin, P. J. 1965b. A correspondence between ALGOL 60 and Church’s Lambda-notations:
Part II. Commun. ACM 8, 3, 158–167.

Lassez, J.-L., Nguyen, V. L., and Sonenberg, L. 1982. Fixed point theorems and semantics:
A folk tale. Inf. Process. Lett. 14, 3, 112–116.

Manna, Z. 1969. The correctness of programs. J. Computer and System Sciences 3, 2, 119–127.

Manna, Z. 1974. Mathematical Theory of Computation. McGraw-Hill.

Mazurkiewicz, A. 1973. Proving properties of processes. Tech. rep. 134, Computation Center
ol Polish Academy of Sciences, Warsaw. Also in Algorytmy 11, 5–22, 1974.

Mazurkiewicz, A. W. 1971. Proving algorithms by tail functions. Information and Control 18, 3,
220–226.

McCarthy, J. 1961. A basis for a mathematical theory of computation. In Proc. Western Joint
Computer Conf. Vol. 19. Spartan Books, 225–238. Reprinted, with corrections and an added
tenth section, in Computer Programming and Formal Systems, P. Braffort and D. Hirschberg,
eds., North-Holland, 1963, pp. 33–70.

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, ?? 20??.



On the Origins of Bisimulation and Coinduction · 149

McCarthy, J. 1963. Towards a mathematical science of computation. In Proceedings of IFIP

Congress 62. North-Holland, 21–28.

Meyer, A. R. and Stockmeyer, L. J. 1972. The equivalence problem for regular expressions with
squaring requires exponential space. In 13th Annual Symposium on Switching and Automata
Theory (FOCS). IEEE, 125–129.

Milner, R. 1970. A formal notion of simulation between programs. Memo 14, Computers and
Logic Resarch Group, University College of Swansea, U.K.

Milner, R. 1971b. Program simulation: an extended formal notion. Memo 17, Computers and
Logic Resarch Group, University College of Swansea, U.K.

Milner, R. 1980. A Calculus of Communicating Systems. Lecture Notes in Computer Science,
vol. 92. Springer.

Milner, R. 1989. Communication and Concurrency. Prentice Hall.

Milner, R. London, 1971a. An algebraic definition of simulation between programs. In Proc.
2nd Int. Joint Conferences on Artificial Intelligence. British Comp. Soc.

Milner, R. and Tofte, M. 1991. Co-induction in relational semantics. Theoretical Computer
Science 87, 209–220. Also Tech. Rep. ECS-LFCS-88-65, University of Edinburgh, 1988.

Mirimanoff, D. 1917a. Les antinomies de Russell et de Burali-Forti et le problème fondamental
de la théorie des ensembles. L’Enseignement Mathématique 19, 37–52.

Mirimanoff, D. 1917b. Remarques sur la théorie des ensembles et les antinomies cantoriennes
I. L’Enseignement Mathématique 19, 209–217.

Mirimanoff, D. 1920. Remarques sur la théorie des ensembles et les antinomies cantoriennes II.
L’Enseignement Mathématique 21, 29–52.

Moore, E. 1956. Gedanken experiments on sequential machines. Automata Studies, Annals of
Mathematics Series 34, 129–153.

Morris, J. H. Dec. 1968. Lambda-calculus models of programming languages. Ph.D. thesis,
M.I.T., project MAC.

Moschovakis, Y. N. 1974. Elementary induction on abstract structures. Studies in Logic and
the Foundations of Mathematics, vol. 77. North-Holland, Amsterdam.

Nerode, A. 1958. Linear automaton transformations. In Proc. American Mathematical Society.
Vol. 9. 541–544.

Paige, R. and Tarjan, R. E. 1987. Three partition refinement algorithms. SIAM Journal on
Computing 16, 6, 973–989.

Park, D. 1969. Fixpoint induction and proofs of program properties. In Machine Intelligence 5,
B. Meltzer and D. Michie, Eds. Edinburgh Univ. Press, 59–78.

Park, D. 1970. The Y-combinator in Scott’s lambda-calculus models. Symposium on Theory
of Programming, University of Warwick, unpublished (A revised version: Research Report CS-
RR-013, Department of Computer Science, University of Warwick, June 1976.).

Park, D. 1979. On the semantics of fair parallelism. In Proc. Abstract Software Specifications,
Copenhagen Winter School. Lecture Notes in Computer Science. Springer, 504–526.

Park, D. 1981a. Concurrency on automata and infinite sequences. In Conf. on Theoretical
Computer Science, P. Deussen, Ed. Lecture Notes in Computer Science, vol. 104. Springer,
167–183.

Park, D. 1981b. A new equivalence notion for communicating systems. In Bulletin EATCS,
G. Maurer, Ed. Vol. 14. 78–80. Abstract of the talk presented at the Second Workshop on the
Semantics of Programming Languages, Bad Honnef, March 16–20 1981. Abstracts collected in
the Bulletin by B. Mayoh.

Pasini, A. 1974. Some fixed point theorems of the mappings of partially ordered sets. Rendiconti
del Seminario Matematico della Università di Padova 51, 167–177.

Pous, D. 2007. Complete lattices and up-to techniques. In 5th Asian Symposium on Programming
Languages and Systems (APLAS). Lecture Notes in Computer Science, vol. 4807. Springer,
351–366.

Reynolds, J. C. 1993. The discoveries of continuations. Lisp and Symbolic Computation 6, 3-4,
233–248.

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, ?? 20??.



150 · Davide Sangiorgi

Rogers, H. 1967. Theory of Recursive Functions and Effective Computability. McGraw Hill.

Reprinted, MIT Press 1987.

Russell, B. 1903. Principles of Mathematics. Cambridge University Press.

Russell, B. 1908. Mathematical logic as based on the theory of types. American J. of Mathe-
matics 30, 222–262. Also in [Heijenoort (Ed.) 1967], pages 153–168.

Russell, B. and Whitehead, A. N. 1910, 1912, 1913. Principia Mathematica, 3 vols. Cambridge
University Press.

Rutten, J. and Turi, D. 1992. On the foundation of final semantics: Non-standard sets, metric
spaces, partial orders. In REX Workshop, J. W. de Bakker, W. P. de Roever, and G. Rozenberg,
Eds. Lecture Notes in Computer Science, vol. 666. Springer, 477–530.

Sangiorgi, D. 1998. On the bisimulation proof method. Journal of Mathematical Structures in
Computer Science 8, 447–479.

Sangiorgi, D., Kobayashi, N., and Sumii, E. 2007. Environmental bisimulations for higher-order
languages. In 22nd Annual IEEE Symposium on Logic in Computer Science (LICS’07). IEEE
Computer Society, 293–302.

Sangiorgi, D. and Walker, D. 2001. The π-calculus: a Theory of Mobile Processes. Cambridge
University Press.

Scott, D. 1960. A different kind of model for set theory. Unpublished paper, given at the 1960
Stanford Congress of Logic, Methodology and Philosophy of Science.

Scott, D. 1972a. Continuous lattices. In Toposes, Algebraic Geometry and Logic, E. Lawvere,
Ed. Lecture Notes in Mathematics, vol. 274. Springer, 97–136.

Scott, D. 1972b. The lattice of flow diagrams. In Symposium of Semantics of Algorithmic
Languages, E. Engeler, Ed. Lecture Notes in Mathematics, vol. 188. Springer, 311–366.

Scott, D. 1976. Data types as lattices. SIAM J. on Computing 5, 522–587. An manuscript with
the same title was written in 1972.

Scott, D. December 1969b. Models for the λ-calculus. Manuscript, raft, Oxford.

Scott, D. November 1969a. A construction of a model for the λ-calculus. Manuscript, Oxford.

Scott, D. October 1969c. A type-theoretical alternative to CUCH, ISWIM, OWHY. Typed
script, Oxford. Also appeared as [Scott 1993].

Scott, D. and de Bakker, J. 1969. A theory of programs. Handwritten notes. IBM Lab.,
Vienna, Austria.

Scott, D. S. 1993. A type-theoretical alternative to ISWIM, CUCH, OWHY. Theoretical Com-
puter Science 121, 1&2, 411–440.

Segerberg, K. 1968. Decidability of S4.1. Theoria 34, 7–20.

Segerberg, K. 1970. Modal logics with linear alternative relations. Theoria 36, 301–322.

Segerberg, K. 1971. An essay in classical modal logic. Filosofiska Studier, Uppsala.

Skolem, T. 1923. Einige Bemerkungen zur Axiomatischen Begründung der Mengenlehre. In Pro-
ceedings of the 5th Scandinavian Mathematics Congress, Helsinki, 1922. Akademiska Bokhan-
deln, Helsinki, 217–232. English translation, ”Some remarks on axiomatized set theory”, in
[Heijenoort (Ed.) 1967], pages 290–301.

Specker, E. 1957. Zur Axiomatik der Mengenlehre. Z. Math. Logik 3, 3, 173–210.

Tarski, A. 1949. A fixpoint theorem for lattices and its applications (preliminary report). Bull.
Amer. Math. Soc. 55, 1051–1052 and 1192.

Tarski, A. 1955. A lattice-theoretical fixpoint theorem and its applications. Pac. J. Math. 5,

285–309.

Thomas, W. 1993. On the Ehrenfeucht-Fräıssé game in theoretical computer science. In TAP-
SOFT, M.-C. Gaudel and J.-P. Jouannaud, Eds. Lecture Notes in Computer Science, vol. 668.
Springer, 559–568.

Thomason, S. K. 1972. Semantic analysis of tense logics. J. Symb. Log. 37, 1, 150–158.

Turi, D. and Plotkin, G. D. 1997. Towards a mathematical operational semantics. In 12th
Annual IEEE Symposium on Logic in Computer Science (LICS’97). IEEE Computer Society
Press, 280–291.

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, ?? 20??.



On the Origins of Bisimulation and Coinduction · 151

Zermelo, E. 1908. Untersuchungen über die Grundlagen der Mengenlehre I. Mathematische

Annalen 65, 261–281. English translation, ”Investigations in the foundations of set theory”, in
[Heijenoort (Ed.) 1967], pages 199-215.

...

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, ?? 20??.


