ALMA MATER STUDIORUM
UNIVERSITA DI BOLOGNA

Babele e stata davvero una maledizione?
La molteplicita dei linguaggi di programmazione

Simone Martini

Dipartimento di Informatica-Scienza e Ingegneria
Accademia delle Scienze dell’lstituto di Bologna
Matematica, Fisica e Informatica nel secolo XX:

L’'ossessione della totalita
Accademia delle Scienze di Torino, 19 marzo 2024

What is a programming language?

An artificial language used to write instructions that can be translated into
machine language and then executed by a computer.
[THE AMERICAN HERITAGE SCIENCE DICTIONARY, ©2011]

2|

How many programming languages are there?

A

Thousands... Several dozen currently in use

3|

The Babel of programming languages

—
N2 IFIP

{A. WORKING CONFERENCE VIENNA 1964

Volume 4 | Number 1 January, 1961

Communications of the

FORMAL LANGUAGE DESCRIPTION LANGUAGES

41

" PROGRAMMING
LANGUAGES:

History and e I
Fundamentals

Babel vs Universal: Saul Gorn (1912-1992)

5]

A simple enough “universal
code” to be used by “computers,
data processers, production
engineers, traffic controllers, or
administrators of large
companies.”

[Planning universal semi-automatic coding, 1954]

6|

The first proliferation: machines

ENIAC: 1947

71

One machine, one code

Technology, bound to the specific machine

8|

Translation: Grace M. Hopper

TRANSLATION PRASE

[Digital computer advanced coding techniques, ©MIT, 1954]
9]

W (qufss

Towards the language metaphor

10|

When Technology Became Language

The Origins of the Linguistic Conception of Computer
Programming, 1950-1960

DAVID NOFRE, MARK PRIESTLEY, and
GERARD ALBERTS

Technology and Culture, Vol 55, January 2014.

|

The second proliferation: domains

Algebraic expressions: FORTRAN

Algebraic expressions, e.g.
D=(A+B)*C-sin(A*C+2)

translated into efficient object
programs

Fortran

©IBM, 1956

12

Simple control structures: FORTRAN

A DO Nest Given an N x N square matrix A, to find those off-diagonal elements which are
with Exit symmetric and to write them on binary tape.
and Return
PECET
counenr | £ FORTRAN STATEMENT AR
starewent | £
msen | 8
. slels A 50
L REWIND 3
A
! DO31=1,N
" —]
L | po3J=1,N
*{’ 1IF(ACI,J)-A(J, 1)) 3,20,3 -]
i 3 CONT INVE o —
7[END FILE 3 —
d MORE PROGRAM
I —
=20 IF(I~J) 21,3,21 _
7} 21 |_ | WRITE TAPE 3,1,J, AUI,J) -
| GO 7O 3
; i
©IBM, 1956

13|

Records and English: COBOL

Il
.c Report to
CONFERENCE on DATA

SYSTEMS LANGUAGES

Including
INITIAL SPECIFICATICNS 1 - i
Migs #ed Collections of non-numerical data
ORIENTED LANGUAGE (COBOL)
for Programming

. B
0 Electronic Digital Computers
l

English words

DEPARTMENT OF DEFENSE APRIL 1960

©US Dept of Defense, 1960

14 |

Records and English: COBOL

FD CUSTOMER-FILE

RECORD CONTAINS 45 CHARACTERS.
@1 CUSTOMER-RECORD.

05 CUSTOMER-NAME.

10 LAST-NAME PIC X(17).
10 FILLER PIC X.
10 INITIALS PIC XX.

@5 PART-ORDER.
10 PART-NAME PIC X(15).
10 PART-COLOR PIC X(10).

IF LAST-NAME = PART-NAME GO TO PARAGRAPH 1 ELSE
MOVE PART-NAME TO LAST-NAME

15

Algorithms: ALGOL

REVISED REPORT
ON THE ALGORITHMIC LANGUAGE
ALGOL 60

Dedicated to the memory of William Turanski

Universal language for algorithm

 W. Backus, F. L.
P. Naur, A.J. Perlis, H. Ruti

i exchange
International committee

NNNNNNNNNNNNNNNNNNNNNNN

©IFIP, 1962
16 |

Algorithms: ALGOL

17|

ALGORITHM 64

QUICKSORT

C. A. R. Hoare

Elliott Brothers Ltd., Borehamwood, Hertfordshire, Eng.

procedure quicksort (AM,N); value M,N;
array A; integer M,N;

comment Quicksort 18 a very iast and convenient method of
sorting an array in the random-access store of a computer. The
entire contents of the store may be sorted, since no extra space is
required. The average number of comparisons made is 2M—N) In
(N—M), and the average number of exchanges is one sixth this
amount. Suitable refinements of this method will be desirable for
its implementation on any actual computer;
begin integer 1,J;

if M < N then begin partition (AM.N,LJ

quicksort (AM,J);
quicksort (A, I, N)

end
end quicksort

Rich data types: Tony Hoare

18|

C.A.R. Hoare, 1934-

Modelling tool:

In the simulation of complex
situations in the real world, it is
necessary to construct in the
computer analogues of the
objects of the real world

[Hoare, Record handling, 1965]

Symbolic structures: LISP

7 s,

L A
John McCarthy, 1927-2011

Recursive Functions of Symbolic Expressions and
Their Computation by Machine, Part 1
I) s

Communications of the ACM Volume 3, April 1960

ﬁm

Symbolic structures: LISP

eval[e; a] = [
atom[e] — cdr[assoc[e;all];
atom[car[e]] — [eq[car[e]; QUOTE] — cadr[el]];
eq[car[e]; COND] — evcon[cdr[e];al;
T — apply[car[e]; evlis[cdr[e];a]l;all;
T — apply[car[e]; evlis[cdr[e];a];a]l]

20 |

Different domains, different machines

Scientific: FORTRAN, on IBM the 7090 and the IBM 1620
Business: COBOL, on the IBM 7080 and the IBM 1401
Real-time: JOVIAL, on the IBM 7750 and IBM 7950 (Harvest)

21

Abstraction over the machine: Hoare

It was a firm principle of our implementation that the results of any
program, even erroneous, should be comprehensible without knowing
anything about the machine or its storage layout.

[Hoare, personal communication, 2014]

22|

Taking stock, 1

1. PLs do not give instructions to the (physical) machine:
they hide it.

2. PLs are sets of abstraction mechanisms,
- over control (structured control, procedures)
- and data (data types).

3. Programs are abstract, computational models of
“the real world” (cf Hoare).

The myth of the total language

24|

IBM System/360, 1964 ff

The ultimate language

One machine, one language: for all

> users need to learn only one language
> only one compiler to be maintained
» programs could be easily shared

"A universal programming language that would meld and displace
FORTRAN and COBOL” [Brooks and Shustek, 2015]

PL/l: Some design choices

» Anything goes
“If a particular combination of symbols has
a reasonably sensible meaning,

that meaning will be made official”
» Full access to machine and operating system
» Cater to the novice

[G. Radin, H.P. Rogoway. NPL: Highlights of A New Programming Language. CACM 8(1), 1965]

27|

PL/I: An inconsistent model

PL/l: An inconsistent model

30|

PL/I: defeat

Different domains raise
different classes of problems that require
different sets of representations.

PL/I was designed in order to forget about such peculiarities.

31

Other driving forces: correctness

Algol’s research programme:
a (Kuhn) paradigm for programming language design, and
correct software development.

A language for the new science

32

Ada: 1977 ff

Designed for the US Department of Defence:

33|

vVvvyVvVvVvyyy

concurrency
real-time

embedded computing
life-critical applications
reliability

formal definition
simplicity

Ada, the last total language

Jean Ichbiah (Ada’s main designer):

In ten years from now [scil. 1979-801], only two programming languages will

remain: Ada and Lisp.
[according to Rosen, The Ada paradox(es), Ada Letters 24, 2009]

34|

35|

Another attempt to universality

Total language

36 |

Total language

36 |

VS.

Extensible language

Extensible languages

SIGPLAN Notices

Vol, 4, No. 8, 1969 August
SPECIAL INTEREST GROUP ON PROGRAMMING LANGUAGES
PROCEEDINGS OF THE

Extensible Languages

Symposium
dited by

An informal monthly publi- e
cation of the Speotal Imzms " Carlos Christensen and Christopher J. Shaw
Group on Programming Languages sponsored by SIGPLAN
(SIGPLAN) of the Association Boston, Massachusetts, 1969 May 13
for Computing Machinery (ACM),
incorporating the PL/I Bulletin, Symposium Chairman: Carlos Christensen, ADR/Com-
the Snobol Bulletin, the Algol puter Associates
Bulletin, the LISP Bulletin, and Chairman: Helen M. Willett, Willett
the Fortran Information Bulletin Associates
as occasional supplements. Treasurer: Peter C. Waal, ADR/Computer Associates

Current SIGPLAN officers Program Committee: Carlos Christensen (Chairman)
are: the Chairman, Prof. Peter Norman Glick, Department of Defense
Vegner, Division of Applied Maxim G. Smith, RCA Information Systems Div.
Mathematics, Brown University, Peter Wegner, Cornell University
Providence, Rhode Island 02912,
telephone 401/863 2115; TABLE OF CONTENTS
the Vice-Chairman, Dr. Thomas '
A. Standish, Aiken Computation 2 g:::ﬁ:’.‘ fk,i:m’d“m'“
Laboratory, Harvard University, 3.5 Alan J. Perlis. Introduction to Extensible
33 Oxford Street, Cambridge, Languages

An assessment on extensible languages, 1975

Extending a simple base results often in long,
thin extension cascades that are often ugly and inefficient.

[Standish, Extensibility in programming language design. AFIPS 1975]

38|

An assessment on extensible languages, 1975

Extending a simple base results often in long,
thin extension cascades that are often ugly and inefficient.

[Standish, Extensibility in programming language design. AFIPS 1975]

Buy instead of build

38|

Nice try, though

Total languages are c/osed (technical) objects

Extensible languages are (more) open (technical) objects

39|

Taking stock, again

40 |

Taking stock, 1 (again)

1. PLs do not give instructions to the (physical) machine:
they hide it.

2. PLs are sets of abstraction mechanisms,
- over control (structured control, procedures)
- and data (data types).

3. Programs are abstract, computational models of
“the real world” (cf Hoare).

4]

Taking stock, 2

4. Each PL has its own “embedded” model
5. Different domains need different models

6. External drivers

42|

An interesting pluralism: Languages as mediators

Complete relativism?

No criteria for discernment?

44 |

Let’s take the “language metaphor” seriously:
a PL is a medium for dialogue with the machine

45 |

Let’s take the “language metaphor” seriously:
a PL is a medium for dialogue with the machine

The machine is a source of alienation

The criteria: reduce alienation

45 |

Gilbert Simondon

46 |

Gilbert Simondon, 1924-1989

Les objets techniques qui
produisent le plus d’aliénation
sont ceux qui sont destinés a des
utilisateurs ignorants.

[Du mode d’existence des objets techniques, 1958]

Open and closed technical objects

Closed technical object
» its user does not understand how and why it works
» it cannot be repaired
> it is unmodifiable
> it evokes the sacred, the untouchable

47 |

Open and closed technical objects

Closed technical object
» its user does not understand how and why it works
» it cannot be repaired
> it is unmodifiable
> it evokes the sacred, the untouchable

Open technical object
> its user knows how it works, and how it could be repaired
> “to be” instead of “to appearing” (étre et ne pas paraitre)
> it shows the traces of its own evolution

47 |

“Open” programming languages

Let everyone be allowed to use a language that suits them

A language that reveals and mediates the machine within the limits,
aspirations, and competences of that user

Such a language can reduce their alienation

48 |

Languages as extensible systems

Logo: S. Papert et al., 1967. BBN, MIT
Smalltalk: A. Kay et al., 1975. Xerox PARC

Per conoscere il mondo bisogna costruirlo

49|

Cesare Pavese, Il mestiere di vivere. 1952

50|

Babel?

‘©F. De Guzman,

fikouov €i¢ EKaoToC T idia SIOAEKTL AAAOOVTWY OOTEV-
[At. 2, 6]

51

Babel was the contrary of a curse.
The gift of tongues is precisely that;
a gift and benediction beyond reckoning.

52|

[G. Steiner. Errata. 1998 (p. 99)]

Babel was the contrary of a curse.
The gift of tongues is precisely that;
a gift and benediction beyond reckoning.

How monotone must love-making have been in Paradise.

52|

[G. Steiner. Errata. 1998 (p. 99)]

[(p. 102)]

Babel was the contrary of a curse.
The gift of tongues is precisely that;
a gift and benediction beyond reckoning.

How monotone must teve-making have been in Paradise.
programming

53|

[G. Steiner. Errata. 1998 (p. 99)]

[(p. 102)]

	anm0:
	0.33:
	0.32:
	0.31:
	0.30:
	0.29:
	0.28:
	0.27:
	0.26:
	0.25:
	0.24:
	0.23:
	0.22:
	0.21:
	0.20:
	0.19:
	0.18:
	0.17:
	0.16:
	0.15:
	0.14:
	0.13:
	0.12:
	0.11:
	0.10:
	0.9:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

