
An introduction to Linear Logic

Paolo Parisen Toldin

University of Bologna

1 october 2010

Paolo Parisen Toldin (University of Bologna) Linear Logic 1 october 2010 1 / 22

Gentzen sequent LK

Consider, instead of true formulas of arithmetic, valid formulas of
predicate calculus.

We shall introduce Gentzen’s Sequent Calculus.

Γ ` ∆

Paolo Parisen Toldin (University of Bologna) Linear Logic 1 october 2010 2 / 22

Gentzen sequent LK

Identity
A ` A

Structural Rules:

Γ ` Σ,A,B,Σ2 (` E)
Γ ` Σ,B,A,Σ2

Γ,A,B, Γ2 ` Σ
(E `)

Γ,B,A, Γ2 ` Σ

Γ ` Σ (W `)
Γ,A ` Σ

Γ ` Σ (`W)
Γ ` A,Σ

Γ,A,A ` Σ
(C `)

Γ,A ` Σ

Γ ` A,A,Σ
(` C)

Γ ` A,Σ

Paolo Parisen Toldin (University of Bologna) Linear Logic 1 october 2010 3 / 22

Gentzen sequent LK

Logical Rules

Γ,A ` B,Σ
(`→)

Γ ` A→ B,Σ

Γ,B ` Σ Λ ` A,∆
(→`)

Γ,Λ,A→ B ` Σ,∆

Γ ` A,Σ
(` ∀)1

Γ ` ∀x .A,Σ
Γ,A(t) ` Σ

(∀ `)2

Γ,∀x .A(x) ` Σ

Γ ` A(t),Σ
(` ∃)2

Γ ` ∃x .A(x),Σ

Γ,A ` Σ
(∃ `)1

Γ, ∃x .A(x) ` Σ

1x /∈ FV (Γ, Σ).
2t arbitrary term.

Paolo Parisen Toldin (University of Bologna) Linear Logic 1 october 2010 4 / 22

Gentzen sequent LK

(Logical Rules)

Γ ` A,∆ Γ ` B,∆
(` ∧)

Γ ` A ∧ B,∆

Γ,A ` ∆
(∧ `)

Γ,A ∧ B ` ∆

Γ,B ` ∆
(∧ `)

Γ,A ∧ B ` ∆

Γ,A ` ∆ Γ,B ` ∆
(∨ `)

Γ,A ∨ B ` ∆

Γ ` A,∆
(` ∨)

Γ ` A ∨ B,∆

Γ ` B,∆
(` ∨)

Γ ` A ∨ B,∆

Γ,A ` Σ
(` ¬)

Γ ` ¬A,Σ

Γ ` A,Σ
(¬ `)

Γ,¬A ` Σ

Cut rule (redundant):

Γ ` A,∆ Λ,A ` Σ
(cut)

Γ,Λ ` ∆,Σ

Paolo Parisen Toldin (University of Bologna) Linear Logic 1 october 2010 5 / 22

Gentzen sequent LK

We could economize and use less rules:

Γ ` A,Σ Λ ` B,∆
(` ∧)′

Γ,Λ,` A ∧ B,Σ,∆

Γ,A,B ` Σ
(∧ `)′

Γ,A ∧ B ` Σ

Γ,A ` Σ Λ,B ` ∆
(∨ `)′

Γ,Λ,A ∨ B ` Σ,∆

Γ ` A,B,Σ
(` ∨)′

Γ ` A ∨ B,Σ

and internalize the meaning of “,” (commas) on the left and on the right.

Are the two formulations equal? YES!

The first way to introduce roule is called additive and the last one is called
multiplicative.

Paolo Parisen Toldin (University of Bologna) Linear Logic 1 october 2010 6 / 22

Creating Linear Logic

Classical ∧ and ∨ are now splitted in two.

⊗ (multiplicative) and & (additive) are the two conjunctions.
Γ ` A, Σ Λ ` B, ∆

(` ⊗)
Γ, Λ,` A⊗ B, Σ, ∆

Γ, A, B ` Σ
(⊗ `)

Γ, A⊗ B ` Σ

Γ ` A, ∆ Γ ` B, ∆
(` &)

Γ ` A&B, ∆

Γ, A ` ∆
(& `)

Γ, A&B ` ∆

Γ, B ` ∆
(& `)

Γ, A&B ` ∆

` (multiplicative) and ⊕ (additive) are the two disjuctions.
Γ, A ` Σ Λ, B ` ∆

(` `)
Γ, Λ, A` B ` Σ, ∆

Γ ` A, B, Σ
(` `)

Γ ` A` B, Σ

Γ, A ` ∆ Γ, B ` ∆
(⊕ `)

Γ, A⊕ B ` ∆

Γ ` A, ∆
(` ⊕)

Γ ` A⊕ B, ∆

Γ ` B, ∆
(` ⊕)

Γ ` A⊕ B, ∆

Paolo Parisen Toldin (University of Bologna) Linear Logic 1 october 2010 7 / 22

Linear Logic

Here all the rules.

(Axiom)
` A⊥, A

` Γ, A ` A⊥,∆
(cut)` Γ,∆

` Γ, A
(right plus)` Γ, A⊕B

` Γ, B
(left plus)` Γ, A⊕B

` Γ (⊥)` ⊥,Γ

(>)` >,Γ

(1)` 1

No rule for 0

` Γ, A
(deleriction)` Γ, ?A

`?Γ, A
(of course)`?Γ, !A

` Γ (weakening)` Γ, ?A
` Γ, ?A, ?A

(contraction)`?Γ, A

` Γ, A
(for all)` Γ,∀α.A

` Γ, A[t/x]
(there is)` Γ,∃x.A

` Γ, A ` Γ, B
(with)` Γ, A&B

` Γ, A ` ∆, B
(times)` Γ,∆, A⊗B

` Γ, A,B
(par)` Γ, A`B

Paolo Parisen Toldin (University of Bologna) Linear Logic 1 october 2010 8 / 22

Linear Logic

Additive Conjunction: the symbol for this connective is & and it’s
called with. It rappresents the idea of simultaneity of resources, that
cannot be occour in the same time. Suppose to have money and have
to choose one of three object of the same price. It is not possible to
choose more then one: Object1 & (Oobject2 & Oobject3).

Additive Disjunction: the symbol of this connective is ⊕ and it’s
called plus. It rappresents the idea of simultaneity of resources, but
with a difference. You cannot know which of the option will be
choose. It’s like in the previous example, where the choice is made by
someone else: Object1⊕ (Oobject2⊕ Oobject3).

Paolo Parisen Toldin (University of Bologna) Linear Logic 1 october 2010 9 / 22

Linear Logic

Multiplicative Conjunction: the symbol is ⊗ and it’s called tensor.
It rappresents the “so called” computational parallelism. Suppose to
have money needful to buy two object, and suppose to buy all of
them: Object1⊗ Object2.

Multiplicative Disjuction: the symbol is ` and it’s called par
(parallelization). We read A` B as “if not A, then B”. It can be
understood better if we consider the linear implication. A (B
(A⊥ ` B) it means B can be derived by using only and just one time
A.

Paolo Parisen Toldin (University of Bologna) Linear Logic 1 october 2010 10 / 22

Linear Logic

Exponential: In Linear Logic we have two modal operators. The first
one is “!”, called bang, and rappresents the possibility to re-use or
duplicate a resource. The second is “?”, called why not, and
rappresents the dual of bang. It hold, indeed, the equality
(?A)⊥ =!(A⊥).

Paolo Parisen Toldin (University of Bologna) Linear Logic 1 october 2010 11 / 22

Linear Logic

As the ∧ and ∨ splits, also the neutral elements (n.e.) splits.

- 1 is the n.e. for ⊗
- > is the n.e. for &

- ⊥ is the n.e. for `
- 0 is the n.e. for ⊕

Paolo Parisen Toldin (University of Bologna) Linear Logic 1 october 2010 12 / 22

Linear Logic

Consider A,B,C,D,.. as the set of atomic formulas. Are formulas of LL:

neutral elemements: 1, 0,⊥,>
atomic formulas: A,B,C ,D, ...

negation of atomic formulas: A⊥,B⊥,C⊥,D⊥, ...

the result of applied connectives. If X,Y are formulas of LL then also
X & Y ,X ` Y ,X ⊗ Y ,⊕Y , !X , ?X ,∀αX , ∃αX ,∃αY are formulas of
LL.

Paolo Parisen Toldin (University of Bologna) Linear Logic 1 october 2010 13 / 22

Linear Logic

Linear negation: We have used, previously, the linear negation. Here’s
the definition:

1⊥ = ⊥ e ⊥⊥ = 1

0⊥ = > e >⊥ = 0

(A⊗ B)⊥ = A⊥ ` B⊥

(A` B)⊥ = A⊥ ⊗ B⊥

(A⊕ B)⊥ = A⊥ & B⊥

(A & B)⊥ = A⊥ ⊕ B⊥

(∀α.A)⊥ = ∃α.A⊥
(∃α.A)⊥ = ∀α.A⊥

N.B.: The negation of a multiplicative connective remains multiplicative
and the same happens with the additive ones.

Paolo Parisen Toldin (University of Bologna) Linear Logic 1 october 2010 14 / 22

Linear Logic

As we have seen, we can divide the rules in sets: multiplicative, additive
and exponential.
We can define some sub-linear logic as:

MLL: Multiplicative Linear Logic.

MELL: Multiplicative Exponential Linear Logic.

MALL: Multiplicative Additive Linear Logic.

Paolo Parisen Toldin (University of Bologna) Linear Logic 1 october 2010 15 / 22

Proof Nets

Is it possible to rappresents the Linear Logic in a different way?
maybe in a graphical manner?

YES: Proof Nets !

A⊥ B⊥

A⊥ `B⊥

A B

A⊗B C C⊥

(A⊗B)⊗ C

Paolo Parisen Toldin (University of Bologna) Linear Logic 1 october 2010 16 / 22

Proof Nets Sintax of proof-nets MLL

In this kind of net we have two basic links: Axiom link and cut-link

A⊥ A
A⊥ A

There are also other kind of links: Times link and Par link.

A B

A⊗B

A B

A`B

Paolo Parisen Toldin (University of Bologna) Linear Logic 1 october 2010 17 / 22

Proof Nets Connection with LL

We can associate every proof ` Γ in MLL with a proof-net, whose
conclusions are Γ.

` A⊥,A → A⊥ A

` Γ,A ` ∆,A⊥

` Γ,∆
→ A⊥ A

Γ ∆

Paolo Parisen Toldin (University of Bologna) Linear Logic 1 october 2010 18 / 22

Proof Nets Connection with LL

` Γ,A,B

` Γ,A` B
→

A B

A`B

Γ

` Γ,A ` ∆,B

` Γ,A⊗ B
→

A B

A⊗B

∆Γ

Exchange rule?

Paolo Parisen Toldin (University of Bologna) Linear Logic 1 october 2010 19 / 22

Proof Nets Connection with LL

Example

` A,A⊥ ` B,B⊥

` A⊥,B⊥,A⊗ B ` C ,C⊥

` C⊥,A⊥,B⊥, (A⊗ B)⊗ C

` C⊥, (A⊥ ` B⊥), (A⊗ B)⊗ C

By using the rules just seen we obtain:

A⊥ B⊥

A⊥ `B⊥

A B

A⊗B C C⊥

(A⊗B)⊗ C

Paolo Parisen Toldin (University of Bologna) Linear Logic 1 october 2010 20 / 22

Proof Nets Connection with LL

Theorem

Given a proof ` A1, ..,An in LL we can always build a proof net, whose
concluson are A1, ..,An.

Paolo Parisen Toldin (University of Bologna) Linear Logic 1 october 2010 21 / 22

Cut-elimination for MLL

Cut-elimination on proof net G = semplify the structure of G , so that the
number of cut-links go to zero.

A⊥ A A⊥ ⇒ A⊥

B⊥B C C⊥

B ⊗ C B⊥ ` C⊥ ⇒
B⊥B C C⊥

Theorem

Be Π a proof-net with a d nodes. The execution time of cut-elimination is
O(d)

Paolo Parisen Toldin (University of Bologna) Linear Logic 1 october 2010 22 / 22

	Gentzen sequent LK
	Creating Linear Logic
	Linear Logic
	Proof Nets
	Sintax of proof-nets MLL
	Connection with LL

	Cut-elimination for MLL

