On the Expressiveness of Forwarding in Higher-Order
Communication (December 6, 2009)*

Cinzia Di Giusto, Jorge A. Pérez, and Gianluigi Zavattaro

Dipartimento di Scienze dell’Informazione, Universita di Bologna, Italy

Abstract. In higher-order process calculi the values exchanged in communica-
tions may contain processes. There are only two capabilities for received pro-
cesses: execution and forwarding. Here we propose a limited form of forwarding:
output actions can only communicate the parallel composition of statically known
closed processes and processes received through previously executed input ac-
tions. We study the expressiveness of a higher-order process calculus featuring
this style of communication. Our main result shows that in this calculus termina-
tion is decidable while convergence is undecidable. Then, as a way of recovering
the expressiveness loss due to limited forwarding, we extend the calculus with
a form of process suspension called passivation. Somewhat surprisingly, in the
calculus extended with passivation both termination and convergence are unde-
cidable.

1 Introduction

Higher-order process calculi are calculi in which processes can be communicated.
They have been put forward in the early 1990s, with CHOCS [1], Plain CHOCS [2],
the Higher-Order m-calculus [3], and others. Higher-order (or process-passing) concur-
rency is often presented as an alternative paradigm to the first order (or name-passing)
concurrency of the 7m-calculus for the description of mobile systems. These calculi are
inspired by, and formally close to, the A-calculus, whose basic computational step —
[-reduction — involves term instantiation. As in the A-calculus, a computational step in
higher-order calculi results in the instantiation of a variable with a term, which is then
copied as many times as there are occurrences of the variable.

HOCORE is a core calculus for higher-order concurrency, recently introduced in [4].
It is minimal, in that only the operators strictly necessary to obtain higher-order com-
munications are retained. This way, continuations following output messages have been
left out, so communication in HOCORE is asynchronous. More importantly, HOCORE
has no restriction operator. Thus all channels are global, and dynamic creation of new
channels is impossible. This makes the absence of recursion also relevant, as known
encodings of fixed-point combinators in higher-order process calculi require the restric-
tion operator. The grammar of HOCORE processes is:

Pu=a(@).P |ap) | P|P|z]o0 (+)

* Research partially funded by EU Integrated Projects HATS (contract number 231620) and
SENSORIA (contract number 016004).

An input prefixed process a(z). P can receive on name (or channel) a a process to be
substituted in the place of x in the body P; an output message a({P) can send P (the
output object) on a; parallel composition allows processes to interact.

Despite its minimality, HOCORE was shown to be Turing complete via a termination
preserving encoding of Minsky machines [5]. Therefore, properties such as

— termination, i.e. non existence of divergent computations
— convergence, i.e. existence of a terminating computation

are both undecidable in HOCORE!. In contrast, somewhat surprisingly, strong bisimi-
larity is decidable, and several sensible bisimilarities coincide with it.

In this chapter, we shall aim at identifying the intrinsic source of expressive power
in HOCORE. A substantial part of the expressive power of a concurrent language comes
from the ability of accounting for infinite behavior. In higher-order process calculi there
is no explicit operator for such a behavior, as both recursion and replication can be
encoded. We then find that infinite behavior resides in the interplay of higher-order
communication, in particular, in the ability of forwarding a received process within
an arbitrary context. For instance, consider the process R = a(x).b(P,), where P,
stands for a process P with free occurrences of a variable z. Intuitively, R receives
a process on name a and forwards it on name b. It is easy to see that since there are
no limitations on the structure of objects in output actions, the actual structure of P,
can be fairly complex. One could even “wrap” the process to be received in x using an
arbitrary number of k “output layers”, i.e., by letting P, = by (bo(...bs(z))...). This
nesting capability embodies a great deal of the expressiveness of HOCORE: as a matter
of fact, the encoding of Minsky machines in [4] depends critically on nesting-based
counters. Therefore, investigating suitable limitations to the kind of processes that can
be communicated in an output action appears as a legitimate approach to assess the
expressive power of higher-order concurrency.

With the above consideration in mind, in this chapter we propose HO™', a sublan-
guage of HOCORE in which output actions are limited so as to rule out the nesting
capability (Section 2). In Ho~¥, output actions can communicate the parallel composi-
tion of two kinds of objects:

f

1. closed processes (i.e. processes that do not contain free variables), and
2. processes received through previously executed input actions.

Hence, the context in which the output action resides can only contribute to com-
munication by “appending” pieces of code that admit no inspection, available in the
form of a black-box. More precisely, the grammar of Ho~* processes is the same as
that of HOCORE, except for the production for output actions, which is replaced by the
following one:

afay || - || || P)

where k£ > 0 and P is a closed process. This modification directly restricts forwarding
capabilities for output processes, which in turn, leads to a more limited structure of
processes along reductions.

! Termination and convergence are sometimes also referred to as universal and existential ter-
mination, respectively.

The limited style of higher-order communication enforced in Ho ™" is relevant from

a pragmatic perspective. In fact, communication in Ho fis inspired by those cases in
which a process P is communicated in a translated format [P], and the translation is
not compositional. That is, the cases in which, for any process context C, the translation
of C[P] cannot be seen as a function of the translation of P, i.e. there exists no context
D such that [C[P]] = D[P].

More concretely, communication as in HO™' can be related to several existing pro-
gramming scenarios. The simplest example is perhaps mobility of already compiled
code, on which it is not possible to apply inverse translations (such as reverse engineer-
ing). Other examples include proof-carrying code [6] and communication of obfuscated
code [7]. The former features communication of executable code that comes with a cer-
tificate: a recipient can only check the certificate and decide whether to execute the code
or not. The latter consists of the communication of source code that is made difficult to
understand for, e.g., security/copyright reasons, while preserving its functionality.

In this chapter we study the expressiveness of HO " using decidability of termina-
tion and convergence of processes as a yardstick. Our main results are:

f

Undecidability of Convergence in Hof. Similarly as HOCORE, Ho ™ is shown to

be Turing complete by exhibiting an encoding of Minsky machines into Ho~F. The
calculus thus retains a significant expressive power despite of the limited forward-
ing capability. Unlike the encoding of Minsky machines in HOCORE, however, the
encoding in Ho~f is not faithful in that it may introduce computations which do
not correspond to the expected behavior of the modeled machine. Such computa-
tions are forced to be infinite and thus regarded as non-halting computations which
are therefore ignored. Only the finite computations correspond to those of the en-
coded Minsky machine. This allows us to prove that a Minsky machine terminates
if and only if its encoding in Ho™f converges. Consequently, convergence in Ho~f
is undecidable.

Decidability of Termination in Ho . In sharp contrast with HOCORE, termination
in Ho ™" is decidable. This result is obtained by appealing to the theory of well-
structured transition systems [8,9,10], following the approach used in [11]. To the
best of our knowledge, this is the first time the theory of well-structured transition
systems is applied in a higher-order concurrency setting. This is significant because
the adaptation to the Ho~f case is far from trivial. Indeed, as we shall discuss, this
approach relies on defining an upper bound on the depth of the (set of) derivatives
of a process. By depth of a process we mean its maximal nesting of input/output
actions. Notice that, even with the limitation on forwarding enforced by Ho ™,
because of the “term copying” feature of higher-order calculi, variable instantiation
might lead to a potentially larger process. Hence, finding suitable ways of bounding
the set of derivatives of a process is rather challenging and needs care.

Undecidability of Termination and Convergence in Ho " with Passivation. The de-
cidability of termination in Ho~f provides compelling evidence on the fact that the
limited forwarding entails a loss of expressive power for HOCORE. It is therefore
legitimate to investigate whether such an expressive power can be recovered while
preserving the essence of the limited forwarding in Ho~F. For this purpose, we
extend Ho~ with a passivation construct that allows to suspend the execution of

a running process. Forms of process suspension (such as passivation) are of both
practical and theoretical interest as they are at the heart of mechanisms for dynamic
system reconfiguration. The extension of Ho " with passivation, called HoP~ ', is
shown to be Turing complete by exhibiting a deterministic encoding of Minsky ma-
chines. Therefore, in HOP~F both convergence and termination are undecidable. To
the best of our knowledge, ours is the first result on the expressiveness and decid-
ability of constructs for process suspension in the context of higher-order process
calculi.

The remainder of the chapter is structured as follows. The syntax and semantics
of Ho~ " are introduced in Section 2. The encoding of Minsky machines into Ho ™',
and the undecidability of convergence are discussed in Section 3. The decidability of
termination for Ho~ is addressed in Section 4. The expressiveness results for HOP~*
are presented in Section 5. Some final remarks, as well as a review of related work, are

included in Section 6.

2 The Calculus

We now introduce the syntax and semantics of HO~'. We use a, b, ¢ to range over

names, and x, y, z to range over variables; the sets of names and variables are disjoint.

PQu=a(x || - ||zx || P) (withk >0, fv(P)=0) output
| a(x).P input prefix
| PlQ parallel composition
| process variable
| 0 nil

An input a(z). P binds the free occurrences of = in P. We write fv(P) and bv(P) for
the set of free and bound variables in P, respectively. A process is closed if it does
not have free variables. We abbreviate a(z). P, with « ¢ fv(P), as a. P, a(0) as @, and
Py|...|| Pxas HlePZ-. Hence, an output action can be written as ([[, - x || P). We
write [} P as an abbreviation for the parallel composition of n copies of P. Further,
P{Q/x} denotes the substitution of the free occurrences of x with process @ in P.
The Labeled Transition System (LTS) of Ho~f is defined in Figure 1. It decrees

there are three forms of transitions: 7 transitions P — P’; input transitions P &

P’, meaning that P can receive at a a process that will replace x in the continuation P’;

.. a(pP’
and output transitions P A, P’ meaning that P emits P’ at a, and in doing so it
evolves to P”. We use « to indicate a generic label of a transition. The notions of free

and bound variables extend to labels as expected.

Definition 1. The structural congruence relation is the smallest congruence generated
by the following laws:

Pl|O=P, P || P,=P || P, P || (P2 || P5) = (P1 || P) | Ps.

a(xz) a(pP)
— —_

INP a(z). P P out a(P) 0
Pl = Pll bV(O[) me(Pg) = (Z) P a(P) Pl/ Py a(x) P2/
Actl a Taul — /
P ||Po— P || P P || P, — Pi| P2{P/w}

Fig. 1. An LTS for Ho~'. Rules ACT2 and TAU2, the symmetric counterparts of ACT1 and TAU1,
have been omitted.

We now state a few results which will be important later.
Lemma 1. If P> P’ and P = Q then there exists Q' such that Q = Q' and P' = Q'.
Proof. By induction on the derivation of P = @, then by case analysis on P - Q.

The internal runs of a process are given by sequences of reductions. Given a process
P, its reductions P — P’ are defined as P — P’. We denote with —* the reflexive
and transitive closure of —; notation —7 is to stand for a sequence of j reductions.
We use P - to denote that there is no P’ such that P — P’. Following [11] we now
define process convergence and process termination. Observe that termination implies
convergence while the opposite does not hold.

Definition 2. Ler P be a Ho™f process.

1. We say that P converges iff there exists P’ such that P —* P’ and P’ .
2. We say that P terminates iff there exist no {P;};cn such that Py =P and P; —

Pj 1 forany j.

3 Undecidability of Convergence in HO

In this section we show that Ho~ is powerful enough to model Minsky machines [5],
a Turing complete model. We present an encoding that is not faithful: unlike the en-
coding of Minsky machines in HOCORE, it may introduce computations which do not
correspond to the expected behavior of the modeled machine. Such computations are
forced to be infinite and thus regarded as non-halting computations which are therefore
ignored. Only finite computations correspond to those of the encoded Minsky machine.
More precisely, given a Minsky machine N, its encoding [N] has a terminating compu-
tation if and only if NV terminates. This allows to prove that convergence is undecidable.

We begin by briefly recalling the definition of Minsky machines; we then present
the encoding into Ho " and discuss its correctness.

Minsky machines. A Minsky machine is a Turing complete model composed of a set
of sequential, labeled instructions, and two registers. Registers r; (j € {0, 1}) can hold
arbitrarily large natural numbers. Instructions (1 : I1), ..., (n : I,,) can be of two kinds:
INC(r;) adds 1 to register r; and proceeds to the next instruction; DECJ(r;,) jumps to
instruction s if 7; is zero, otherwise it decreases register 7; by 1 and proceeds to the next
instruction. A Minsky machine includes a program counter p indicating the label of the

i INC(r;) mi=m;+1 mi_; =mi_;
M-INC (J) J J 1—j 1—-j

(i,m0,m1) —w (i + 1,mo,mh)

i :DECI(rj,s) m; =0

(i7m07m1) M (87m07m1)

M-JmP

1 : DECJ(7j, s m; #0 mi=mj; —1 mi_; =mi_;
M-DEC (J) i 7 J J 1—j 1—j

(i7m0,m1) —'M (Z + 1,m67m/1)

Table 1. Reduction of Minsky machines

instruction being executed. In its initial state, the machine has both registers set to 0 and
the program counter p set to the first instruction. The Minsky machine stops whenever
the program counter is set to a non-existent instruction, i.e. p > n. A configuration
of a Minsky machine is a tuple (i, mq,m1); it consists of the current program counter
and the values of the registers. Formally, the reduction relation over configurations of a
Minsky machine, denoted —;, is defined in Table 1.

In the encoding of a Minsky machine into Ho~ we will find it convenient to have a
simple form of guarded replication. This construct can be encoded in Ho " as follows.

Input-guarded replication. We follow the standard encoding of replication in higher-
order process calculi, adapting it to input-guarded replication so as to make sure that
diverging behaviors are not introduced. As there is no restriction in Ho ¥, the encoding
is not compositional and replications cannot be nested.

Definition 3. Assume a fresh name c. The encoding of input-guarded replication is as
follows:

['a(z). Pl = a(2). (Qc || P) || ¢(a(2). (Qc || P))

where Q. = c(x).(x || ¢(x)), P contains no replications (nested replications are

forbidden), and [y is an homomorphism on the other process constructs in HoF.

The above encoding preserves termination.

Lemma 4 (Correctness of [-]i) Let P bea Ho~f process with non-nested input-guar-
ded replications.

— If[P]ii — Q then 3P’ such that P— P’ and either [P']yy = Q or Q@ — [P']a.
— If P — P’ then either [Py — [P']i or [Py —— [P']i.
- [Pl »iff P —-.

Proof. By induction on the transitions. a

REGISTER 7 [rj =mlm =117 15

INSTRUCTIONS (i : I;)

[INC(r)Iw = lpi. (5 | set; (). 5eE; (@ | INC;) || Pir)

[[(Z : DECJ(T’]', S))]]M = 'pZE
| tms. (Toop | ;. loop. set, («). 3¢t (x || DEC;) || i)
| tmi. set; (). (z || set; (@) || p=)

where
INC; = loop || check;. loop DEC; = check;
Table 2. Encoding of Minsky machines

3.1 Encoding Minsky machines into Ho~f

The encoding of Minsky machines into Ho~f is denoted by [-]m and presented in Table
2. We begin by discussing the encodings of registers and instructions; then we define
the encoding of the a configuration of a Minsky machine.

A register r; that stores the number m is encoded as the parallel composition of m
copies of the unit process ;. To implement the test for zero it is necessary to record
how many increments and decrements have been performed on the register r;. This is
done by using a special process LOG, which is communicated back and forth on name
set;. More precisely, every time an increment instruction occurs, a new copy of the
process u; is created, and the process LOG; is updated by adding the process INC; in
parallel. Similarly for decrements: a copy of %; is consumed and the process DEC; is
added to LOG;. As aresult, after k increments and ! decrements on register r;, we have
that LoG; = [[, INC; || [[, DEC;, which we abbreviate as LOG; [k, [].

Each instruction (7 : I;) is a replicated process guarded by p;, which represents the
program counter when p = ¢. Once p; is consumed, the instruction is active and an in-
teraction with a register occurs. We already described the behavior of increments. Let us
now focus on decrements, the instructions that can introduce divergent —unfaithful—
computations. In this case, the process can internally choose either to actually perform
a decrement and proceed with the next instruction, or to jump. This can be seen as a
guess the process makes on the actual number stored by the register r;. Therefore, two
situations can occur:

1. The process chooses to decrement r;. In this case instruction p; 1 is immediately
enabled, and the process launches process loop and then tries to consume a copy of
u;. If this operation succeeds (i.e. the guess is right as the content of r; is greater
than 0) then a synchronization with the input on loop that guards the update of
LOG; (represented as an output on name set;) takes place. Otherwise, the unit
process u; could not be consumed (i.e. the content of r; is zero and the process
made a wrong guess). Process loop then synchronizes with the external process
loop. D1v, thus spawning a divergent computation.

2. The process chooses to jump to instruction ps. In this case instruction p, is imme-
diately enabled, and it is necessary to check if the actual value stored by r; is zero.
To do so, the process receives the process LOG; and launches it. If the number of
increments is equal to the number of decrements then complementary signals on

the name check; will match each other. In turn, this allows each signal @ exe-
cuted by an INC; process to be matched by a complementary one. Otherwise, then
it is the case that at least one of those loop signals remains active (i.e. the content
of the register is not zero); a synchronization with the process loop. D1V then takes
place, thus spawining a divergent computation.

Before executing the instructions, we require both registers in the Minsky machine
to be set to zero. This is to guarantee correctness: starting with values different from
zero in the registers (without proper initialization of the logs) can lead to inconsisten-
cies. For instance, the test for zero would succeed (i.e. without spawning a divergent
computation) even for a register whose value is different from zero.

We are now ready to define the encoding of a configuration of the Minsky machine.
It is given as expected; the encodings of instructions and registers are put in parallel
with a process that spawns divergent behavior in case of a wrong guess.

Definition 5 (Encoding of Configurations). Let N be a Minsky machine with registers
ro, 71 and instructions (1 : I),...,(n : I,). For j € {0,1}, suppose fresh, pairwise
different names r;, p1, . .., pn, set;, loop, check;. Also, let DIV be a divergent process
(e.g. W || 'w.w). Given the encodings in Table 2, we have:

1. The initial configuration (1,0,0) of N is encoded as:

n

[(1,0,0)] ::=p1 || [JI(G : L) || loop. D1v || seto(0) | seti(0) .

i=1

2. A configuration (i, mg, m1) of N, after k; increments and l; decrements of register
r;, is encoded as:

[(,mo, m1)lm = Pi [[ro = mo]m || [r1 = ma]wm || _H[[(i)l

lOOp. Div || S€t0<LOG0[k0,lo]> H Set1<LOG1[k1,ll]> .

3.2 Correctness of the Encoding

We formalize the correctness of our encoding by means of two lemmas ensuring com-
pleteness (Lemma 2) and soundness (Lemma 3). Both these lemmas give us Theorem
1. We begin by formalizing the following intuition: removing the program counter from
the encoding of configurations leads to a stuck process.

Proposition 1. Let N be a Minsky machine with registers 1o, r1 and instructions (1 :
I),...,(n: I,). Given the encodings in Table 2, let P be defined as:

P =[ro=molwm || [r1 = mi]m | H[[(i 21wl

lOOp. Div H ?to<LOG0[k‘o, lo]) || %<LOG1[/€1, ll]> .

Then P —.

Proof. Straightforward by the following facts:

1. Processes [[’I“() = moﬂm, [[7“1 = mlﬂm, ?to(LOGQ[k‘o, lo]), and %<L001[1€1, ll]>
are output actions that cannot evolve on their own.
2. Each [(i : I;)]m is an input-guarded process, waiting for an activation signal on p;.
3. loop. D1V is an input-guarded process, and every output on loop appears guarded
inside a decrement instruction.
O

The following notation will be useful in proofs.

Notation 1 Let N be a Minsky machine. The configuration (i, mg, m1) of N is anno-
tated as (i,mgo’lo,mlfl’ll), where, for j € {0,1}, k; and l; stand for the number of
increments and decrements performed on r;.

Because we assume the value of both registers to be initialized with zero before
executing the instructions, we following is immediate.

Fact1 Let (i, mgo’lo, mlfl’ll) be an annotated Minsky configuration. We then have, for
n € {0,1}: (i) k, = 1, if and only if r,, = 0; and (ii) k,, > l,, if and only if r,, > 0.

The following proposition formalizes an invariant condition on the number of decre-
ments and increments stored by the logs in the encoding. This invariant will be useful
later, when formalizing the conditions under which our encoding leads to divergent
computation.

Proposition 6 Let (1,0,0) be the initial configuration of a Minsky machine N. For all
P such that

1. [(1,0,0)]m —* P;
2. for some S, P = seto(LOGoko, lo]) || set1(LOG1[k1,11]) || S

Then, for j € {0, 1}, it holds that k; > ;.

Proof. By contradiction, assuming that k; < I;. For k; < [; to hold there was an
execution in which k; = [; and then a DEC was added to one of the logs. Using Fact 1
we know that this means that r; = 0. In turn, by the encoding of counters, we know this
means that there is no top-level occurrence of %;. By inspection of the structure of the
encoding of the decrement instruction, we know that a process DEC can only be added
to one of the logs if the encoding of decrement takes the branch

loop || u;.loop. set;(x). set;(x || DEC;) || iy -

Observe that a modification to the log can only occur in the event in which there is a
top-level occurrence of ;. Indeed, the input on set (which modifies the log) is guarded
by u;. Therefore, in order to modify the log an output on u; is indispensable; such an
output is not available, so we reach a contradiction. a

With a little abuse of notation, we use notation) — also for configurations of
Minsky machines. We now state that the encoding is correct.

Lemma 2 (Completeness). Let (i, mg, m1) be a configuration of a Minsky machine
N. Then, it holds:

1. If (i,mq, m1) - then [(i,mg, m1)]m =
2. If (i,mg,m1) —m (i, my, m}) then, for some P, [(i,mg,m1)]jm —* P =
[(Z', mb, m7)]m

Proof. For (1) we have that if (z,mq, m1) — then, by definition of Minsky machine,
the program counter p is set to a non-existent instruction; i.e., for some i & [1..n],
p = i. Therefore, in process (%, mg, m1)]m no instruction is guarded by p;. The thesis
then follows by Proposition 1.

For (2) we proceed by a case analysis on the instruction performed by N. Hence,
we distinguish three cases corresponding to the behaviors associated to rules M-JMP,
M-DECc, and M-INC. Without loss of generality we assume instructions on register r.

l

Case M-INC We have a Minsky machine configuration (i, mgo" o mihy with (i

INC(rp)). Its encoding into HO " is as follows:

[Gyme " my ™) m =i || [ro =molm | [re =malm | J] 10h: In)Im ||
h=1..n,i%h

pi. (o || seto(x). seto(x || INCo) || Pig1) ||
lOOp. Div || %<LOGOU€0, l0]> H ?ﬁ(LOGl[k‘l, l1]>

We begin by noting that the program counter p; is consumed by the encoding of the
instruction 7. As a result, processes ugy and p;+; are left unguarded; this represents
the increment and the invocation of the next instruction, respectively. We then have:

[(i,mg™ " my" ") —=Pit || [ro = mo + u || seto(x). sefo(a || INCo) |

%<LOG0U€0710]> H S=T

where S stands for the rest of the system, i.e.

S =[r1 =malm || [JI(h: In)Im || loop. D1V || set;(LOG [k1, 11]).
h=1

Now there is a synchronization on set for updating the log of register r¢:

n
T — piga || [ro = mo + 1m || [r1 = malm | TTICR = Tn)Im |l
h=1
lOOp. Div H %G—‘OGO [ko +].,lob || E<LOG1U€1, ll]> =T

We notice that T/ = [(i 4+ 1,mg + 1Fo+Llo mktbny] g ag desired.

10

Case M-DEC We have a Minsky machine configuration (i, mgo’l‘J ,mi) with o >

0 and (i : DECJ(ro, s)). By definition, its encoding into HO ™ is as follows:

[G,me " my) m =i || [ro=molm | [=malm | [] [(h:In)Im ||
h=1..n,i%h
Ip;. 15 || 'm;. (loop || uo- loop. seto(z). seto(x || DECo) || Pit1) ||
Im;. seto(z). (z || seto(z) || Ps) |
loop. DIV || seto(LOGo[ko, lo]) || seti(LOG:[k1,11])

The program counter is consumed by the encoding of the instruction i:

[, mg™",my ™) — [ro = mo]wm || s ||
Im;. (loop || ug.loop. seto(x). seto(z || DECo) || Pix1) ||
Im;. seto(x). (x || seto(z) || Ds) ||

86t0<LOGo[kJ0,lo]> || S = Tl
where S stands for the rest of the system, i.e.
S =[ry =malw || [JI(h: In)Im || loop. D1v || sety (LOG: [ky, 11]).
h=1

In T3 there is an internal choice on the name m;, which represents a guess on
the value of ro: m; can either synchronize with the first input-guarded process
(thus performing the actual decrement of the register) or with the second one (thus
performing a jump). Let us suppose 7 makes the right guess in this case, i.e. m;
synchronizes with the first input-guarded process. We then have:

Ty — [ro = mo]m || loop || uo. loop. seto(x). seto(x || DECo) || Pyt || 8" = T .
where S’ is the rest of the system, represented by S (as in the previous case) along
with the input-guarded process that was not involved in the synchronization. Notice
that S’ is stuck:

S" =8 || Im;. seto(x). (z || seto(z) || Ds)

Since we have assumed that ry > 0, we are sure that a synchronization on ug can
take place, and thus the value of ry decreases. Immediately after, there is also a
synchronization on loop. More precisely, we have

Ty —? [ro = mo — 1]m || seto(z). seto(z || DEC) || pixr || S' = T5.

Now the update of the log associated to o can take place, and a synchronization on
set is performed:

11

Ty — Pt | [ro = mo = Uw | [ry = malu | JTICh =) |
h=1

loop. D1V || %<LOGOU€0, lo + 1]> || %<LOG1[[€1, l1]> =Ty.

Clearly, Ty = [(i 4 1,mg — 1kl kvl ag desired.

Case M-JMP This case is similar to the previous one. We have a Minsky machine con-

figuration (4, mgo’lo, m¥1) with (i : DECI(rg, s)). In this case, mg = 0. Hence,
using Fact 1 we have that ky = [y.
We proceed exactly as in the previous case. After synchronizing on p; and spawning
a new copy of (the encoding of) the instruction ¢, the process evolves to 77. Once
in 77 there is an internal choice on the name m;. Again, let us suppose 77 makes
the right guess, which in this case corresponds to the synchronization of m; and the
second input-guarded process. We then have

T1 — [ro = mo]wm || seto(). (z || seto(x) || P3) || seto(LOGo[ko, lo]) || §" = T>.

where S’ is the rest of the system, that is composed of S (as defined in the pre-
vious case) and of the input-guarded process on m; that was not involved in the
synchronization. Notice that such a process is stuck:

S" =S || 'my. (loop || ug.loop. seto(x). seto(x || DECo) || Dit1)

Now there is a synchronization on sety. As a result, the content of the log is left
at the top-level and hence executed. It is not lost, however, as it is still preserved
inside an output on sety:

Ty —=7s || [ro =molm || [r1 = ma]m || H[[(h 2 D)Im i
h=1

ko lo
lOOp. Div H HINCO || HDECO || 86t0<LOG0[1€0710]> ||
setq <LOG1[/€1, ll]> =13.

Recall that kg = (. Starting in T, we have that 2-k(reductions take place: these are
the interactions between a process INC and a corresponding process DECy. Half of
these interactions correspond to synchronizations on checkg, whereas the rest are
synchronizations on loop. All of these processes are consumed. We then have that
there exists a T} such that (i) T3 —2*° T} and (ii) Ty = [(s, mgo’l°7 m]fl’ll)]]M,
as wanted.

O

Lemma 3 (Soundness). Let (i,m, m1) be a configuration of a Minsky machine N.
Given [(i,mq, m1)]wm, for some n > 0 and process P € HO™', we have that:

1. [(i,mg, m1)]m —™ P and either:

12

- P =[(,my, my)]m and (i,mg, m1) —m (&, mg, m}), or

— P s adivergent process.
2. Forall0 <m <mn, if [(i,mg,m1)]m —™ P then, for some P', P — P’
3. If [(i,mo, m1)]m - then (i,mg, m1) .

Proof. For (1), sincen > 0, in all cases there is at least one reduction from [(¢, mg, m1)]m-
An analysis of the structure of process [(¢,mg, m1)]m reveals that, in all cases, the
first step corresponds to the consumption of the program counter p;. This implies that
there exists an instruction labeled with ¢, that can be executed from the configuration
(4,0, m1). We proceed by a case analysis on the possible instruction, considering also
the fact that the register on which the instruction acts can hold a value equal or greater
than zero. We exploit the analysis reported for the proof of Lemma 2(2):

Case ¢

: INC(ro): Then the process evolves deterministically to P = [(¢ + 1,mq +

1,m1)]m in n = 2 reductions.

Case 1

: DEC(ro, s) with g > 0: Then the process evolves non-deterministically to one

of the following cases (we use kg and [y to denote the number of increments and
decrements on r, respectively):

1.

2.

P =[(i+1,mo—1,m1)]m: in this case, n = 5, as illustrated in the analogous
case in the proof of Lemma 2(2).

P = D1v: this is the case in which the process makes a wrong guess on the
content of the register. Let us elaborate on this possible execution, starting from
T7 as defined in the analogous case in the proof of Lemma 2(2). Since o > 0,
using Fact 1, we know that ky > [y. It is sufficient to assume that ky = [y + 1.
After the synchronization on m;, we have:

Ty — [ro = molwm || seto(z). (z || seto(z) || Ps) || seto(LOGo([ko, lo]) |
loop. DIV || 8" =T,

where S’ is the rest of the system, i.e.

S" =1my. (loop || ug.loop. seto(x). seto(x || DECo) || igx1) || [r1 = ma]m ||

n

[0k 21w |l setr(LoGa [y, La]).
h=1

In T there is a synchronization on set. Using the definition of LOG, we have:

lo+1 lo
Ty — [ro =molm || J] Inco || J] DECo || seto(LoGoko, Lo]) || 75 ||

loop.DIv || 8" =Tj.
At this point there are [y synchronizations between the copies of DECy and

those of INCy. There is a copy of INC that remains without synchronizing and
hence we have:

13

Case i

T3 —' [ro = mo]wm || loop || checky. loop || seto(LOGo[ko, lo]) || s ||
loop.DIv || 8" =Ty

In T}, it suffices a synchronization on loop to produce divergence. Indeed,
Ty —= D1v. Notice that by virtue of Proposition 6 for every derivative of
Ty it holds that the number of increments is greater or equal than the number
of decrements, which is sufficient to spawn divergent computations. We then
conclude that, with n > 4 + Iy, [(i,mg, m1)]m —"= DIV and the thesis
holds.

: DEC(r¢, s) with o = 0: Then the process evolves non-deterministically to one

of the following cases (we use ky and [y to denote the number of increments and
decrements on 7, respectively):

1.

2.

P = [(s,mg, m1)]m: in this case, n = 3 + ko + lo, as illustrated in the analo-
gous case in the proof of Lemma 2(2).

P = Duv: this is the case in which the process makes a wrong guess on the
content of the register. Again, we carry our analysis starting from process 71
given in the analogous case of the proof of Lemma 2(2). Using Fact 1 we know
that kg = ly. After the synchronization on m,; we have

T1 — [ro = mo]wm || loop || ug.loop. seto(x). seto(x || DECo) || Pit1 ||
seto(LOGo[ko, lo]) || loop. D1V || 8" = Ty

where S’ is the rest of the system, i.e.

S" = Im;. (seto(x). (x || seto(z) || Ps)) | [rr = ma]wm ||
TT0h - 1)m || setr (LoG: k1, 1a]).
h=1
It is easy to observe that since 7y = 0 there is no output on u; that can synchro-
nize with the input in 77. In fact, the only possible synchronization is on loop,
which leaves the divergent process unguarded. So we have that T, —= D1v.
Hence, [(s, mg, m1)]m —"= DIV with n = 2, and the thesis holds.

Notice that statement (2) follows easily from the above analysis.

As for (3), using Proposition 1 we know that if [(¢, mg, m1)]m — then it is because
p; is not enabling any instruction. Hence, [(z, mq, m1)]m corresponds to the encoding
of a halting instruction and we have that (i, mg, m1) -, as desired. O

Summarizing Lemmata 2 and 3 we have the following:

Theorem 1. Let N be a Minsky machine with registers ro = myq, 71 = my, instructions
(1:1),...,(n: I,), and configuration (i,mgy, m1). Then (i, mg, m1) terminates if
and only if process [(i, mg, m1)]|m converges.

As a consequence of the results above we have that convergence is undecidable.

Corollary 1. Convergence is undecidable in HO™".

f

14

4 Decidability of Termination in Ho '

In this section we prove that termination is decidable for Ho~f processes. As hinted at
in the introduction, this is in sharp contrast with the analogous result for HOCORE. The
proof appeals to the theory of well-structured transition systems, whose main definitions
and results we summarize next.

4.1 Well-Structured Transition Systems

The following results and definitions are from [10], unless differently specified. Recall
that a quasi-order (or, equivalently, preorder) is a reflexive and transitive relation.

Definition 7 (Well-quasi-order). A well-quasi-order (wqo) is a quasi-order < over a
set X such that, for any infinite sequence xo,r1,Ts ... € X, there exist indexes 1 < j
such that v; < x;.

Note that if < is a wqo then any infinite sequence zg, 1, T2, . . . contains an infinite
increasing subsequence ;,, i, , Li,, . .. (With 79 < 43 < 49 < ...). Thus well-quasi-
orders exclude the possibility of having infinite strictly decreasing sequences.

We also need a definition for (finitely branching) transition systems. This can be
given as follows. Here and in the following —* denotes the reflexive and transitive
closure of the relation —.

Definition 8 (Transition system). A transition system is a structure TS = (S, —),
where S is a set of states and —C S x S is a set of transitions. We define Succ(s)
as the set {s' € S| s — s'} of immediate successors of S. We say that T'S is finitely
branching if, for each s € S, Succ(s) is finite.

The function Succ will also be used on sets by assuming the point-wise extension
of the above definitions. The key tool to decide several properties of computations is the
notion of well-structured transition system. This is a transition system equipped with
a well-quasi-order on states which is (upward) compatible with the transition relation.
Here we will use a strong version of compatibility; hence the following definition.

Definition 9 (Well-structured transition system). A well-structured transition system
with strong compatibility is a transition system T'S = (S, —), equipped with a quasi-
order < on S, such that the two following conditions hold:

1. <is a well-quasi-order;
2. < is strongly (upward) compatible with —, that is, for all s1 < t1 and all transi-
tions s1 — So, there exists a state to such that t1 — to and so < to holds.

The following theorem is a special case of Theorem 4.6 in [10] and will be used to
obtain our decidability result.

Theorem 2. Let T'S = (S, —, <) be a finitely branching, well-structured transition
system with strong compatibility, decidable <, and computable Succ. Then the exis-
tence of an infinite computation starting from a state s € S is decidable.

15

NP a(z). P22 p our a(P) "o
P P PRl pr o ppy

Actl — T -
Pi||P— P | P> Py || Py P || P3{F/z}

Fig. 2. A finitely branching LTS for Ho~'. Rules ACT2 and TAU2, the symmetric counterparts
of ACT1 and TAU1, have been omitted.

We will also need a result due to Higman [12] which allows to extend a well-quasi-
order from a set S to the set of the finite sequences on S. More precisely, given a set
S let us denote by S* the set of finite sequences built by using elements in .S. We can
define a quasi-order on S* as follows.

Definition 10. Let S be a set and < a quasi-order over S. The relation <, over S* is
defined as follows. Let t,u € S*, witht = t1ty ...ty and u = uius ... u,. We have
that t <. w if and only if there exists an injection f from {1,2,...m} to {1,2,...n}
such that t; < ugy and i < f(i) fori=1,...,m.

The relation <, is clearly a quasi-order over S*. It is also a wqo, since we have the
following result.

Lemma 4 (Higman [12]). Let S be a set and < a wqo over S. Then <, is a wqo over
S*.

Finally we will use also the following proposition, whose proof is immediate.

Proposition 2. Let S be a finite set. Then the equality is a wqo over S.

4.2 A Finitely Branching LTS for Ho~f

In order to exploit the theory of well-structured transition systems, a finitely branching
LTS for Ho~F is necessary. This is not a significant requirement in our case; the sensible
issue here is the treatment of alpha-conversion. To that end, we introduce an alternative
LTS without alpha-conversion. As we shall see, since we restrict ourselves to closed
processes and proofs focus on internal synchronizations, the finitely branching LTS is
equivalent to that proposed in Section 2. The alternative LTS is given in Figure 2; its
most noticeable is the absence of a side condition on rule ACT]1.

Lemma 5. Let P be a closed Ho™" process. For every P’ € Ho~ " if P — P’ then P’
is a closed process.

Proof. By induction on the height of the inference tree for P — P’ considering the
possible cases of the last step of the inference. There are two cases; let us consider first
the case in which TAU1 be the last rule applied. Then P = a(x).Q || a(R) and P’ =
Q{1 x}. We know that P is a closed process; hence, R is a closed process and @ is an
open process such that fn(Q) = {x}. Then the process P’ is closed since it is equivalent
to the process () where all the free occurrences of the name x has been replaced with
the closed process R. Now let ACT1 be the last rule applied. Then P = P; || P2 and
P’ = P| || P. The thesis follows by applying the inductive hypothesis on P;. O

16

Remark 1. Notice that if we consider closed processes and restrict ourselves to reduc-
tions then fv(a) N bv(P.) —the side condition in rules ACT1 and ACT2 in the LTS in
Figure 1— is always equivalent to the empty set. This means that o-conversion is not
necessary for closed processes.

As before, the internal runs of a process are given by sequences of reductions. Given
a process P, its reductions in the alternative LTS P —— P’ are defined as P — P,
We denote with —* the reflexive and transitive closure of —. We use P +— to
denote that there is no P’ such that P —— P,

Given a process P, we shall use P, to denote the result of applying the standard
alpha-conversion without name captures over P.

Lemma 6. Let P be a closed Ho™" process. Then, P — P’ iff P — P" and P" =
P!, for some P’ in Ho~f.

Proof. The “if” direction follows easily from Remark 1. The “only if” direction is
straightforward by observing that since P is a closed process, P” is one of the possible
evolutions of P in —. ad

Corollary 2. Let P be a closed Ho™" process. If P — P’ then P’ is a closed process
in Ho™ .

Proof. Straightforward from Lemma 5 and Lemma 6. a
Corollary 3. Let P be a closed Ho~f process. P — iff P v/—.
Proof. Straightforward from Lemma 6. a

Remark 2. The encoding of a Minsky machine presented in Section 3 is a closed pro-
cess. Hence, all the results in that section hold for the LTS in Figure 2 as well.

The alphabet of an Ho " process is defined as follows:

Definition 11 (Alphabet of a process). Let P be a HO ' process. The alphabet of P,
denoted A(P), is inductively defined as:

A(0) =0 AP || Q) = A(P)UA(Q) Alz) = {z}
A(a(z). P) = {a,z} U A(P) A(a(P)) = {a} U A(P)

The following proposition can be shown for the alternative LTS because it does
not consider alpha-conversion. As a matter of fact, had we considered open processes,
we would have required a-conversion. In such a case, the inclusion A(Py{f/z}) C
A(Pj) U A(R) would no longer hold. This is because by using a-conversion during
substitution some new variables could be added to the alphabet.

Proposition 3. Let P and P’ be closed Ho™" processes. If P — P’ then A(P') C
A(P).

Proof. We proceed by a case analysis on the rule used to infer —. We thus have four
cases:

17

Case TAUL Then P = P, || Py, P’ = Pl || P4{F/z}, with P, 2 P! and Py #

Pj{E/z}. By Definition 11 we have that A(P;) = {a} UA(P{) UA(R) and hence
A(P]) C A(P). Also by Definition 11 we have A(P) = {a,z} U A(P;). Now,
the process R is closed: therefore, during substitution, no variable can be captured.
Hence, a-conversion is not needed, and we have A(Py{f/z}) C A(P) U A(R).
The result then follows.

Case TAU2 Similarly as for TAU1.

Case ACT1 Then P = P, | P,, P = P| | P», and P, + Pj. We then have
A(P]) C A(Py) by using one of the above cases. By noting that A(P;) UA(Pz) C
A(Py) U A(P,), the thesis holds.

Case ACT2 Similarly as for ACT1.

Fact 2 The LTS for Ho~ ' given in Figure 2 is finitely branching.

4.3 Termination is Decidable in HoO '

Here we prove that termination is decidable in HO~. The crux of the proof consists
in finding an upper bound for a process and its derivatives. This is possible in Hof
because of the limited structure allowed in output actions.

We proceed as follows. First we define a notion of normal form for Ho~f processes.
We then characterize an upper bound for the derivatives of a given process, and define an
ordering over them. This ordering is then shown to be a wqo that is strongly compatible
with respect to the LTS of HO~' given in Section 4.2. The decidability result is then
obtained by resorting to the theory of well-structured transition systems introduced in
Section 4.1.

Definition 12 (Normal Form). Let P € Ho~f. P is in normal form iff

l m n
P =TT TLatw- P Il TT 85420
k=1 i=1 j=1

where each P; and PJ{ are in normal form.

f

Lemma 7. Every process P € HO ' is structurally congruent to a normal form.

Proof. By induction on the structure of P. The base cases are when P = 0 and when
P = z, and are immediate. Cases P = @(Q) and P = a(x).Q follow by applying
the inductive hypothesis on Q. For the case P = P; || P», we apply the inductive
hypothesis twice and we obtain that

l m n 4 m’ n’
Po= 1ol [Tasw) Bl []05(F;) and Po= [an || []aiwi)- B I TT05¢F)) -
k=1 i j=1 k=1 i=1 j=1

=1

It is then easy to see that Py || P is structurally congruent to a normal form, as desired.
O

18

We now define an ordering over normal forms. Intuitively, a process is larger than
another if it has more parallel components.

Definition 13 (Relation <). Ler P, () € Ho~f. We write P = Q iff there exist x1 . .. xy,
P...P,,Pl...P,Q1...Qm, Q) ...Q), and R such that

P =Ty | T o). P T 507
Q =TTy or | TTZ @i(yi)- Qi |l H?:l bj<Q;—> | R
with P; 2 Q; and P} 2 Q, fori € [1..m] and j € [1..n].

The normal form of a process can be intuitively represented in a tree-like manner.
More precisely, given the process in normal form

l m n
P=T[ax I [Tasw) Pl T 0P
k=1 i=1 j=1
we shall decree its associated tree to have a root node labeled 1, . . ., . This root node
has m + n children, corresponding to the the trees associated to processes P, . .., Py,
and Pj,..., P! ; the outgoing edges connecting the root node and the children are la-
beled a1 (y1), - -, @m(Ym) and by, ... by,.

Example 1. Process P = x || a(y).(b.y || ¢) || @(z || d.e) has the following tree
representation:

b ° “
P |d
y [] []

This intuitive representation of processes in normal form as trees will be useful to
reason about the structure of Ho ' terms. We begin by defining the depth of a process.
Notice that such a depth corresponds to the maximum depth of its tree representation.

Definition 14 (Depth). Let P = [[._, zx || TT7%, ai(wi)- Pi || [T}—, b;(P}) be a
Ho~f process in normal form. The depth of P is given by
depth(P) = max{1 + depth(P;),1 + depth(P;) | i € [1..m] Aj € [1..n]}.

Given a natural number n and a process P, the set Pp, contains all those processes
in normal form that can be built using the alphabet of P and whose depth is at most n.

Definition 15. Let n be a natural number and P € Ho™'. We define the set Pp,, as
follows:

Pran={Q1Q= erK i || Hiel a;i(yi)- Qi || HJeJE<Q;>
NAQ) C A(P)
NQi,Q; € Ppna Vi€ l,jeJ}

where Pp o contains processes that are built out only of variables in A(P).

19

As it will be shown later, the set of all derivatives of P is a subset of Pp 3.4epth(P)-

When compared to processes in languages such as Milner’s CCS, higher-order pro-
cesses have a more complex structure. This is because, by virtue of reductions, an arbi-
trary process can take the place of possibly several occurrences of a single variable. As
a consequence, the depth of (the syntax tree of) a process cannot be determined (or even
approximated) before its execution: it can vary arbitrarily along reductions. Crucially,
inHo itis possible to bound such a depth. Our approach is the following: rather than
solely depending on the depth of a process, we define measures on the relative position
of variables within a process. Informally speaking, such a position will be determined
by the number of prefixes guarding a variable. Since variables are allowed only at the
top level of the output objects, their relative distance will remain invariant during re-
ductions. This allows to obtain a bound on the structure of Ho~ processes. Finally, it
is worth stressing that even if the same notions of normal form, depth, and distance can
be defined for HOCORE, a finite upper bound for such a language does not exist.

We first define the maximum distance between a variable and its binder.

Definition 16. Let P = [[,.cx or || [Lics ai(yi)- i || Hjer7j<PJ’»> be a HO™" pro-
cess in normal form. We define the maximum distance of P as:

maxDistance(P) = max{maxDist,, (P;),
maxDistance(P;), maxDistance(P;) | i € I,j € J}

where
1 ifP=u,
1 + maxDist, (P.) ifP=ua(z). P, \ x # z,
maxDist, (P)= ¢ 1 + maxDist, (P’) if P =a(P’),

max{maxDist, (R), maxDist,(Q)} ifP=R| Q,

0 otherwise.

Lemma 8 (Properties of maxDistance). Ler P be a Ho ™' process. It holds that:

1. maxDistance(P) < depth(P)
2. For every Q) such that P — @, maxDistance(Q) < maxDistance(P).

Proof. Part (1) is immediate from Definitions 14 and 16. Part (2) follows by a case
analysis on the rule used to infer —. We focus in the case TAU1: the other cases are
similar or simpler. We then have that P = @(S) || a(z). R | T and Q = R{S/z} || T.
Applying Definition 16 in both processes, we obtain

maxDistance(P) = max{maxDistance(S), maxDist,(R),
maxDistance(R), maxDistance(T") }
maxDistance(Q) = max{maxDistance(R{5/z}), maxDistance(T)} .

We can thus disregard the contribution of maxDistance(T’), since it does not participate
in the synchronization. We then focus on determining maxDistance(R{5/x}). We begin

20

by recalling that by the syntax of HO ™", S =z || --- || 2 || S’, where S is a closed
process. The free variables in S can affect maxDistance(R{S/z}) in essentially two
ways:

1. The free variables of S do not get captured by a binder in R. In this case, they do
not contribute to maxDistance(R{5/z}), and we have that

maxDistance(R{S/z}) = max{maxDistance(R), maxDistance(S)}

and the thesis holds.

2. Some of the free variables of S get captured by a binder in R. In this case we
find it convenient to appeal to the tree representations of R and .S, denoted Tr
and T, respectively. Notice that T’s is a tree where the root node is labeled with
x1, ...,z and whose only descendant is T, the tree representation of S”. Consider
now Tg, the tree representation of R{5/z}: it corresponds to the tree T in which
all occurrences of x in the nodes of Ty have been replaced with T's. Crucially, the
height of z1, ...,z is exactly the same height of z, so the distance with respect
their binder does not increase. Also, since S’ does not contain free variables, the
contribution of maxDistance(S’) to P remains invariant in Q. We then conclude
that the thesis holds also in this case.

O

We now define the maximum depth of processes that can be communicated. Notice
that the continuations of inputs are considered as they could become communication
objects themselves along reductions:

Definition 17. Let P = [],cxc zr || [Lics ai(yi)- Pi || HjeJFj<P;> be a Ho™ pro-
cess in normal form. We define the maximum depth of a process that can be communi-

cated (maxDepCom(P)) in P as:
maxDepCom(P) = max{maxDepCom(P;),depth(P;) |i € I,j € J}.

Lemma 9 (Properties of maxDepCom). Let P be a Ho~* process. It holds that:

1. maxDepCom(P) < depth(P)
2. Forevery Q such that P — @, maxDepCom(Q) < maxDepCom(P).

Proof. Part (1) is immediate from Definitions 14 and 17. Part (2) follows by a case
analysis on the rule used to infer ——. Again, we focus in the case TAUI: the other
cases are similar or simpler. We then have that P = @(S) || a(z).R || T and Q =
R{S/z} || T. Applying Definition 16 in both processes, we obtain

maxDepCom(P) = max{maxDepCom(T"), maxDepCom(S), depth(S)}
maxDepCom(Q) = max{maxDepCom(T), maxDepCom(R{5/z})}.
We now focus on analyzing the influence a substitution has on communicated objects.

More precisely, since variables can occur in output objects, we analyze whether x oc-
curs free in some communication object in 2. We thus have two cases:

21

1. There are no output objects with free occurrences of x. Then S will only oc-
cur at the top level in R{S/xz}. Since depth(S) was already taken into account
when determining maxDepCom(P), we then have that maxDepCom(R{5/z}) <
maxDepCom(P), and the thesis holds.

2. Some output objects have free occurrences of x. Then, there exists a process P, =
x| @1 | - || mx || S’ so that an output action b(P,) occurs in R. Recall that by
definition of Ho~, " is a closed process. Therefore, the process b(P,{S/z}) oc-
curs in R{S/z}. Clearly, an eventual increase of maxDepCom(()) depends on the
depth of P,{5/x}. We have that depth(P,{5/z}) = max(depth(S),depth(S’)).
Since both depth(.S) and depth(S”) were considered when determining maxDepCom(P),
we conclude that maxDepCom(R{5/x}) can be at most equal to maxDepCom(P),
and so the thesis holds.

O

Generalizing Lemmata 8 and 9 we obtain:

Corollary 4. Let P be a Ho ™ process. For every Q such that P —* Q, it holds that:

1. maxDistance(Q) < depth(P)
2. maxDepCom(Q) < depth(P).

We are interested in characterizing the derivatives of a given process P. We shall
show that they are over-approximated by means of the set Pp 2.depth(p)- We will inves-
tigate the properties of the relation < on such an approximation; such properties will
also hold for the set of derivatives.

Definition 18. Ler P € HO™'. Then we define Deriv(P) = {Q | P —* Q}

The following results hold because of the limitations we have imposed on the output
actions for Ho~F processes.

Lemma 10. Let P, Q be Ho ™ processes. Q € Pp,y, if and only if depth(Q) < n.

Proof. The “if”” direction is straightforward by definition of Pp ,, (Definition 15).
For the “only if” direction we proceed by induction on n. If n = 0 then @ = 0 or

Q==z1 || -+ || zx. In both cases, () is easily seen to be in Pp . If n > 0 then
Q=[] o I []aiws)-Qi Il T 85(Q5)
keK iel jeJ

where, for every ¢ € I and j € J, both depth(Q;) < depth(Q) < n — 1 and
depth(Q}) < depth(P) < n — 1. By inductive hypothesis, each (); and Q) is in
Pp n—1. Then, by Definition 15, () € Pp,, and we are done. O

Proposition 4. Let P be a Ho~f process. Suppose, for some n, that P € Pp,,. For
every Q) such that P — @, it holds that Q) € Pp.a.p.

22

T : :
5 T\ /* f
. v

(a) Tree representation of R (b) Tree representation of Q@

Fig. 3. Tree representation of a reduction R — @, as in the proof of Lemma 11.

Proof. We proceed by case analysis on the rule used to infer —. We focus on the case
such a rule is TAU1; the remaining cases are similar or simpler. Recall that by Lemmata
8(1) and 9(1) the maximum distance between an occurrence of a variable and its binder
is bounded by depth(P). By Definition 15 any process that can be communicated in P
isin Pp ,,—1 and its maximum depth is also bounded by depth(P) —which, in turn, by
Lemma 10, is bounded by n. The deepest position for a variable is when it is a leaf in
the tree associated to the normal form of P. That is, when its depth is exactly depth(P).
If in that position we place a process in Pp,,_1 — whose depth is also depth(P) —
then it is easy to see that (the associated tree of) () has a depth of 2 - depth(P), which
is bounded by 2 - n. Hence, by Lemma 10, Q) is in Pp 2.,,. a

The lemma below generalizes Proposition 4 to a sequence of transitions.

Lemma 11. Let P be a Ho™f process. Suppose, for some n, that P € Pp,,. For every
Q such that P —* @, it holds that () € Pp a.p,.

Proof. The proof proceeds by induction on k, the length of —*, exploiting Proposition
4. The base case is when k = 1, and it follows by Proposition 4. For the inductive step
we assume k > 1, so we have that P ——* R —— @’ where the sequence from P to R
is of lenght k£ — 1. By induction hypothesis we know that i € Pp 5.,,. We then proceed
by a case analysis on the rule used to infer R — (). As usual, we content ourselves
with illustrating the case TAU; the other ones are similar or simpler. We then have that
R=a1| | a | a(T) | a(z). R | Sandthat @ = a1 | --- | a || R{T/a} | S.
The tree representation of process R is depicted in Figure 3 (a). There, R” is used
to represent a subprocess of R’. By Corollary 4 the maximum distance between x and
its binder a(x) is depth(P), which in turn is bounded by n (Lemma 10). Moreover, the
maximum depth of T is bounded by maxDepCom(P); by Corollary 4, depth(P) < n.
The tree representation of) is given in Figure 3 (b). We then conclude that because of
the limitations on the structure of the communicated objects the overall depth of process
@ is 2 - depth(P). Hence, and by using Lemma 10, Q € Pp.2.,,, as wanted. O

Corollary 5. Ler P € Ho™". Then Deriv(P) C Pp,2.depth(P)-

We are now ready to prove that relation =< is a wqo. We begin by showing that it is
a quasi-order.

Proposition 5. The relation < is a quasi-order.

23

Proof. We need to show that < is both reflexive and transitive. From Definition 12,
reflexivity is immediate.

Transitivity implies proving that, given processes P, (), and R such that P < () and
@ = R, P < R holds. We proceed by induction on k = depth(P). If & = 0 then we
have that P = x1 || --- || 2. Since P < @, we have that Q = 21 || --- || 2% || S. and
that R = a9 || -+ || zx || S, for some S, S’ such that S < S’. By Definition 13, the
thesis follows. Now suppose k£ > 0. By Definition 12 and by hypothesis we have the
following:

l m
P =TT I [Taitvo)- P Il TT05(P))
k=1 i=1

b(Q5) | S
bi(R) S| T

1

j=1

l m n
Q=[Tan I [Taitw)-@i Il T]
k=1 i=1 =1
1

Jj=1

l m
R=] I [Jai(w) Ri |
k=1 i=1 j

with P, < Q;, P} 2 @), Qi = Ri,and Q) < R’ (i € I,j € J). Since P;, Pj, Qi,
", Ri, and R, have depth & — 1, by inductive hypothesis P; < R; and P] < R’. By
Definition 13, the thesis follows and we are done. O

We are now in place to state that < is a wqo.

Theorem 3 (Well-quasi-order). Let P € Ho~f be a closed process and n > 0. The
relation = is a well-quasi-order over Ppp,.

Proof. The proof is by induction on n.

— Let n = 0. Then Pp contains processes containing only variables taken from
A(P). The equality on finite sets is a well-quasi-ordering; by Lemma 4 (Higman’s
Lemma) also =, is a well quasi-ordering: it corresponds to the ordering < on pro-
cesses containing only variables.

— Let n > 0. Take an infinite sequence of processes s = Py, Ps,..., P, ... with
P, € Pp,,. We shall show that the thesis holds by means of successive filterings of
the normal forms of the processes in s. By Lemma 7 there exist K, I; and J; such

that 7
=TT @ |l [Tastwo)- PO TT 05

keK; i€l JEJ;
with Pil and PJ{Z € Ppn—1. Hence each P; can be seen as composed of 3 finite
sequences: (i) z1 ...z, (i) a1 (y1). Pf ... ai(y;). P, and (iii) by (P{") ... b;(P]").

'Rl
We note that the first sequence is composed of variables from the finite set A(P)
whereas the other two sequences are composed by elements in A(P) and Ppp,_1.
Since we have an infinite sequence of A(P)*, as A(P) is finite, by Proposition 2
and Lemma 4 we have that =, is a wqo over A(P)*.

By inductive hypothesis, we have that < is a wqo on Pp,,_1, hence by Lemma
4 relation <, is a wqo on P, ;. We start filtering out s by making the finite se-

quences 1 . .. T increasing with respect to =, ; let us call this subsequence ¢. Then

24

we filter out ¢, by making the finite sequence a;(y1). P} ...a;(y;). P} increasing
with respect to both <, and =,.. This is done in two steps: first, by considering the
relation =, on the subject of the actions (recalling that a;,y; € A(P)), and then
by applying another filtering to the continuation using the inductive hypothesis. For
the first step, it is worth remarking that we do not consider symbols of the alphabet
but pairs of symbols. Since the set of pairs on a finite set is still finite, we know by
Higman’s Lemma that =, is a wqo on the set of sequences of pairs (a;, y;).
For the sequence of outputs by (P{') ... b;(P}') this is also done in two steps: the
subject of the outputs are ordered with respect to =, and the objects of the output
action are ordered with respect to =<, using the inductive hypothesis.
At the end of the process we obtain an infinite subsequence of s that is ordered with
respect to <.

O

The last thing to show is that the well-quasi-ordering < is strongly compatible with
respect to the LTS in Figure 2. We need the following auxiliary lemma:

Lemma 12. Let P, P',Q, and Q' be Ho ™" processes in normal form such that P < P’
and Q < Q'. Then it holds that P{Q/z} < P'{Q'/z}.

Proof. By induction on the structure of P.

1. Cases P = 0 and P = y, for some y # x: Immediate.

2. Case P = x. Then P’ = z || N, for some process N. We have that P{@/z} = Q
and that P'{Q'/z} = Q' || N{@'/x}. Since Q < Q' the thesis follows.

3. Case P = a(y).R. Then P’ = a(y).R’ || N, for some process N. Since by
hypothesis P < P’, then R < R’. We then have that P{@/z} = a(y). R{®/z} and
that P'{Q@'/z} = a(y). R{Q/'}x || N{Q'/z}. By inductive hypothesis we obtain
that R{Q/z} < R'{@/z}, and the thesis follows.

4. Case P = a(R): Similar to (3).

5.Case P =R || S.Then P’ = R’ || §' || N, for some process N, with R < R’
and S < S’. We then have that P{Q/z} = R{Q/z} || ${@/z} and P'{Q/z} =
R{Q/z} || $'{Q/z} | N{Q'/x}. The thesis then follows by inductive hypothesis.

O

Theorem 4 (Strong Compatibility). Let P,Q, P’ € Ho ". If P < Q and P — P’
then there exists Q' such that Q — Q' and P’ < Q)'.

Proof. By case analysis on the rule used to infer reduction P —— P’. We content
ourselves with illustrating the case derived from the use of rule TAU1; the other ones
are similar or simpler. We then have that P = @(P;) || a(y). P> || N and @ = a(Q1) ||
a(y)Q2 || N/, with P} < Ps, Ql = QQ, and N < N .If P— P = PQ{Pl/y} ||
N then also Q +—— Q' = Q2{@1/y} || N'. By Lemma 12 we have Po{F1/y} =<
Q2{@1/y}; using this and the hypothesis the thesis follows. O

Theorem 5. Let P € HO ™ be a closed process. The transition system (Deriv(P), —
, <) is a finitely branching well-structured transition system with strong compatibility,
decidable =, and computable Succ.

25

Proof. The transition system of Ho fis finitely branching (Fact 2). The fact that <

is a well-quasi-order on Deriv(P) follows from Corollary 5 and Theorem 3. Strong
compatibility follows from Theorem 4. a

We can now state the main technical result of the section.
Corollary 6. Let P € Ho " be a closed process. Then, termination of P is decidable.

Proof. This follows from Theorem 2, Theorem 5, and Corollary 3. a

S On the Interplay of Fowarding and Passivation

The decidability of termination in Ho~* presented in Section 4 provides compelling
evidence on the fact that the limited forwarding entails a loss of expressive power for
HOCORE. It is therefore worth investigating alternatives for recovering such an expres-
sive power while preserving the essence of limited forwarding.

In this section we examine one such alternatives. We analyze the consequences of
extending HO ™" with a passivation construct, an operator that allows to suspend the
execution of a process at run time. As such, it comes in handy to represent scenarios of
(dynamic) system reconfiguration, which are often indispensable in the specification of
open, extensible systems such as component-based ones. Passivation has been consid-
ered by higher-order calculi such as the Kell calculus [13] and Homer [14], and finds
several applications (see, e.g., [15]). Here we shall consider a passivation construct of
the form a{P}, which represents a passivation unit named a that contains a process
P. The passivation unit is a transparent locality, in that there are no restrictions on the
interactions between P and processes surrounding a. The execution of P can be pas-
sivated at an arbitrary time; this is represented by the evolution of a{P} into the nil
process by means of an output action @(P). Hence, the passivation of a{ P} process
might lead to a synchronization with any interacting input action on a.

We consider HOP*f, the extension of Ho~f with a passivation construct as de-
scribed above. The syntax extends as expected; for the sake of consistency, we notice
that the process P in a{P} respects the limitation on the shape of output objects in-
troduced for Ho~F. The LTS for HOP~' is the same as that for HO~ in Section 2,
extended with the two following rules which formalize the intuitions given before with
respect to transparent localities and passivation, respectively:

P p

a{P} — a{P'}

5.1 A Deterministic Encoding of Minsky Machines into HoP~f

Here we investigate the expressiveness of HoP~f by exhibiting an encoding of Minsky
machines. Interestingly, unlike the encoding presented in Section 3, the encoding into
HoP~F is deterministic®. As such, in HoP~F both termination and convergence are

% In fact, the encoding is nearly-deterministic, because of the encoding of replication we are
considering.

26

REGISTER 7 [r = m]m = /{(m Dr}
where
0Dk =zx@: (n)r=uk (@l az.(n—1)%)

INSTRUCTIONS (i : I;)

[G:Ne(ri)m = tpi- (ri(@). (& (@) || Tifer(y)- (@ | ue- (@1 || a2-y))} || ap. Pig))
[(i: DECI(rk,s))lw = !pi. (m(z). @
| d{@x || ar. 7 (s(2). d(2). (@ || i)}

1'5{z% | az. m(d(@). s(2). & (0). (ri{ze- @z} || P5))})

Table 3. Encoding of Minsky machines into HOP~".

undecidable problems. Hence, it is fair to say that the passivation construct —even with
the limitation on the shape of (output) processes— allows to recover the expressive

power lost in restricting HOCORE as HO .

The encoding is given in Table 3; we now give some intuitions on it. A register
k with value m is represented by a passivation unit 7y that contains the encoding of
number m, denoted (| m |)g. In turn, (| m |)x consists of a chain of m nested input
prefixes on name wuy; it also contains other prefixes on a; and ay which are used for
synchronization purposes during the execution of instructions. The encoding of zero is
given by an input action on zj, that prefixes a trigger @ .

As expected, the encoding of an increment operation on the value of register k
consists in the enlargement of the chain of nested input prefixes it contains. For that
purpose, the content of passivation unit r, is obtained with an input on . We therefore
need to recreate the passivation unit 75, with the encoding of the incremented value.
Notice that we require an additional synchronization on ¢ in order to “inject” such a
previous content in a new passivation unit called 7. This way, the the chain of nested
inputs in r can be enlarged while respecting the limitation on the shape of processes
inside passivation units. As a result, the chain is enlarged by putting it behind some
prefixes, and the next instruction can be invoked. This is done by a synchronization on
name a,.

The encoding of a decrement of the value of register k£ consists of an internal, exclu-
sive choice implemented as two passivation units that execute in parallel: the first one,
named d, implements the behavior for decrementing the value of a register, while the
second one, named s, implements the behavior for performing the jump to some given
instruction. Unlike the encoding of Minsky machines in Ho~ ' presented in Section 3,
this internal choice behaves faithfully with respect to the encoding instruction, i.e. the
behavior inside d will only execute if the value in r is greater than zero, whereas the
behavior inside s will only execute if that value is equal to zero. It is indeed a determin-
istic choice in that it is not the case that both an input prefix on wu (which triggers the
“decrement branch” defined in d) and one on zj, (which triggers the “jump branch” de-
fined in s) are available at the same time; this is because of the way in which we encode
numbers, i.e. as a chain of input prefixes. In addition to the passivation units, the encod-
ing of decrement features a “manager” (implemented as a synchronization on m) that

27

enables the behavior of the chosen passivation unit by placing it at the top-level, and
consumes both s and d afterwards, thus leaving no residual processes after performing
the instruction. In case the value of the register is equal to some n > 0, then a decrement
is implemented by consuming the input prefixes on wu and as and the output prefix on
a; through suitable synchronizations. As a result, the encoding of n — 1 remains inside
7t and the next instruction is invoked. In case the value of the register is equal to zero,
the passivation unit 7 is consumed and recreated with the encoding of zero inside. The
jump is then performed by invoking the respective instruction.

We arefnow ready to define the encoding of a configuration of a Minsky machine
into HOP™".

Definition 19 (Encoding of Configurations) Let N be a Minsky machine with regis-
ters ro = mo, r1 = my and instructions (1 : Iy),...,(n : I,). The encoding of a
configuration (i,mg, mq) of N into HoP~ s defined by the encodings in Table 3 as

n
[Gymo,m1)Im =i || [ro = molm || [re = malm || TTLG : 2w,
i=1
assuming fresh, pairwise different names rj, ug, Zx, D1, . .., Pn, (for j € {0,1}).

5.2 Correctness of the Encoding

We divide the proof of correctness into two properties: completeness (Lemma 13) and
soundness (Lemma 14).

Lemma 13 (Completeness). Let (i, mg, m1) be a configuration of a Minsky machine
N. Then, if (i,mg,m1) —wm (i, m(, m}) then, for some finite j and a process P, it
holds that [(i, mo, m1)]m —7 P = [(i',m, m})]m-

Proof. We proceed by a case analysis on the instruction performed by the Minsky ma-
chine. Hence, we distinguish three cases corresponding to the behaviors associated to
rules M-INC, M-DEc, and M-JMmP. Without loss of generality, we restrict our analysis
to operations on register 7.

Case M-INC: We have a Minsky configuration (i, mg,my) with (¢ : INC(rg)). By
Definition 19, its encoding into Ho~f with passivation is as follows:

[(i,m0,m1)Im = Pi || [ro = molm || [r1 = ma]m ||

[G:meero)Iv | [T 10: 1)Im

I=1..n,l#1

After consuming the program counter p; we have the following

[(@,mo, m1)lm — 70{(mo Do} [ro(2)- (co(2) || To{co(y)- (@ [| wo- (@1 [az-y))}) |
ap-Piv1 | S =1

28

where S = [ry = my]m || [T, [(é : I;)]m stands for the rest of the system. The
only reduction possible at this point is the synchronization on ry, which allows the
content of the passivation unit ry to be communicated:

Py —2((mo o) [| roleco(y)- (@ || wo- (a1 [| az-y))} | ap- Pixt [| S = P

Now there is a synchronization on ¢y, which allows to “inject” the encoding of
value m inside the passivation unit r(respecting the limitation of the language:

Py — 70{(@ || wo- @1 [l az- ('m0 Do)} | ap- Pzt | S = Ps.

The only possible synchronization from Ps is the one on a,, which works as an
acknowledgment signal, and allows to release the program counter for instruction
i + 1. By performing such a synchronization, and by the encoding of numbers, we
obtain the following

Py — r0{(mo+1 Do} || Pivy | S = P

It is then easy to see that Py = [(i + 1, mg + 1, m1)]m, as desired.
Case M-DEC: We have a Minsky configuration (¢, ¢, m1) with ¢ > 0 and (i : DEC(ry, s)).
By Definition 19, its encoding into HO~" with passivation is as follows:

[e;ma)lm =Pi |l [ro = clm || [re = ma]w |l
[Gi:DEC(ro,))Im | [T [+ 11)Im

1=1..n,li

We begin by consuming the program counter p;, which leaves the content of (i :
DEC(r9, s))]m exposed. Using the encoding of numbers we have the following:

[(z, c;m1)]m — ro{uo- (a1 || az. (¢ =1 o)} [m(z). = |
d{ug || ar.m(s(x). d(z). @z || piri))} ||
5{z0 || az. m(d(2). s(2).70(t). (fofz0- @z} [P)} || S = P
where S = [r1 = ma]m || [T, [(i : I;)]m stands for the rest of the system. Notice
that only reduction possible at this point is the synchronization on ug, which signals

the fact we are performing a decrement instruction. Such a synchronization enables
one on a;. After these two synchronizations we have

P —2 fofas. (e~ 1 o} || m(a). x || d{m(s(x). d(a). (@3 || i)} |
50 || @z md(2). s(2). 7o(t). (Fofz0. T} || BN} 1| S = P

Starting in P, the only reduction possible is due to the synchronization on m, which
gives us the following:

Py — o{as. | ¢ —1 o} || s(x). d(x). @z || pi1) || d{0} |
(% || az.m(d(2). s(x). 70(t). (Fo{z0. @} | B))} || S = Ps.

29

In P; we have that passivation units s and d are consumed, thus we have:
Py — rofag. (¢ =1)o} @ | P | § = Py
At this point it is easy to see that, after a synchronization on ay, we obtain
Py —=(+1,¢c—1,m1)]m

as desired.
Case M-JMP: We have a Minsky configuration (¢,0,m;) and (¢ : DEC(rp, s)). By
Definition 19, its encoding into Ho~" with passivation is as follows:

[(Z,0,m1)[m =i || [ro = Om [| [r1 = malwm ||

[Gi: DEC(ro, s))Im | [T [+ 1)Im-

I=1..n,l#i

We begin by consuming the program counter p;, which leaves the content of (i :
DEC(79, s))]m exposed. Using the encoding of numbers we have the following:

[(@,0,m1)[m — 7o{z0- az} || m(z). 2 |
d{ug || ar.m(s(z). d(z). @z || pirn))} |l
5{z0 || a-.m(d(2). s(x). ro(t). (Fofz0.- @z} [| D))} | S = P
where S = [r1 = ma]m || [T/, [(i : I;)]m stands for the rest of the system. In Py,
the only reduction possible is through a synchronization on z, which signals the
fact we are performing a jump. Such a synchronization, in turn, enables one on a.
We then have:
Py —? {0} | m(x). x |
d{ug || ar.m(s(z). d(z). @z || pira))} |l
s{m(d(z). s(z).ro(t). (ro{z0- @z} [PN} | S = P2

The only possible reduction from P, is by means of a synchronization on m. This
gives us:

Py — 70{0} | d(a). s(@). ro(t). (Fo{z0- @2} || 75) |
A || ar. m(s(x). d(x). (@ || 7))} 1| 570} || S = Py

In Ps the two passivation units on d and s are consumed, which gives us:
Py — 10{0} || ro(t). (To{z0. @} | B5) || S = Pa.
At this point, it is easy to see that after a synchronization on ry we obtain:
Py —=[(s,0,m1)]m

as desired.

30

Lemma 14 (Soundness). Let (i, mq, m1) be a configuration of a Minsky machine N.
If [(i, mog, m1)]m — Py then for every computation of P; there exists a P; such that
Pj = [[(i/’ mév mll)]]M and (ia mo, ml) —M (ilv mé)? mll)

Proof. Consider the reduction [(¢,mg, m1)]m — Pi. An analysis of the structure of
process [(i, mg, m1)]m reveals that, in all cases, the only possibility for the first step
corresponds to the consumption of the program counter p;. This implies that there exists
an instruction labeled with i, that can be executed from the configuration (i, mg, m1).
We proceed by a case analysis on the possible instruction, considering also the fact that
the register on which the instruction acts can hold a value equal or greater than zero.

In all cases, it can be shown that computation evolves (nearly) deterministically,
until reaching a process in which a new program counter (that is, some p;/) appears. To
be precise, there is some non-determinism associated with the unfoldings of the encod-
ing of recursive definitions (see Lemma 4). Since recursion is guarded, each recursive
definition can be unfolded at most once, thus introducing at most a finite number of
additional reductions. The program counter p;- is inside a process that corresponds to
[(i', my, my)]m, where (i,mg, m1) —m (¢, m{, m}). The analysis follows the same
lines as the one reported for the proof of Lemma 13, and we omit it.

Corollary 7. Let N be a Minsky machine. We have that N — y if and only if [N]m .
Proof. Straightforward from Lemmas 13 and 14.
Lemma 15. Termination and convergence are undecidable in HoP~F.

Proof. This is an immediate consequence of previous results (Lemmas 13 and 14,
Corollary 7).

6 Concluding Remarks

In this chaper we have studied the expressiveness and decidability of higher-order pro-
cess calculi featuring limited forwarding. Our study has been centered around Ho ™',
the fragment of HOCORE in which output actions can only include previously received
processes in composition with closed ones. This communication style is reminiscent of
programming scenarios with forms of code mobility in which the recipient is not au-
thorized or capable of accessing/modifying the structure of the received code. We have
shown that such a weakening of the forward capabilities of higher-order processes has
consequences both on the expressiveness of the language and on the decidability of ter-
mination. Furthermore, we analyzed the extension of Ho ™" with a passivation operator
as a way of recovering the expressive power lost when moving from HOCORE to Ho~ .

By exhibiting an encoding of Minsky machines into Ho~f, we have shown that
convergence is undecidable. Hence, from an absolute expressiveness standpoint, Ho~f
is Turing complete. Now, given the analogous result for HOCORE [4], a relative ex-
pressiveness issue also arises. Indeed, our encoding of Minsky machines into Ho~F is
not faithful, which reveals a difference on the criteria each encoding satisfies. This
reminds us of the situation in [16], for encodings of Turing complete formalisms into
calculi with interruption and compensation. That work offers a detailed comparison of

31

the criteria faithful and unfaithful encodings satisfy. For the sake of conciseness, we
do not elaborate further on their exact definition; using the terminology in [16], here it
suffices to say that the presented encoding satisfies a weakly Turing completeness crite-
rion, as opposed to the (stronger) Turing completeness criterion that is satisfied by the
encoding of Minsky machines into HOCORE in [4]. The discrepancy on the criteria
satisfied by each encoding might be interpreted as an expressiveness gap between Ho~f
and HOCORE; nevertheless, it seems clear that the loss of expressiveness resulting from
limiting the forwarding capabilities in HOCORE is much less dramatic than what one
would have expected.

We have shown that the communication style of Ho~f causes a separation result

with respect to HOCORE. In fact, because of the limitation on output actions, it was
possible to prove that termination in Ho~f is decidable. This is in sharp contrast with
the situation in HOCORE, for which termination is undecidable. In HO_f, it is possible
to provide an upper bound on the depth (i.e. the level of nesting of actions) of the
(set of) derivatives of a process. In HOCORE such an upper bound does not exist. This
was shown to be essential for obtaining the decidability result; for this, we appealed to
the approach developed in [11], which relies on the theory of well-structured transition
systems [8,9,10]. As far as we are aware, this approach to studying expressiveness issues
has not previously been used in the higher-order setting. The decidability of termination
is significant, as it might shed light on the development of verification techniques for
higher-order processes.

We have also studied the expressiveness and decidability of HoP ¥, the extension
of Ho~" with a passivation operator. To the best of our knowledge, this is the first
expressiveness study involving passivation operators in the context of higher-order pro-
cess calculi. In HOP~ it is possible to encode Minsky machines in a faithful manner.
Hence, similarly as in HOCORE, in HoP~f both termination and convergence are un-
decidable. This certainly does not imply that both languages have the same expressive
power; in fact, an interesting direction for future work consists in assessing the exact
expressive power that passivation brings into the picture. This would include not only
a comparison between HoP~f and HOCORE, but also a comparison between HOCORE
and HOCORE extended with passivation. All the languages involved are Turing com-
plete, hence such comparisons should employ techniques different from the ones used
here. Related to this, it is worth remarking that we have considered a very simple form
of passivation, one in which process suspension takes place with a considerable degree
of non-determinism. Studying other forms of passivation, possibly with more explicit
control mechanisms, could be interesting from several points of view, including expres-
siveness.

The Ho~f calculus is a sublanguage of HOCORE. As such, Ho~f inherits the many

results and properties of HOCORE [4]; most notably, a notion of (strong) bisimilarity
which is decidable and coincides with a number of sensible equivalences in the higher-
order context. Our results thus complement those in [4] and deepen our understanding
of the expressiveness of core higher-order calculi as a whole. Furthermore, by recalling
that CCS without restriction is not Turing complete and has decidable convergence,
the present results shape an interesting expressiveness hierarchy, namely one in which

32

HOCORE is strictly more expressive than Ho~ (because of the discussion above), and
in which Ho ™" is strictly more expressive than CCS without restriction.

Remarkably, our undecidability result can be used to prove that (weak) barbed
bisimilarity is undecidable in the calculus obtained by extending Ho ™~ with restriction.
Consider the encoding of Minsky machines used in Section 3 to prove the undecid-
ability of convergence in Ho~f. Consider now the restriction operator (vZ) used as a
binder for the names in the tuple z. Take a Minsky machine N (it is not restrictive to
assume that it executes at least one increment instruction) and its encoding P, as given
by Definition 5. Let = be the tuple of the names used by P, excluding the name w.
We have that N terminates if and only if (vZ)P is (weakly) barbed equivalent to the
process (vd)(d | d | d. (W | 'w.w)).

Related Work. The most closely related work is [4], which was already discussed
along the paper. We do not know of other works that study the expressiveness of higher-
order calculi by restricting higher-order outputs. The recent work [17] studies finite-
control fragments of Homer [18], a higher-order process calculus with locations. While
we have focused on decidability of termination and convergence, in [17] the interest is
in decidability of barbed bisimilarity. One of the approaches explored in [17] is based on
a type system that bounds the size of processes in terms of their syntactic components
(e.g. number of parallel components, location nesting). Although the restrictions such a
type system imposes might be considered as similar in spirit to the limitation on outputs
in Ho~f (in particular, location nesting resembles the output nesting Ho~f forbids), the
fact that the synchronization discipline in Homer depends heavily on the structure of
locations makes it difficult to establish a more detailed comparison with Ho~*.

Also similar in spirit to our work, but in a slightly different context, are some stud-
ies on the expressiveness (of fragments) of the Ambient calculus [19]. Ambient and
higher-order calculi are related in that both allow the communication of objects with
complex structure. Some works on the expressiveness of fragments of Ambient cal-
culi are similar to ours. In particular, [20] shows that termination is decidable for the
fragment without both restriction (as Ho~f and HOCORE) and movement capabilities,
and featuring replication; in contrast, the same property turns out to be undecidable for
the fragment with recursion. Hence, the separation between fragments comes from the
source of infinite behavior, and not from the structures allowed in output action, as in
our case. However, we find that the connections between Ambient-like and higher-order
calculi are rather loose, so a proper comparison is difficult also in this case.

Acknowledgments. We are grateful to Julian Gutierrez and Roland Meyer for their
useful remarks on a previous version of this paper.

References

1. Thomsen, B.: A calculus of higher order communicating systems. In: Proc. of POPL’89,
ACM Press (1989) 143154

2. Thomsen, B.: Plain CHOCS: A second generation calculus for higher order processes. Acta
Inf. 30(1) (1993) 1-59

33

10.

11.

13.

14.

15.

17.

18.

19.
20.

. Sangiorgi, D.: Expressing Mobility in Process Algebras: First-Order and Higher-Order

Paradigms. PhD thesis CST-99-93, University of Edinburgh, Dept. of Comp. Sci. (1992)

. Lanese, I., Pérez, J.A., Sangiorgi, D., Schmitt, A.: On the expressiveness and decidability of

higher-order process calculi. In: Proc. of LICS’08, IEEE Computer Society (2008) 145-155

. Minsky, M.: Computation: Finite and Infinite Machines. Prentice-Hall (1967)
. Necula, G.C., Lee, P.: Safe, untrusted agents using proof-carrying code. In: Mobile Agents

and Security. Volume 1419 of Lecture Notes in Computer Science., Springer (1998) 61-91

. Collberg, C.S., Thomborson, C.D., Low, D.: Manufacturing cheap, resilient, and stealthy

opaque constructs. In: Proc. of POPL’'98, ACM Press (1998) 184-196

. Finkel, A.: Reduction and covering of infinite reachability trees. Inf. Comput. 89(2) (1990)

144-179

. Abdulla, P.A., Cerans, K., Jonsson, B., Tsay, Y.K.: Algorithmic analysis of programs with

well quasi-ordered domains. Inf. Comput. 160(1-2) (2000) 109-127

Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere! Theor. Comput.
Sci. 256(1-2) (2001) 63-92

Busi, N., Gabbrielli, M., Zavattaro, G.: On the expressive power of recursion, replication,
and iteration in process calculi. Math. Struct. in Comp. Sci. (2009) To appear.

. Higman, G.: Ordering by divisibility in abstract algebras. Proceedings of the London Math-

ematical Society (3) 2(7) (1952) 326-336

Schmitt, A., Stefani, J.B.: The kell calculus: A family of higher-order distributed process
calculi. In: Proc. of Global Computing. Volume 3267 of Lecture Notes in Computer Science.,
Springer (2004) 146-178

Hildebrandt, T., Godskesen, J.C., Bundgaard, M.: Bisimulation congruences for homer —
a calculus of higher order mobile embedded resources. Technical Report TR-2004-52, IT
University of Copenhagen (2004)

Bundgaard, M., Glenstrup, A.J., Hildebrandt, T.T., Hgjsgaard, E., Niss, H.: Formalizing
higher-order mobile embedded business processes with binding bigraphs. In: Proc. of CO-
ORDINATION. Volume 5052 of Lecture Notes in Computer Science., Springer (2008) 83—
99

. Bravetti, M., Zavattaro, G.: On the expressive power of process interruption and compensa-

tion. Math. Struct. in Comp. Sci. 19(3) (2009) 565-599

Bundgaard, M., Godskesen, J.C., Haagensen, B., Hiittel, H.: Decidable fragments of a higher
order calculus with locations. Electr. Notes Theor. Comput. Sci. 242(1) (2009) 113-138
Bundgaard, M., Godskesen, J.C., Hildebrandt, T.: Bisimulation congruences for homer —
a calculus of higher order mobile embedded resources. Technical Report TR-2004-52, IT
University of Copenhagen (2004)

Cardelli, L., Gordon, A.D.: Mobile ambients. Theor. Comput. Sci. 240(1) (2000) 177-213
Busi, N., Zavattaro, G.: On the expressive power of movement and restriction in pure mobile
ambients. Theor. Comput. Sci. 322(3) (2004) 477-515

34

