An introduction to

bisimulation and coinduction

Davide Sangiorgi

April 9, 2008



We introduce bisimulation and coinduction roughly following the way that
led to their discovery in Computer Science. Thus the general topic is the se-
mantics of concurrent languages (or systems), in which several activities, the
processes, may run concurrently. Central questions are: what is, mathemati-
cally, a process? And what does it mean that two processes are “equal”’? We
seek notions of process and process equality that are both mathematically and
practically interesting. For instance, the notions should be amenable to effec-
tive techniques for proving equalities, and the equalities themselves should be
justifiable, according to the way processes are used.

We hope that the reader will find this way of proceeding helpful to understand
the meaning of bisimulation and coinduction. Further, concurrency remains
today probably the main application area for bisimulation and coinduction, and
plays a central role in the book.

0.1 From functions to processes

If we begin investigating the semantics of concurrent languages, it is natural
to check first whether we can adapt to these languages the concepts and tech-
niques that are available for the sequential languages, i.e., the languages without
constructs for concurrency. This is indeed what researchers did in the 70s, as
the work on the semantics of sequential languages had already produced sig-
nificant results, notably with Scott and Stratchey’s denotational semantics. In
sequential languages, a program is interpreted as a function, which transforms
inputs into outputs. This idea is clear in the case of functional languages such
as the A-calculus, but it can also be applied to imperative languages, viewing
a program as a function that transforms an initial store (i.e., a memory state)
into a final store.

The interpretation of programs as functions, however, in general is unsatisfac-
tory in concurrency. Take, as an example, the following two program fragments
in an imperative language:

X:=2 and X=LX=X+1

They yield the same function from stores to stores, namely the function that
leaves the store unchanged, except of the variable X whose final value must be
2. Therefore, in this view of programs-as-functions, the two fragments above
are “the same” and should be considered equal.

However, the above equality is troublesome if the language to which the two
fragments belong is concurrent. For instance, suppose the language has a con-
struct for parallelism, say P | @, which, intuitively, allows the parallel execution
of the two program arguments P and @ (this rough intuition is sufficient for



0.1 From functions to processes 3

the example). Then we may want to try running each fragment together with
another fragment such as X := 2. Formally, one says that the two fragments are
used in the context

[]] X:=2
to fill the hole [-]. Now, if we place in the hole the first fragment, X := 2, we get
X:=2|X:=2,

which always terminates with X = 2. This is not true, however, when the hole
is filled with the second fragment, X := 1; X := X 4 1, resulting in

(X:=1;X:=X+1)|X:=2

as now the final value of X can be different from 2. For instance, the final value
can be 3 if the statement X := 2 is executed after X := 1 but before X := X+ 1.

The example shows that by viewing programs as functions we obtain a no-
tion of program equality that is not preserved by parallel composition: equal
arguments to the parallel constructs can produce results that are not anymore
equal. Formally, one says that the semantic is not compositional, or that the
equality on programs is not a congruence.

A semantics of a language that is not compositional would not allow us to ex-
ploit the structure of the language when reasoning. We cannot for instance, use
properties of program components to infer properties of larger systems, or opti-
mise a program component replacing it with an equal but simpler component,
as the meaning of the whole program might change.

Another reason why viewing a concurrent program as a function is not ap-
propriate is that a concurrent program may not terminate, and yet perform
meaningful computations (examples: an operating system, the controllers of a
nuclear station or of a railway system). In sequential languages, for instance
in the A-calculus, programs that do not terminate are undesirable; they are
“wrong”; they are perhaps caused by a loop in which the termination condition
is wrong. Mathematically, they represent functions that are undefined—hence
meaningless—on some arguments.

Also, the behaviour of a concurrent program can be non-deterministic, as
shown in the example

(X:=1X:=X+1)| X:=2

above. In sequential languages, operators for non-determinism, such as choice,
can be dealt with using powersets and powerdomains. For instance, in the
A-calculus, the term Az. (x @ = + 1), where @ indicates the choice construct,
could be interpreted as the function that receives an integer x and returns an



4

element from the set {x,x + 1}. This approach may work (and anyhow is more
complicated) for pure non-determinism, but not for the parallelism resulting
from the parallel execution of activities, as we have seen above.

If parallel programs are not functions, what are they? They are processes. But
what is a process? When are two processes equal? These are very fundamental
questions for a model of processes. They are also hard questions, that are
at the heart of the research in concurrency theory. We shall approach these
questions from a simple case, in which the interactions of the process with its
environment are particularly simple: they are just synchronisations, without
exchange of values. Without the presumption of giving single and definitive
answers, we shall strive to isolate the essential concepts.

0.2 Interaction and behaviour

In the example of Section 0.1, the program fragments
X:=2 and X=1X:=X+1

should be distinguished because they interact in a different way with the mem-
ory. The difference is harmless within a sequential language, as only the initial
and final states are visible to the rest of the world. But if other concurrent
entities have access to the same memory locations, then the patterns of the in-
teractions with the memory become significant because they may affect other
activities.

This brings up a key word: interaction. In concurrency, computation is in-
teraction. Examples are: an access to a memory cell, a query to a data base,
the selection of a programme in a washing machine. The participants of an
interaction are the processes (for instance, in the case of the washing machine,
the machine itself and the person selecting the programme are the involved pro-
cesses). The behaviour of a process should tell us when and how the process
can interact with the outside world—its environment. Therefore we first need
suitable means for representing the behaviour of a process.

0.3 Labelled Transition Systems

As another example of interactions, we consider a vending machine capable of
dispensing tea or coffee for 1 coin (1c¢). The machine has a slot for inserting coins,
a button for requesting coffee, another button for requests of tea, and an opening
for collecting the beverage delivered. The behaviour of the machine is what we
can observe, by interacting with the machine. This means experimenting with
the machine: pressing buttons and seeing what happens. We can observe which



0.3 Labelled Transition Systems 5

tea

collect-tea

Fig. 0.1. The LTS of a vending machine

buttons go down and when, which beverages we can get and when. Everything
else, such as the colour or the shape of the machine, is irrelevant. We are
interested in what the machine does, not in what it looks like. We can represent
what is relevant of the behaviour of the machine as a Labelled Transition System
(LTS), as shown, graphically, in Figure 0.1.

An LTS tells us what the states in which a system can be and, for each state,
the interactions that are possible from that state. An interaction is represented
by a labelled arc; in the LTS terminology, it is called a transition. In the case
of the vending machine of Figure 0.1, there are 4 states. Initially, the machine
is in state s1. The arc labelled 1c between s; and s9 indicates that on state s
the machine accepts a coin and, in doing so, it evolves into the state so; in sg
two further transitions are possible, one representing the request for coffee, the
other the request for tea; and so on. Other examples of LTSs, in graphical form,
are given in Figures 0.2-0.5.

LTSs are the most common structures used to represent the interactions that
a system can produce. They are essentially labelled directed graphs. Variant
structures are relational structures (i.e., unlabeled directed graphs) and Kripke
structures, and it is easy to adapt the concepts we will introduce (notably bisim-
ulation) to them.

Definition 0.3.1 (Labelled Transition Systems) A Labelled Transition Sys-
tem (LTS) is a triple (Pr, Act, —) where Pris a non-empty set called the do-
main of the LTS, Act is the set of labels, and —C @(Cons x Act x Pr) is the
transition relation. O

In the definition above, the elements of Pr are called states or processes. We
will usually call them processes as this is the standard terminology in concur-



6

rency. We use P, () to range over such elements, and u to range over the labels in
Act. We write P 5 @ when (P, u, Q) € —; in this case we call Q a p-derivative
of P, or sometimes simply a derivative of P. A transition P -5 Q indicates
that process P accepts an interaction with the environment, in which P per-

forms action p and then becomes process Q). If there are Py, ..., Py, p41,- .., tin
st. P25 P ... Py, A, P,, then P, is a derivative of P under ju, ..., fin,

or simply a multi-step derivative of P. In the remainder, we usually do not
explicitely indicate the LTS for the processes we write.

0.4 Equality of behaviours

An LTS tells us what is the behaviour of processes. The next question now is:
when should two behaviours be considered equal? I.e., what does it mean that
two processes are equivalent? Intuitively, two processes should be equivalent if
they cannot be distinguished by interacting with them. In the following sections
we try to formalise this—very vague—statement.

0.4.1 Isomorphism and trace equivalence
0.4.1.1 Equality in Graph Theory

We have observed that LTSs resemble graphs. We could therefore draw inspi-
ration for our notion of behavioural equality from graph theory. The standard
equality on graphs is graph isomorphism. (In mathematics, two structures are
isomorphic is a bijection can be established on their components; on graphs the
components are the states and the transitions.) Is this notion satisfactory for
us?

Certainly, if two LTSs are isomorphic then we expect that the correspond-
ing states give rise to the same interactions and should indeed be regarded as
equal. What about the converse, however? Consider the LTSs in Figure 0.2,
and the interactions that are possible from the initial processes s; and ¢;. Both
processes just allow us to repeat the sequence of interactions a, b, ad infinitum.
It is undeniable that the two processes cannot be distinguished by interactions.
However, there is no isomorphisms on the two LTSs, as they have quite differ-
ent shapes. We have to conclude that graph isomorphism is too strong as a
behavioural equivalence for processes.

0.4.1.2 Equality in Automata Theory

LTSs also remind us of something very important in Computer Science: au-
tomata. The main difference between automata (precisely, we are thinking of
non-deterministic automata here) and LTSs is that an automaton has also a



0.4 Equality of behaviours 7

a b
TN RN
=) ‘
b \Q/

Fig. 0.2. Non-isomorphic LTSs

Fig. 0.3. Example for trace equivalence

distinguished state designed as initial, and a set of distinguished states designed
as final. Automata theory is important and well established in Computer Sci-
ence; it is therefore worth pausing on it for a moment, to see how the question
of equality of behaviours is treated there.

Automata are string recognisers. A string, say a1 ...an, is accepted by an
automaton if its initial state has a derivative under a1, ..., a, that is among the
final states. Two automata are equal if they accept the same language, i.e., the
same set of strings. (See, any textbood on automata for details on automata
theory.)

The analogous equivalence on processes is called trace equivalence. It equates
two processes P and @ if they can perform the same finite sequences of tran-
sitions; precisely, if P has a sequence P A P Py 2 P, then there
should be Q1,...,Q, with Q 25 Q1 ...Qn_1 22 Q,, and the converse on the
transitions from ). Examples of equivalent automata are given in Figures 0.3
and 0.4, where s and ¢ are the initial states, and for simplicity we assume that
all states are final. As processes, s1 and t; are indeed trace equivalent.

These equalities are reasonable and natural on automata.

But processes are used in a quite different way with respect to automata.
For instance, a string is considered “accepted” by an automaton if the string



Fig. 0.4. Another example for trace equivalence

gives us at least one path from the initial state to a final state; the existence
of other paths that fail (i.e., that lead to non-final state) is irrelevant. This is
crucial for the equalities in Figures 0.3 and 0.4. For instance, in Figure 0.4,
the automaton on the left has a successful path for the string ab, in which the
bottom a-transition is taken. But it has also a failing path, along the upper
a-transition. In contrast, the automaton on the right only has a successful path.
Such differences matter when we interpret the machines as processes. If we wish
to press the button a and then the button b of the machine, then our interaction
with the machine on the right will always succeed. In contrast, our interaction
with the machine on the left may fail. We may indeed reach a deadlock, in
which we try to press the button b but the machine refuses such interaction. We
cannot possibly consider two processes “the same” when one, and only one of
them, can cause a deadlock!

As another example, the equality between the two automaton in Figure 0.3 is
rewritten in Figure 0.5 using the labels of the vending machine of Figure 0.1. It is
certainly not the same to have in an office the first or the second machine! When
we insert a coin in the machine on the right, the resulting state can be either to
or t4. We have no control over this: the machine, non-deterministically, decides.
At the end, if we want to have a beverage at all, we must accept whatever the
machine offers us. In contrast, the machine on the left always leaves us the
choice of our favourite beverage. In concurrency, in contrast with automata
theory, the timing of a branch in the transition graph can be important.

0.5 Bisimilarity
In the previous sections we saw that the behavioural equality we seek should:
e imply a tighter correspondence between transitions than language equivalence,

e be based on the informations that the transitions convey, and not on the shape
of the LTSs (as in LTS isomorphism).



0.5 Bisimilarity 9

tea
collect-tea

collect-coffee

Fig. 0.5. Two vending machines

(Trace equivalence is still important in concurrency. For instance, on determin-
istic or confluent processes, and for liveness properties such as termination.)

Intuitively, what does it mean that two machines have the same behaviour?
If we do something with one machine, then we must be able to do the same
with the other and, on the two states which the machines evolve to, the same
is again true. This is the idea of equality that we are going to formalise. It is
called bisimilarity.

Definition 0.5.1 (Bisimulation and bisimilarity) A binary relation R on
the states of an LTS is a bisimulation if whenever P R Ps:

(1) for all P with P, 5 P/, there is P} such that P, £ Py and P R P};
(2) the converse, on the transitions emanating from Ps, i.e., for all P, with
Py % Py, there is P] such that P, % P| and P| R Pj;

Bisimilarity, written ~, is the union of all bisimulations; thus P ~ ) holds if
there is a bisimulation R with P R Q. a

Note in clause (1) the universal quantifier followed by the existential one: Pj
challenges P» on all its transitions, and in each case P; is called to find a match.

The definition of bisimilarity immediately suggests a proof technique: to
demonstrate that P; and P, are bisimilar, find a bisimulation relation con-
taining the pair (P;, P2). This is the bisimulation proof method, and is, by far,
the most common method used for proving bisimilarity results. It is useful to
get some practice with the method before exploring the theory of bisimilarity.

Remark 0.5.2 Note that bisimulation and bisimilarity are defined on a single
LTS, whereas in the previous (informal) examples the processes compared were
taken from two distinct LTSs. Having a single LTS is convenient, for instance



10

ensuring that the alphabet of actions is the same; moreover we do not loose
generality, as the union of two LTSs is again an LTS. a

Example 0.5.3 Suppose we want to prove that s; ~ t1, for s; and ¢; as in
Figure 0.2. We have to find a relation R containing the pair (s1,¢1). We thus
place (s1,t1) in R. For R to be a bisimulation, we also have to make sure that
all (multi-step) derivatives of s; and t; appear in R—those of s; in the first
component of the pairs, those of ¢; in the second. Examining so, it is natural to
place the pair (s2,t2) in R. Thus we have R = {(s1,11), (s2,t2)}. Is this a bisim-
ulation? Obviously not, as a derivative of ¢1, namely t¢3, is uncovered. Suppose
however we did not notice this, and tried to prove that R is a bisimulation. We
have to check clauses (1) and (2) of Definition 0.5.1 on each pair in R. As an
example, we consider clause (1) on the pair (s1,¢1). The only transition from
$1 1S §1 — s9; this is matched by ¢; via transition t; — to, for (s2,t2) € R as
required. However the checks on (s2,t2) fail, since, for instance, the transition
S9 2, s1 cannot be matched by to, whose only transition is %o 2, tg and the
pair (s1,t3) does not appear in R. (Note: if we added to the LTS a transition

to LN t1 this problem would disappear, as (s1,t1) € R and therefore the new
transition could now match the challenge from so; however R would still not be
a bisimulation; why?) We realise that we have to add the pair (s1,?3) to R. We
let the reader check that now R is indeed a bisimulation.

The reader may want to check that the relation R above remains a bisimula-

tion also when we add the transition to LN t1. O

In the example above, we found a bisimulation after an unsuccessful attempt,
which however guided us towards the missing pairs. This way of proceeding
is common: trying to prove a bisimilarity P ~ (), one starts with a relation
containing at least the pair (P, Q) as an initial guess for a bisimulation; then,
checking the bisimulation clauses, one may find that the relation is not a bisim-
ulation because some pairs are missing. The pairs are added, resulting in a new
guess for a bisimulation; and so on, until a bisimulation is found.

An important hint to bear in mind when using the bisimulation proof method
is to look for bisimulations “as small as possible”. A smaller bisimulation, with
fewer pairs, reduces the amount of work needed for checking the bisimulation
clauses. For instance, in the example above, we could have used, in place of
R, the relation R UZ U {(t1,t3)}, where Z is the identity relation. This also is
a bisimulation, and contains the pair {(s1,%;)} we are interested in, but it has
more pairs and therefore requires more work in proofs. Reducing the size of
the relation to exhibit, and hence relieving the proof work needed to establish



0.5 Bisimilarity 11

bisimilarity results, is the motivation for the enhancements of the bisimulation
proof method (so called “up-to techniques”, which we will not deal here)

Example 0.5.4 Suppose we want to prove t; ~ uq, for ¢; as in Figure 0.2 and
u1 as below.

Proceeding as Example 0.5.3, our initial guess for a bisimulation is the following
relation:

{(tl)ul)v (t27u2)7 (t3,U3), (t2’ U4)}

This may seem reasonable, as all the states in the LTS are covered. However,
this relation is not a bisimulation: clause (2) of Definition 0.5.1 fails on the pair

(t2,uy4), for the transition uy 2, u1 has no match from ¢5. We thus add the pair
(t3,u1). The reader may check that this produces a bisimulation. O

Example 0.5.5 Suppose we want to prove that processes s; and t1 in Figure 0.4
are not bisimilar. We can show that no bisimulations exist that contain such
a pair. Suppose R were such a bisimulation. Then it should also relate the
derivative sg of s1 to a derivative of t1; the only possible such derivative is ts;
but then, on the pair (s2,t2), clause (2) of Definition 0.5.1 fails, as only ¢2 has
a transition.

A similar, but often more useful, method for proving results of non-bisimilarity
will be shown in Section 0.11.2, using the approximants of bisimilarity. O

Two features of the definition of bisimulation make its proof method practi-
cally interesting:

e the locality of the checks on the states;
e the lack of a hierarchy on the pairs of the bisimulation.

The checks are local because we only look at the immediate transitions that
emanate from the states. An example of a behavioural equality that is non-
local is trace equivalence (that we encountered when discussing automata). It
is non-local because computing a sequence of transitions starting from a state s
may require examining other states, different from s.

There is no hierarchy on the pairs of a bisimulation in that no temporal order
on the checks is required: all pairs are on a par. As a consequence, bisimilarity
can be effectively used to reason about infinite or circular objects. This is in



12

sharp contrast with inductive techniques, that require a hierarchy, and that
therefore are best suited for reasoning about finite objects. For instance, here
is a definition of equality that is local but inherently inductive:

Py = Py if: for all P{ with P N P,
there is Pj such that P» N P} and
P] = PJ; plus the converse, on the
transitions from Ps.

This definition requires a hierarchy, as the checks on the pair (P;, P») must follow
those on derivative pairs such as (Pj, Pj). Hence the definition is ill-founded if
the state space of the derivatives reachable from (P;, P) is infinite or includes
loops. We shall find hierarchical characterisations of ~, refining the idea above,
in Section 0.11.2.

Some (very) basic properties of bisimilarity are exposed in Theorems 0.5.6
and 0.5.7.

Theorem 0.5.6 (1) ~ is an equivalence relation, i.e. the following hold:

(a) p~ p (reflexivity)
(b) p ~ g implies g ~ p (symmetry)
(¢) p~qand g~ rimply p ~ r (transitivity);

(2) ~ itself is a strong bisimulation.

Proof For reflexivity, one shows that the identity relation, that is the relation
{(P,P) | P is a process}, is a bisimulation.

For symmetry, we have to show that if R is a bisimulation then so is its
converse R~L.

For transitivity, we must show that if Ry and Ro are bisimulations, then so
is their relational composition. This proof need to be expanded, to show some
details O

The second item of Theorem 0.5.6 brings us the impredicative flavor of the
definition of bisimilarity: bisimilarity itself is a bisimulation and is therefore
part of the union from which it is defined. The item thus also gives us:

Theorem 0.5.7 ~ is the largest bisimulation, i.e., the largest relation ~ on
processes such that P, ~ P implies:
(1) for all P with P, 25 P/, there is Py such that P, * P} and P} ~ P};
(2) for all Py with Py £ P}, there is P| such that P, - P] and P| ~ P;.



0.6 Ezxzamples of induction and coinduction 13

0.5.1 Towards coinduction

The assertion in Theorem 0.5.7 could even be taken as the definition of ~
(though we should first show that the largest relation mentioned in the state-
ment does exist). It looks however like a circular definition. Does it make sense?
Also, we claimed that we can prove (P, Q) € ~ by showing that (P,Q) € R and
R is a bisimulation relation, that is, a relation that satisfies the same clauses as
~. Does such a proof technique make sense?

There is a sharp contrast with the usual, familiar inductive definitions and
inductive proofs. In the case of induction, there is always a basis, i.e., something
to start from, and then, in the inductive part, one builds on top of what one has
so obtained so far. Indeed, the above definition of ~, and its proof technique,
are not inductive, but coinductive.

It is good to stop for a while, to get a grasp of the meaning of coinduction,
and a feeling of the duality between induction and coinduction. This will be
useful to relate the idea of bisimilarity to other concepts, and it will also allow
to derive a few results for bisimilarity.

0.6 Examples of induction and coinduction

We begin with some examples, described informally, in which we contrast in-
duction and coinduction.

0.6.1 Finite traces and w-traces on processes

As an example of an inductive definition, we consider a property akin to termi-
nation. A inactive process cannot do any transitions. A process P has a finite
trace, written P |, if P has a finite sequence of transitions that lead to an inac-
tive process as final derivative. Predicate | has a natural inductive definition,
using the following rules:

P inactive P p P
P P

A process P has a finite trace if P is generated by the rules above, in the usual
inductive way. An equivalent formulation is to say that | is the smallest set of
processes that is closed forward under the rules; i.e., the smallest subset .S of Pr
s.t.

e all inactive processes are in S
e if there is v s.t. P -5 P’ and P’ € S, then also P € S.



14

This formulation gives us a proof principle for |: given a predicate P on the
processes, to prove that all processes in | are also in P it suffices to show that
P is closed forward under the above rules. This is the familiar inductive proof
method for sets generated by rules.

As an example of a coinductive definition we consider a property akin to non-
termination. Informally, a process P has an w-trace under a, where a is an
action (more simply, an w-trace, when a is clear), if it is possible to observe an
infinite sequence of a-transitions starting from P.

Note: process can be both in | and in [,

The set of processes with an w-trace has a natural coinductive definition in
terms of rules. We only need the following inference rule:

PSP P,
P,

Indeed [, is the largest predicate on processes that is closed backward under the
rule; i.e., the largest subset S of processes s.t. if P € S then

e thereis P € S st. P -5 P,

Hence: to prove that a given process P has an w-trace it suffices to find some
S C Pr that is closed backward and with P € S; this is the coinduction proof
principle, for w-traces.

In the first example, the term “closed forward” is to remind us that we are
using the rules top-down, from the premises to the conclusion: if .S is closed
forward, then whenever the premises of a rule are satisfied by S, the resulting
conclusion should be in S too. Dually, the term “closed backward” emphasizes
that we use the rules bottom-up: if S is closed backward, then each element of
S must match a conclusion of a rule in such a way that its premises are satisfied
by S.

Of course, the existence of the smallest set closed forward, or the largest
set closed backward, must be established. This will follow from the general
framework of induction and coinduction that will be introduced later. It is
easy however also to prove the existence directly, in each example; for sets
closed forward, showing that one such set exists (in the example, the set of all
processes), and that the intersection of sets closed forward is again a set closed
forward; similarly for sets closed backward.

0.6.2 Reduction to a value and divergence in the A-calculus

For readers familiar with the A-calculus, a variant of the previous examples (and
probably more enlightening) can be given using the relations of convergence and



0.6 Ezxzamples of induction and coinduction 15

the predicate of divergence on the A-terms. Readers non familiar with the A-
calculus may safely skip the example.

We recall that the set A of A-terms is given by the following grammar (note:
this is an inductive definition!)

ex=x | Ar.e | er(e2)

where, in Ax. e, the construct Az is a binder for the free occurrences of x in e.
We omit the standard definitions of free and bound variables. The set AY of
closed A-terms is the subset of A whose elements have no free variables; e{€//z}
is the term obtained from e by replacing its free occurrences of x with e’.

Relation |}, A%x A (convergence to a value) for the call-by-name A-calculus,
the simplest form of the A-calculus, is given by the following two rules:

- e1 Un Ax. g eo{€2/x} |, €
Ax.e n Ax. € ei(e2) In €

The pairs of terms we are interested in are those generated by these rules; this
is an inductive definition. Equivalently, l},, is the smallest relation on (closed)
A-terms that is closed forward under the rules; i.e., the smallest relation S C
A% x A0 s.t.

e \x.e S Ax.e for all abstractions,
e if e1 S \z.ep and ep{€2/z} S €’ then also e1(e3) S €.

This immediately gives us a proof method for |} (an example of the induction
proof method): given a relation R on A-terms, to prove that all pairs in |} are
in R it suffices to show that R is closed forward under the above rules. (What
is the largest relation closed forward?)

Similarly, the predicate f"C AY (divergence), in call-by-name A-calculus, is
defined coinductively with the following two rules:

er " e1 Un Ax. g eo{€2/x} "
e1(e2) 1" ei(ez) 1"

1™ is the largest predicate on (closed) A-terms that is closed backward under
these rules; i.e., the largest subset D of A" s.t. if e € D then

e cither e = ej(e2) and e; € D,
e or e =ej(ea), e1 In Az.ep and ep{€2/z} € D.

Hence, to prove that a given term e is divergent it suffices to find E C A? that is
closed backward and with e € E (an example of the coinduction proof method).
(What is the smallest predicate closed backward?)



16

Exercise 0.6.1 Let e; def Azx.xx, and e 4t \z.zzz. Show that the terms

ei(e1), ea(ea), e1(e2), and ez(ey) are all divergent, using the coinduction proof
method (i.e., exhibiting suitable sets that are closed backward under the above
rules). O

0.6.3 Lists over a set A

Let A be any set. The set of finite lists with elements from A is the set £
inductively generated by the rules below; i.e., the smallest set closed forward
under these rules.

tel aeA
nile L cons(a,l) € L

In contrast, the set of finite and infinite lists is the set coinductively defined
by the rules, i.e., the largest set closed backward under the same rules.

0.7 The duality

From the examples above, although informally treated, the pattern of the duality
between induction and coinduction begins to emerge:

e An inductive definition tells us what are the constructors for generating the
elements (cf: the closure forward).

e A coinductive definition tells us what are the destructors for decomposing the
elements (cf: the closure backward).

The destructors show what we can observe of the elements. If we think of
the elements as black boxes, then the destructors tell us what we can do with
them; this is clear in the case of infinite lists, and also in the definition of
bisimulation.

When a definition is given by means of some rules:

e if the definition is inductive, we look for the smallest universe in which such
rules live.
e if it is coinductive, we look for the largest universe.

The duality is summarised in the table in Figure 0.6. We have not explained
yet the duality between congruence and bisimulation; to be done formally, this
would require some machinery that we have not introduced here. We can com-
ment however, intuitively, that the dual of bisimulation is a congruence because
a bisimulation is a relation closed under the “destructors”, whereas a congruence
is a relation closed under the “constructors”. Also, we have not explained yet



0.8 A glimpse of Lattice Theory 17

inductive defs  coinductive defs
induction technique coinductive technique
constructors  destructors
smallest universe largest universe
congruence bisimulation
least fixed-points greatest fixed-points

Fig. 0.6. The duality between induction and coinduction

how induction and coinduction are related to least and greatest fixed points. We
do this in the next section, where, in fact, we use fixed-point theory to explain
the meaning of induction and coinduction. We will thus be able to show the
precise sense in which Examples 0.12.7 are about induction or coinduction, and
also give a more formal explanation of the duality of the concepts introduced
above.

First, we need to introduce the relevant concepts, from fixed-point theory.
It is possible to be more general, working with universal algebras or category
theory.

0.8 A glimpse of Lattice Theory

In this section we recall a few important results of lattice theory that will then
be used to explain induction and coinduction.

0.8.1 Fixed points in complete lattices

Definition 0.8.1 A partially ordered set (or poset) is a non-empty set equipped
with a relation on its elements that is reflexive, transitive, and antisymmetric
(antisymmetric meaning that * < y and y < x implies z = y, where < is the
relation on the set.) O

We usually indicate the partial order relation of a poset by <. When a set L
with relation < is a poset, we often simply say that L is a poset. If x < y we
sometimes say that x is below y, and y is above x. We also write y > x when
x < y holds.

An endofunction on a set L is a function from L onto itself. We sometimes
call the elements of a set points.

Definition 0.8.2 Let L be a poset.

e An endofunction F' on L is monotone if z < y implies F'(x) < F(y).



18

e For aset S C L, apoint y € L is an upper bound of S if x < y for all points
xes. O

Turning a poset upside-down (that is, reversing the partial order relation) gives
us another poset. Thus statements about a poset have a dual, in which each of
the relations < and > is replaced by the other in the statement. For instance,
the dual of an upper bound of S is a lower bound of S: a point y with y < x for
all x € S.

Definition 0.8.3 Let L be a poset.

e The least element of a subset S C L is an element y € S that is a lower bound
of S (this element may not exist; if it exists, then it is unique). The least
upper bound of S (that is, an upper bound y with y < z for all upper bounds
z of §) is also called the join of S.

e A point x is a pre-fized point of an endofunction F on L if F(x) < z. If also
the converse holds, thus F(z) = x, then z is a fized point of F. Further, z
is the least fized point of F if x the least element in the set of fixed points of
F. O

The dual of the above definitions gives us the greatest element of .S, the meet
of S, a post-fized point of F, and the greatest fized point of F. We write |J S
(or Uyeg S) for the join of a subset S of a poset, and (.5 (or (g 5) for its
meet. Note that an element y of a subset S of a poset could have the property
that no element x € S exists with x < y without y being the least element of S
(in the literature such elements are usually called minimal). We write gfp(F)
and 1fp(F) for the greatest and least fixed points of F', respectively.

Definition 0.8.4 A complete lattice is a poset with all joins (i.e., all the subsets
of the given poset have a join). O

The above implies that a complete lattice has also all meets; see Exercise 0.8.6.
Further, taking the join and the meet of the empty set, it implies that there are
bottom and top elements. We usually indicate these elements by 1 and T,
respectively.

Example 0.8.5 If S is a set, then p(S) is a complete lattice, ordering the
elements of ©(S) by means of the set inclusion relation C. In this complete
lattice, () (the empty set) and S are the bottom and top elements; join is given
by set union, and meet by set intersection. O



0.8 A glimpse of Lattice Theory 19

The powerset constructions are the kind of complete lattice we mainly use in the
chapter. This explains the union and intersection notations adopted for joins
and meets.

Exercise 0.8.6 Show that in the definition of complete lattice the existence
of all joins implies the existence of all meets. (As usual, the dual is also true,
exchanging meets and joins in the definition of complete lattice.) O

Exercise 0.8.7 For the construction in Exercise 0.8.6 it is necessary to assume
that all subsets have a join. Suppose L is a poset in which all pairs of elements
have a join (such a poset is called lattice—without the adjective “complete”).
Show, by means of a counterexample, that this does not imply that all pairs of
elements have a meet. O

Remark 0.8.8 A lattice (as defined in Exercise 0.8.7) is complete if and only if
every monotone endofunction on the lattice has a fixed-point. Other character-
isations of the difference between lattices and complete lattices exist, see books
on lattice theory such as [...] for details. 0

Theorem 0.8.9 (Fixed-point Theorem) On a complete lattice, a monotone
endofunction has a complete lattice of fixed points. In particular the greatest
fixed point of the function is the join of all its post-fixed points, and the least
fixed point is the meet of all its pre-fixed points. O

Exercise 0.8.10 This exercises invites the reader to carry out a proof of the
Fixed-point Theorem.

(1) Let L be the lattice, and F' the monotone endofunction, and S the set
of fixed-points of L. Consider a subset X C S, and take the set Y of
pre-fixed points that are also upper bounds of X:

v {yel | Fy) <yand, Vo e X o <y)
Take now the meet z of Y (which exists because L is a lattice). Show
that this is also the join of X in S. (Hint: This is similar to the proof of
Exercise 0.8.6.)
(2) Using the previous result, complete the proof of the theorem. O

For our developments in the book, the second part of the theorem, relating
greatest and least fixed points to the sets of post-fixed and pre-fixed points, espe-
cially interests us. On complete lattices generated by the powerset construction,



20

the statement becomes: if F': p(X) — ©(X) is monotone, then

Lep(F) < (S | F(S) < S}

gtp(F) £ | J{S | SCF(9)}

Exercise 0.8.11 Give a direct proof of the above statement (which is simpler
than the full proof of the Fixed-point Theorem). O

Exercise 0.8.12 Another equivalent formulation of the first part of the Fixed-
point Theorem can be given in terms of post-fixed points: the monotone endo-
function has a complete lattice of post-fixed points. Similarly for the pre-fixed
points. Prove these assertions (Hint: this is similar to the proof of the Fixed-
point Theorem.) O

0.8.2 Constructive proofs of the existence of least and greatest fixed-
points

The proof of the Fixed-point Theorem 0.8.9 we have seen is not constructive
(least fixed point and greatest fixed point of a function are obtained from the
sets of its pre- and post-fixed points and we are not told how to find these). The-
orems 0.8.16 and 0.8.18 give constructive proofs, by means of iterative schemes.
Theorem 0.8.16 uses iteration over the natural numbers, but needs additional
hypothesis on the function; Theorem 0.8.18 avoids this by iterating over the
ordinals. The main advantage of these iteration schemes is that they give us
a means of approximating, and possibly even computing, least fixed point and
greatest fixed point. The constructions are indeed at the heart of the algorithms
used today for computing these fixed-points, including those for checking bisim-
ilarity. The iteration schemes also offer us an alternative way for reasoning
about the fixed points; for instance, on greatest fixed point the scheme is useful
to prove that a point is not below the greatest fixed point (see for bisimilarity
Example 0.11.13).

Definition 0.8.13 An endofunction on a complete lattice is:'

e continuous if for all sequences ag, a1 ... of increasing points in the lattice (i.e.,
a; < a1, for i > 0) we have F(J,; as) = U, F(ou).

e cocontinuous if for all sequences aq, a1 ... of decreasing points in the lattice
(i.e., & > @y, for i > 0) we have F((), ;) =), F(a). O

I In some textbooks, cocontinuitiy is called lower-continuity, the dual property upper-continuity.



0.8 A glimpse of Lattice Theory 21

In the remainder of this section, we present the details for greatest fixed points
and cocontinuity, as they are related to coinduction. The dual statements, using
least fixed points and continuity, also hold.

Exercise 0.8.14 If F' is cocontinuous, then it is also monotone. (Hint: take
x >y, and the sequence z,y,y,y,....) O

Exercise 0.8.15 Show that a function can be cocontinuous without being con-
tinuous, and conversely. O

For an endofunction F on a complete lattice, F"(x) indicates the n-th iteration
of F starting from the point z:

Then we set:

Theorem 0.8.16 For a cocontinuous endofunction F' on a complete lattice we
have:

gfp(F) = F™“(T).

Dually, if F' is continuous:
Lep(F) = F2(1)
Exercise 0.8.17 Prove Theorem 0.8.16. O

If F' is not cocontinuous, and only monotone, we only have gfp(F) C F™(T).
Therefore if it happens that F™“(T) is a fixed point, then we are sure that it is
indeed the gfp. With only monotonicity, to reach the greatest fixed point using
inductively-defined relations, we need to iterate over the transfinite ordinals.

Theorem 0.8.18 Let F' be a monotone endofunction on a complete lattice L,
and define FA(T), where ) is an ordinal, as follows:

FO(T) % T
FNT) € F(Nyey FA(T)) for B> 0

Define also F*°(T) dof Ny FA(T). Then F>®(T) = gfp(F).



22

Proof Using transfinite induction one proves that gfp(F) C FA(T) for all \.
As 3 < X implies FA(T) < FA(T) and L is a set, there must be an ordinal «

with F(T) = FoH(T). As gfp(F) C F*(T), we can conclude that F*(T) is

the gfp. O

As the ordinals are linearly ordered, and each ordinal is either the successor
of another ordinal or the least upper bound of all its predecessors, the above
definition can also be given thus:

FOT) =0T
FML(T) e p (FMT)) for successor ordinals
FA(T) &« F(Ms<n FA(T)) for limit ordinals

Thus, on the naturals, the definitions of the F™ used in Theorem 0.8.16 coincides
with those used in Theorem 0.8.18, which explains why the notation is the same.

The proof of Theorem 0.8.18 shows that there is an ordinal « of cardinality
less than or equal to that of the lattice such that for 8 > « the greatest fixed
point of F'is F 5(T). That is, at « the function reaches its greatest fixed point;
on ordinals larger than «, of course, the function remains on such fixed point.
In other words, FA(T) returns the greatest fixed point of F' for all sufficiently
large ordinals A. In case F' is cocontinuous, Theorem 0.8.16 assures us that we
can take o to be the first ordinal limit, w (not counting 0 as an ordinal limit).

Exercise 0.8.19 generalises Theorem 0.8.16, for an arbitrary pre-fixed point
in place of T. (It is a generalisation because the top element T of a complete
lattice is a pre-fixed point of any function on the lattice, and, as a top element,
it is above all post-fixed points of the lattice).

Exercise 0.8.19 Let F' be a cocontinuous endofunction on a complete lattice
L, and x a pre-fixed point of F, and let F"(x), F"“(x) be defined as before
Theorem 0.8.16. Show that:

(1) Fo(zx), Fi(x),...is a decreasing sequence, and F"(z) a fixed point of F;

(2) F"“(z) is the greatest fixed point of F' that is below x;

(3) this fixed point is also the join of all post-fixed points of F' that are below
z, i.e.,

F@)=|J{y | y<zandy < F(y)}.
O
Exercise 0.8.20 In the same manner as Exercise 0.8.19 is a generalisation of

Theorem 0.12.8, state the corresponding generalisation of Theorem 0.12.8, and
then prove it. O



0.9 Induction and coinduction, formally 23

Remark 0.8.21 e Theorem 0.8.16 and 0.8.18, and their dual, just mention
least and greatest fixed points. It is possible to give similar constructive
proofs, using iteration schemes, of the full statement of the Fixed-point The-
orem (.8.9.

e In Theorem 0.8.16 and 0.8.18, and related results, it is the existence of greatest
lower bounds of decreasing sequences of points that matters; the existence of
arbitrary meets and joins is not needed. Thus the theorems also hold on
structures that are weaker than complete lattices. O

0.9 Induction and coinduction, formally
0.9.1 Inductively and coinductively defined sets

For a complete lattice L whose points are sets (as in the complete lattices ob-
tained by the powerset construction) and an endofunction F' on L, the sets

Fcoind d:ef U{x | € S F(.l?)}

Fing & ﬂ{x | F(z) <z}

(the join of the post-fixed points, and the meet of the pre-fixed points) are,
respectively, the sets coinductively defined by F', and inductively defined by F.
Hence the following rules hold:

if z < F(x) then z < Fioing (0.1)

if F(z) < then Fipg < (0.2)

By the Fixed-point Theorem, we know that, when F' is monotone, then Feoing
is the greatest fixed point (and the greatest post-fixed point) of F', and dually
for Fing. More generally, we know that the join of post-fixed points is itself a
post-fixed point, and dually so. And Theorems 0.8.16 and 0.8.18 give us ways
of approximants of the fixed-points. Rule (0.1) expresses the coinduction proof
principle, and rule (0.2) induction proof principle.

To understand the definitions of induction and coinduction given above, in
Section 0.10 we revisit the examples in Section 0.6 in the light of such defini-
tions. The examples in Section 0.6 were expressed by means of rules: rules for
generating the elements of an inductive set, or for “observing” a coinductive ele-
ment. So we first show in what sense a set of rules produces monotone operators
on complete lattices.

Remark 0.9.1 It is possible to give coinductive and inductive definitions even
for functions F' that are not monotone. O



24

0.9.2 Definitions by means of rules

Given a set X, a ground rule on X is a pair (S,z) with S C X and z € X; it
intuitively says that from the premises S we can derive the conclusion z. A set
R of ground rules on X is a subset of p(X) x X; it allows us to obtain elements
of X from subsets of X.

Note that what is usually called an inference rule corresponds, in the above
terminology, to a set of rules, namely the set of all instances of the inference
rule. As an example, consider the inference rule

er "

e1(e2) N

on closed A\-terms (A°) that we saw in Section 0.6.2. As a set of ground rules on
A, this becomes the set of all pairs of the form ({e},e(e’)), with e, ¢’ € A°. Note
also that the first component of a ground rule can be empty, which corresponds
to the case of an axiom. In the remainder of the section we often omit the
adjective “ground”.

A set of rules R on X yields a monotone endofunction ®%, called the func-
tional of R (or rule functional, when R is clear), on the complete lattice p(X),
where

Pr(S)={z | (9 ,z) € R for some S’ C S}

Exercise 0.9.2 Show that ®5 above is indeed monotone. O

The relationship between rule functionals and monotone functions is in fact
tight, as the following exercise shows.

Exercise 0.9.3 Show that every monotone operators on the complete lattice
©(X) can be expressed as the functional of some set of rules. O

As the functional of a set of rules is monotone, by the Fixed-point Theorem
it has Ifp and gfp. These are the sets inductively and coinductively defined by
the rules. We also get, from (0.1) and (0.2), induction and coinduction proof
principles.

However, a rule functional need not be continuous or cocontinous.

To do: add a counterexamples here

We can recover continuity and cocontinuity for rule functionals adding some
conditions. Here the duality is less obvious, and needs some care.

Definition 0.9.4 A set of rules R is finite in the premises, briefly FP, if for
each rule (S, z) € R the premise set S is finite. O



0.10 The examples, continued 25

Exercise 0.9.5 Show that if the set of rules R is FP, then &5 is continuous.
O

However, surprisingly at first sight, the statement of Exercise 0.9.5 does not
hold for cocontinuity. As a counterexample, take X = {b} U {a1,...,an,...},
and the set of rules ({a;},b), for each i, and let ® be the corresponding rule
functional. Thus ®(S) = {b} if there is i with a; € S, otherwise ®(S) = 0.
Consider now the sequence of decreasing sets So, ..., Sy, ..., where

def . .
Si = {a; | j =i}
We have ®((),, Sn) = 0, but (,, 2(S,) = {b}.
To obtain cocontinuity we need some finiteness conditions on the conclusions
of the rules (rather than on the premises as for continuity).

Definition 0.9.6 A set of rules R is finite in the conclusions, briefly FC, if for
each x, the set {S | (S,x) € R} is finite (i.e., there is only a finite number
of rules whose conclusion is z; note that, by contrast, each premise set S may

itself be infinite). O
Theorem 0.9.7 If a set of rules R is FC, then ®% is cocontinuous. O
Exercise 0.9.8 Prove Theorem 0.9.7. a
Corollary 0.9.9 If a set of rules on X is FC, then gfp(F) = F"“(X). O

Without FC, and therefore without cocontinuity, we have nevertheless gfp(®r) C
F(X).

Exercise 0.9.10 Let R be a set of ground rules, and suppose each rule has a
non-empty premise. Show that 1fp(®g) = 0. ]

0.10 The examples, continued
0.10.1 Finite traces and w-traces for processes as fixed points

We show how the predicate | and [,, from Section 0.6.1, are obtained for suitable
sets of ground rules on the set Pr of all processes. In the case of |, the set of
rules is:

th:ef {(B,P) | P is inactive}

U{{P'},P) | P P’ for some pu}



26

This yield the following functional:

PR, () def {P | P is inactive, or there are P/, with P’ € S and P - P’}
A set “closed forward”, as in the terminology of Section 0.6.1, is precisely a pre-
fixed point of @z, . Thus the smallest set closed forward and the proof technique
mentioned in Section 0.6.1 become examples of inductively defined set and of
induction proof principle.

Exercise 0.10.1 Show that P € 1fp(®g,) if and only if there is n > 0, pro-

. 1 .
cesses Pp,..., P,, and actions pi,...,u, s.t. P A, P... LN P, and P, is
inactive. O

In the case of [,, the the set of rules is:
Ri, ©A{{P}LP) | PP}

This yield the following functional:

def

dr, (S) = {P | thereis P'€ S and P = P'}

Now, with references to Section 0.6: a set that is “closed backward” is a post-
fixed point of @z, , and the largest set closed backward is the greatest fixed
point of @z, ; similarly, the proof technique for w-traces is derived from the
coinduction proof principle.

Exercise 0.10.2 Show that gfp(R|) = Pr, and 1fp(R;,) = 0. O

Exercise 0.10.3 Show that P € gfp(R},) if and only if there are processes P;
(i > 0) with Py = P and s.t., for each i, P; - P, . O

0.10.2 Reduction to a value and divergence in the A-calculus as fixed-
points

Continuing Section 0.6.2, we show how the convergence and divergence in the
A-calculus ({},, and {}") can be formulated as least fixed point and greatest fixed
point of rule functionals. We only show the definition of the functionals, leaving
the remaining details to the reader.

In the case of |}”, the rules manipulate pairs of closed A-terms, thus they act
on the set A? x A°. The rule functional for ||", written ® Uy is

Py (S) dof {(e,€') | for some e’ e =¢" = Ax.e" }
U{(e,€¢') | e=e1(e2) and T eg s.t. (e1,\x.ep) € S and (eo{€2/z},€') € S} .



0.10 The examples, continued 27

In the case of f,,, the rules are on AY. The rule functional for " is

©4(5) < feiler) | e1€ 8.}

U{ei(e2) | e1 dn Az.ep and ep{€2/z} € S}.

0.10.3 Lists over a set A as fixed points

We now consider the rules for lists over a set A in Section 0.6.3. We can take X
to be the set of all (finite and infinite) strings with elements from the alphabet
A U {nil,cons, (,)}. The ground rules are (,nil) and, for each s € X and
a € A, the rule ({s}, cons(a,s)). The corresponding rule functional Fjist is

Farise(S) % {nil} U {cons(a,s) | a € A, s € S}

We indicate with FinLists 4 the set of finite lists over A, and with FinInfListsy
the set of finite and infinite lists over A.

Exercise 0.10.4 Show that 1fp(Faiist) = FinListsy, and gfp(Faiist) =
FinInfListsy4. a

From (0.2), we infer: suppose P is a property on FinListsy; if Fa1is¢(P) C P
then P C FinLists, (hence P = FinListsy). Proving Fa1ist(P) C P requires
proving

e nil € P;
e s € FinListsg NP implies cons(a, s) € P, for all a € A.

This is the familiar induction proof technique for finite lists.

Remark 0.10.5 We used the set X to “bootstrap”, via the powerset construc-
tion, thus assuming that X is already given. If we were to introduce X formally,
then we could do so by means of another coinductive definition; however we
could also introduce X in a standard set-theoretic way, by viewing a string over
an alphabet B as a special function from the natural numbers to B, namely a
function that is either total (which yields an infinite string) or defined only on
an initial segment of the naturals (which yields a finite string).

An alternative would be to define lists using the functional Fa1is¢ on the
universe of all sets (precisely, non-well-founded sets); this would however take
us beyond complete lattices. The universe of all sets is not a complete lattice
(because of paradoxes such as Russel’s), but the constructions that we have seen
for least fixed point and greatest fixed point of monotone functions of complete
lattices apply. O



28

An interesting issue is the proof of equality between lists. For finite lists,
this does not present a problem: when a set S is inductively defined by means
of some rules, we can prove equality between elements of S proceeding in the
usual inductive way; that is, reasoning on the depth of the proof with which the
elements have been generated from the rules (possibly via transfinite induction,
if the rules are not FP). This method does not apply to coinductively defined
sets because here the derivation proofs can have infinite paths (i.e., generate a
non-well-founded relation on nodes moving upward, from a node toward one of
its children). On coinductively defined sets we can prove equalities adapting the
idea of bisimulation that we have earlier examined on LTSs. We show this for
FinInfLists 4; the same idea applies to any data type coinductively defined via
some rules.

The coinductive definition of a set tells us what can be observed of these
elements. We can make this explicit in FinInfLists 4 defining an LTS on top
of the lists. The domain of the LTS is the set FinInfLists 4, and transitions
are given by the following rule:

cons(a,s) — s

The rule says that we can observe the head of a list and the result is its tail.
Let ~41is¢ be the resulting bisimilarity, as by Definition 0.5.1. We have

Lemma 0.10.6 For s,t € FinInfListsy,, it holds that s = ¢ if and only if
S~ A1istl. U

(The above property is often referred to as (strong) extensionality for FinInfLists 4,
to indicate that the identity relation is the maximal bisimulation on the set.)

Exercise 0.10.7 Let A be a set, and map : ((A — A) X FinInfListsy) —
FinInfLists4 be defined by the following equation:

mapfnil = nil
mapf(cons(a,s)) = cons(f(a),mapfs)

Prove that such a function exists and is unique. (Hint: Let G be the function
with the same type as map and that, given a function f and a list, replaces each
element a in the list with f(a); show that G satisfies the equations of map, and
that for any other function G’ that satisfies the same equations, and for any
function f: A — A and list s € FinInfListsy, it holds that Gfs~a1i5: G'fs.)

O

Of course it is not necessary to define a LTS from lists. We can directly define
a kind of bisimulation on lists, as follows: A relation R C p(FinInfListsyg X
FinInflists,) is a list bisimulation if whenever (s,t) € R then



0.11 Bisimilarity as a fized-point 29

(1) s =nil implies t = nil;
(2) s = cons(a,s') implies there is t' s.t. ¢ = cons(a,t’) and (s',¢') € R

Then we obtain ~ 415s¢ as the union of all list bisimulations.

Similarly to the example of finite lists, one can treat the best known exam-
ple of inductive definition: the set of natural numbers is characterised as the
smallest set contains 0 and that is closed under the successor function. This
characterisation justifies the common proof principle of induction on the natu-
ral numbers (called mathematical induction): if a property on the naturals holds
at 0 and, whenever it holds at n, it also holds at n+ 1, then the property is true
for all naturals.

0.11 Bisimilarity as a fixed-point
0.11.1 The functional of bisimilarity

To see how bisimulation and its proof method fit the coinductive schema, con-
sider the function F. : p(Pr x Pr) — @(Pr x Pr) defined by:
F._(R) is the set of all pairs (P, Q) such that:

(1) for all P’ with P %5 P’ there is Q' such that Q - Q' and P’ R Q.
(2) for all Q' with Q -5 @', there is P’ such that P -5 P’ and P’ R Q'

We call F. the functional associated to bisimulation, for we have:

Theorem 0.11.1 (1) ~ is the greatest fixed point of F.;
(2) ~ is the largest relation R such that R C F_(R); thus R C ~ for all R
with R C F.(R). 0

Theorem 0.11.1 is a consequence of the Fixed-point Theorem because the func-
tional associated to bisimulation gives us precisely the clauses of a bisimulation,
and is monotone on the complete lattice of the relations on Pr x Pr:

Lemma 0.11.2 e R is a bisimulation iff R C F(R);
e [ is monotone. O

For such functional F., (0.1) asserts that any bisimulation only relates pairs of
bisimilar states.

Exercise 0.11.3 Below, R and R; are relations on the processes of a given
LTS. Show that:

(1) if R is an equivalence relation, then also F(R) is so;



30

(2) if, for each ¢ in a set I, relation R; is an equivalence relation, then also
Nicr Ri is so;

(3) use the points (1) and (2) above and Theorem 0.12.8 to conclude that
F.. is an equivalence relation. O

A process P is finite if there are no infinite sequences Pi,..., P, ... and
[y . with P25 P Py 25 Py

Exercise 0.11.4 What is the least fixed point of F..? Conclude that on finite
LTSs (i.e., all processes of the LTS are finite) least fixed point and greatest fixed
point of F., coincide. O

0.11.2 Approximants of bisimilarity

We can approximate, and even characterise, coinductively defined sets using the
iteration schemes of Theorems 0.8.16 and 0.8.18. In this section we examine
the operational meaning of these iterations, and related concepts, in the case of
bisimilarity.

Definition 0.11.5 (Stratification of bisimilarity, on the naturals) Let Pr
be the states of an LTS. We set:

° Nodzef Prx Pr
o Pyt @, forn>0,if
(1) for all P’ with P £ P’ there is @’ such that Q = Q' and P’ ~,, Q';
(2) the converse, i.e., whenever for all Q" with Q 4> @', there is P’ such
that P 2% P’ and P’ ~, Q'
def

[ ] ~Ny = ﬂnzo ~n. D
Exercise 0.11.6 (1) Show that ~g,...,~y,... is a decreasing sequence of
relations.

(2) Show for all 0 < n < w, we have ~,= F"(Pr) and ~“= F'*(Pr), where
F" and F% are the iterations of F. following the definitions used in
Theorem 0.8.16. O

The characterisation in Theorem 0.8.16 required cocontinuity. In general the
functional of bisimilarity is not cocontinuous; and ~,, does not coincide with ~,
as the following example shows.



0.11 Bisimilarity as a fized-point 31

Example 0.11.7 Suppose a € Act, and let a® be a state with no transitions,
a® a state whose only transition is

a L a”
and o, for n > 1, states with only transitions
a L gt
Also, let P, () be states with transitions
PLgn foralln >0

and

Q-5 a" forallm >0

Q = a”
It is easy to prove, by induction on n, that, for all n, P ~, @, hence also
P ~, Q. However, it holds that P o Q: the transition Q — a* can only be

matched by P with one of the transitions P — a". But, for all n, we have
a® 4 a", as only from the former state n 4 1 transitions are possible. O

Exercise 0.11.8 Use Example 0.11.7 to show formally that the function F. is
not cocontinuous. O

Remark 0.11.9 A case in which the function F' of which bisimilarity is the gfp
is usually not cocontinuous is that of weak bisimilarity, that we shall introduce
later. O

We can obtain ~ by iteration over the natural numbers if we add some con-
ditions to the LTS.

Definition 0.11.10 An LTS is image-finite (or finite-branching), if, for all P,
the set {P' | P X5 P', for some p} is finite. O

In Example 0.12.7, the LTS is not image-finite. It becomes image-finite if we
remove all transitions P —— a™ and Q — a", for all n > m, where m is any
given number. The LTSs in Figures 0.1-0.5 are image-finite (as the LTS itself
has only a finite number of states).

Theorem 0.11.11 On image-finite LTSs, relations ~ and ~,, coincide.

Proof The inclusion ~C~,, is easy: one proves that ~C~,, for all n, using the
fact that ~ is a bisimulation (or, using the fact that ~ is a fixed point of F.,
monotonicity of F., and the fact that ~, 1= F._(~,)).



32

Now the converse. We show that the set
def
REA(PQ) | P~ Q)

is a bisimulation. Thus, take (P,Q) € R, and suppose P £, P'. We need a
matching transition from Q. For all n, as P ~,4+1 @, there is @, s.t. @ 20,
and P ~, @Q,. However, as the LTS is image-finite, the set {Q; | @ £, Qi}
is finite. Therefore there is at least a @); for which P ~,, @Q; holds for infinitely
many n. As the relations {~,}, are decreasing, P ~,, @; holds for all n. Hence
P ~,, Q; and therefore (P, Q;) € R. O

Exercise 0.11.12 gives another proof of Theorem 0.11.11, appealing to the
cocontinuity of F.. and Theorem 0.8.16 (see also Exercise 0.11.17). The proof
technique used in the direct proof above is however a useful one to know.

Exercise 0.11.12 Show that under the image-finite hypothesis the functional
F.. is cocontinuous. O

Example 0.11.13 (Continues Example 0.5.5) The approximants of bisim-
ilarity can be usefully employed to prove non-bisimilarity results. For a (very
simple) example, we revisite Example 0.5.5 and show that the processes s; and
t1 in Figure 0.4 are not bisimilar. We have to find n such that s; ~,t;. We
construct the relations ~;, starting from 0 and going up. For ¢ = 0, we have
Prx Pr. At i = 1 we have the pairs of states with the same labels in their
immediate transitions: (si,%1),(s3,t2), (s2,t3), (s4,t3). Thus ¢ = 1 is not suffi-
cient, for (s1,t1) is still present. However, i = 2 breaks the pair: the transition
$1 — s9 cannot be matched by t1, whose only transition is t; 25 t5 but s9 and
to are not related in ~q. O

Theorem 0.11.11 can be strengthened, requiring finiteness on single labels
rather than on all transitions. An LTS is image-finite per label, if, for all P, and
for all @ € Act, the set {P’ | P % P'} is finite. When the set of actions Act
can be infinite, image-finiteness per label does not imply image-finiteness.

Exercise 0.11.14 Refine the proof of Theorem 0.11.11 to show the result still
holds under the weaker hypothesis of image-finiteness per label. O

In general, as by Theorem 0.8.18, in order to reach ~ we need to replace the
w-iteration that defines ~, with a transfinite iteration, using the ordinal num-
bers. Following the definitions of the transfinite iteration in Theorem 0.8.18, at



0.12 Proofs and games for induction and coinduction 33

ordinals successor and at 0 the definition of ~) (for A ordinal) is as in Defini-
tion 0.11.5; for ordinals limit we have:

~ Ad:ef ﬂ ~3 if X is an ordinal limit
B<A

def A
and ~>*= [, ~".
Theorem 0.11.15 Relations ~ and ~*° coincide.

Proof Follows from Theorem 0.8.18. O

We have seen that every monotone function on the complete lattice p(X) can
be expressed as the rule functional of some set of rules on X (Exercise 0.9.3).
Thus this also applies to F.:

Exercise 0.11.16 Instantiate the statement of Exercise 0.9.3 to the case of F..,
showing precisely what is the set of rules that has F.. as its functional. O

Viewing F. as a rule functional, we can derive the cocontinuity of F.. (Exer-
cise 0.11.12) for image-finite LTSs as a special case of the more general theorem
relating cocontinuity of rule functionals to the FC property, thus also deriving
Theorem 0.11.11 from Corollary 0.9.9 (and, in turn, from Theorem 0.8.16).

Exercise 0.11.17 Use Exercise 0.11.16 to show that image-finiteness of the
LTS implies FC (and FP) and therefore derive Theorem 0.11.11. O

Whereas for proving bisimilarity results the bisimulation proof method is sim-
pler to use than the approximants of bisimilarity, for non-bisimilarity results the
latter often give more direct proofs.

0.12 Proofs and games for induction and coinduction
0.12.1 Proofs of membership

We examine the duality between sets inductively and coinductively defined from
a set of ground rules from the point of view of the proofs of the membership of
an element to such sets. We assume that the rules are both FP and FC. While
the results also hold without these assumptions, they make some techicalities in
the proofs of the main results simpler to understand.

The trees over X is the set of all trees in which each node is labelled with
an element from the set X and, moreover, the labels of the children of a node
are pairwise distinct. If 7 is such a tree, then the root of 7 is the only node
without a parent.



34

Remark 0.12.1 The definition of trees over X above is informal because we
assume that the reader knows what is a tree. For a formal definition, we can
take a tree over X to be a set of sequences of elements of X, namely all sequences
obtained by picking up a node h in the tree and reading the sequence of labels in
the path that goes from the root of the tree to h. Precisely, a tree over X is a
set T of non-empty finite sequences of elements in X such that

(1) there is only one sequence of length one (corresponding to the root of the
tree);
(2) if the sequence 1 ...Tp41 is in T then also x1...xy, is in T.

In this formulation, a sequence x1 ...x, uniquely identifies a node of the tree;
and the children of this node are identified by the set of sequences |J {x1 ... zpx}.
In the remainder, in proofs we will sometimes refer to this definition of tree.
O

For now, the forms of trees allowed is very general: for instance, a node can
have infinitely many children; and there can be infinite paths in the tree that
start from the root of the tree and continue moving from a node to one of its
children. However, we shall see that the trees that we obtain for proofs of rules
under the FC and FP conditions are more constrained. Below we usually omit
reference to X, and simply call tree a tree over X.

A tree is non-well-founded if the relation on the nodes that contains a pair of
nodes (h, k) if k is the parent of h is non-well-founded (that is, there are nodes h;,
for ¢ > 0, with (hi41, h;) in the relation, for each 7). The tree is well-founded is
the relation is well-founded. A non-well-founded tree has infinite paths, whereas
in a well-founded tree all paths are finite. Referring to the definition of trees
in Remark 0.12.1, a tree 7 is non-well-founded if there is infinite sequence
x1...x;... whose prefixes (i.e., all finite sequences x7 ...x;, ¢ > 0) are all in 7.

Now, let R be a set of ground rules. A tree 7 is a proof tree of x € X under
R if x is the label of the root of 7 and, for each node h with label y, if S is the
set of the labels of all children of h, then (S,y) is a rule in R.

We suppose now that R is both FP and FC. The FP assumption ensures us
that a node only has finitely many children; therefore if a proof tree is well-
founded then the tree has a finite heigth, that is, there is a bound on the
maximal length of paths in the tree. We recall that ®f, is the n-th iteration of
the functional for the rules R.

Lemma 0.12.2 z € ®%(0) iff there is a proof tree for z whose heigth is less
than or equal to n.

Proof Easy. O



0.12 Proofs and games for induction and coinduction 35
Corollary 0.12.3 z € 1fp(®g) iff there is a well-founded proof tree for x.

Proof We use the FP hypothesis, which allows us to prove the result from
Theorem 0.8.16 and Lemma 0.12.2. O

In other words, the set inductively defined by a the rules R has precisely all
those elements which are obtained from well-founded proofs. We show below
that, in contrast, the set coinductively defined by R has the elements obtained
from the well-founded and non-well-founded proofs.

A node of a tree is at level n (n > 0) if the path from that node to the root
of the tree has precisely n — 1 nodes. For instance, the root is at level 0, its
children at level 1, the children of the children at level 2, and so forth.

A tree T is a proof tree of x € X under R up-to stage n (n > 0) if x is the
label of the root of 7 and, for each node h with label y and at a level m < n, if
S is the set of the labels of all children of h, then (S, y) is a rule in R (we check
that the tree is “correct” only up to the level n).

Lemma 0.12.4 x € ®} (X) iff there is a proof tree for x up-to stage n.

Proof Easy. O

Corollary 0.12.5 z € gfp(®r) iff there is a proof tree for .

Proof As for Corollary 0.12.3, but in this case we use the FP hypothesis and
Lemma 0.12.4. O

0.12.2 A game interpretation of induction and coinduction

We conclude this overview of induction and coinduction with a game-theoretic
characterisation of sets inductively and coinductively defined from rules. For
this, we re-use some of the ideas in the “proof-tree” presentation of Section 0.12.1.

Consider a set of ground rules R (on X). A game in R involves two players,
which we will indicate as V (the verifier) and R (the refuter), and an element
xg € X with which a play of the game begins. V attempts to show that a
proof tree for x( exists, while R attempts to show that there is no such proof.
A play begins with V choosing a set Sy such that zy can be derived from Sy,
that is, (Sp,z0) € R. Then R answers by picking up an element x; € Sp, thus
challenging V to continue with the proof on x1. Now V thus has to find a set 51
with (S1,21) € R; then R picks xo € S1, and so on. Thus a play for R and x
is a sequence

:L‘[)Sol’nsn



36

which can be finite or infinite. If it is finite, then the play may ends with some
xy (meaning that R made the last move) or with some S, (V moved last).

In the definition of win of a play we have to distinguish induction from coin-
duction. We write G***(R, z¢) for the “inductive” game, and G°**¢(R, xq) for
the “coinductive” game. In both games, when the play is finite, and one of the
player is supposed to make a move but he/she is unable to do so, then the other
player wins. This occus if V’s last move was the empty set (); V wins because R
has no further element to throw in. The end of the game also occurs if R’s last
move was an element x that does not appear in conclusions of the rules R, in
which case R is the winner. The difference between induction and coinduction is
in the interpretation of wins for infinite plays. In the inductive world an infinite
play is a win for R. This because, as seen in Section 0.12.1, the proof of an
element of an inductive set must be well-founded, and infinite plays represent
non-well-founded paths in the proof tree. In contrast, in the coinductive world
an infinite play is a win for V as here non-well-founded paths in proof trees are
allowed.

Example 0.12.6

In any game, however, one of the two players has the possibility of carefully
chosing his/her move so to win all plays, irrespectively of the other player’s
moves. We say that the winning player has a winning strategy in the game, that
is, a systematic way of playing that will produce a win in every run of the game.

A strategy for V in a game G°°™(R, zy) or G*(R,x¢) is a function that
associates to each play

13050 e mnSnan

a set Sp41 to be used for the next move for V; similarly, a strategy for R in
Geoind(R x0) or G*4(R, zp) is a function that associates to each play

2050 ... xSy

an element x,41. (The strategies we need for inductively and coinductively
defined sets can actually be history-free, meaning that the move of a player is
dictated only by the last move from the other player, as opposed to the entire
play as we have defined above.)

Example 0.12.7 Show the winning strategy in the previous example, with
finite traces

Theorem 0.12.8 (1) z( € 1fp(Pr) iff player V has winning strategy in the
game G™(R, z);



0.12 Proofs and games for induction and coinduction 37
(2) zo € gfp(Pr) iff player V has winning strategy in the game G4 (R, x).

Proof We examine (1), as (2) is similar. We appeal to Corollaries 0.12.3 and
0.12.5, and the representation of trees as sets of sequences in Remark 0.12.1.
Consider all the plays

2050 ... xSy
that can be obtained following the winning strategy of V. Each such play gives
us a sequence
Zro...Tp
The set of all these sequences is a proof tree for xy. It is easy to check that all
conditions of a tree and a proof tree hold.

The converse is proved similarly, defining a winning strategy from a proof tree
for xg. O

Exercise 0.12.9 Extract the resulting game interpretation of bisimilarity O



