
Babele è stata davvero una maledizione?
La molteplicità dei linguaggi di programmazione

Simone Martini

Dipartimento di Informatica-Scienza e Ingegneria

Accademia delle Scienze dell’Istituto di Bologna

Matematica, Fisica e Informatica nel secolo XX:
L’ossessione della totalità
Accademia delle Scienze di Torino, 19 marzo 2024

What is a programming language?

An artificial language used to write instructions that can be translated into
machine language and then executed by a computer.

[THE AMERICAN HERITAGE SCIENCE DICTIONARY, ©2011]

2 |

How many programming languages are there?

Thousands… Several dozen currently in use

3 |

The Babel of programming languages

Figure 4.2: The front cover of the FLDL program (IFIP 1964b).

138
1961 1964 1969

4 |

Babel vs Universal: Saul Gorn (1912-1992)

A simple enough “universal
code” to be used by “computers,
data processers, production
engineers, traffic controllers, or
administrators of large
companies.”

[Planning universal semi-automatic coding, 1954]

5 |

The first proliferation: machines

6 |

ENIAC: 1947

7 |

One machine, one code

Technology, bound to the specific machine

8 |

Translation: Grace M. Hopper

[Digital computer advanced coding techniques, ©MIT, 1954]

9 |

Towards the language metaphor

Introduction

The second half of the 1950s saw the emergence of a new vision of how
computers were to be programmed. At the beginning of the decade, pro-
grammers had to express the instructions for solving a problem in obscure
numerical codes that were different for each machine. By the decade’s end,
however, they could write programs that included familiar mathematical
formulas, and, in some cases, even expect the same program to run on dif-
ferent machines, thanks to the development of systems like FORTRAN
and IT. Furthermore, professional and industrial bodies were putting for-
ward ambitious proposals for very powerful “programming languages,” as
the codes were now widely called, and some of these, notably ALGOL and
COBOL, were explicitly defined to be machine-independent notations. In

David Nofre is associated with the Centre d’Estudis d’Història de la Ciència, Universitat
Autònoma de Barcelona; Mark Priestley is an independent researcher based in London;
and Gerard Alberts is an associate professor of the history of mathematics and comput-
ing at the Korteweg-de Vries Institute for Mathematics, University of Amsterdam.
Nofre and Alberts’s contribution was developed as an element of the Software for
Europe project, as part of the European Science Foundation Eurocores Program “In-
venting Europe,” and co-funded by the Netherlands Organization for Scientific Re-
search (NWO 231-53-004). Research for this article was assisted by the award to Nofre
of a 2010 Lemelson Center Travel to Collections Award from the Smithsonian Institu-
tion and a 2009 Arthur L. Norberg Travel Award from the Charles Babbage Institute.
The authors thank Eden Medina for helpful comments on an early draft of this article;
Matthias Dörries, Helena Durnová, Hans Dieter Hellige, Janet Martin-Nielsen, and
Edgar Daylight for insightful comments on its early ideas; and the three anonymous ref-
erees and Suzanne Moon for providing constructive comments and suggestions. They
also thank Peggy Aldrich Kidwell for access to materials in the Computer Documenta-
tion Collection at the National Museum of American History, Smithsonian Institution,
Washington, D.C.
©2014 by the Society for the History of Technology. All rights reserved.
0040-165X/14/5501-0002/40–75

When Technology Became Language
The Origins of the Linguistic Conception of Computer
Programming, 1950–1960

D A V I D N O F R E , M A R K P R I E S T L E Y , a n d
G E R A R D A L B E R T S

40

04_Nofre_2nd 40–75.qxp_03_49.3dobraszczyk 568– 2/12/14 1:04 PM Page 40

Technology and Culture, Vol 55, January 2014.

10 |

The second proliferation: domains

11 |

Algebraic expressions: FORTRAN

THE IBM 704

©IBM, 1956

Algebraic expressions, e.g.

D=(A+B)*C-sin(A*C+2)

translated into efficient object
programs

12 |

Simple control structures: FORTRAN

A DO Nest Given an N x N square matrix A, to find those off-diagonal elements which are
with Exit
and Return

symmetric and to write them on binary tape.

After rewinding tape 3, a nested pair of DO loops scans the entire matrix
for elements A(1,J) equal to A(J,I). Whenever such an element is found an
exit completely out of the nest is made to a routine which for off-diagonal
elements only writes a 3-word record (I, J, and A(1,J)) in binary on tape 3.
Both for on- and off-diagonal elements this routine makes no change in the
indexes or indexing parameters of the nest, and so it is permissible to re-enter
the nest and continue the scan.

This program actually finds each element twice. This could be avoided by
writing the second DO as DO 3 J = 1,N.

FORTRAN STATEMENT

72 73
Z��

REWIND 3

-1-
-1-

I
-1-

3
1 -I--

_ I
I

_I___
I

1 20 --
I 21 - I

_ I
I

-
-

-

-

_
-
-
-
_

DO 3 I = 1,N
DO 3 J = 1,N
IF(A(1,J)-A(J, I)) 3,20,3 --

CONT INUE --
END FILE 3
MORE PROGRAM

IF(1-J) 21,3,21

WRITE TAPE 3,I,J. A(I,J)

GO TO 3

©IBM, 1956

13 |

Records and English: COBOL

©US Dept of Defense, 1960

Collections of non-numerical data

English words

14 |

Records and English: COBOL

FD CUSTOMER-FILE
RECORD CONTAINS 45 CHARACTERS.

01 CUSTOMER-RECORD.
05 CUSTOMER-NAME.

10 LAST-NAME PIC X(17).
10 FILLER PIC X.
10 INITIALS PIC XX.

05 PART-ORDER.
10 PART-NAME PIC X(15).
10 PART-COLOR PIC X(10).

IF LAST-NAME = PART-NAME GO TO PARAGRAPH 1 ELSE
MOVE PART-NAME TO LAST-NAME

15 |

Algorithms: ALGOL

©IFIP, 1962

Universal language for algorithm
exchange

International committee

16 |

Algorithms: ALGOL

17 |

Rich data types: Tony Hoare

C.A.R. Hoare, 1934-

Modelling tool:

In the simulation of complex
situations in the real world, it is
necessary to construct in the
computer analogues of the
objects of the real world

[Hoare, Record handling, 1965]

18 |

Symbolic structures: LISP

John McCarthy, 1927-2011

Recursive Functions of Symbolic Expressions
Their Computation by Machine, Part I

and

JOHX MCCAaTItY, Massachusetts Institute of Technology, Cambridge, Mass.

1 . I n t r o d u c t i o n

A programming system called LISP (for lASt Processor)
has been developed for the IBM 704 computer by the
Artificial Intelligence group at M.I.T. The system was
designed to facilitate experiments with a proposed system
called the Advice Taker, whereby a machine could be
instructed to handle declarative as well as imperative
sentences and could exhibit "common sense" in carrying
out its instructions. The original proposal It] for the Advice
Taker was made in November 1958. The main require-
ment was a programming system for manipulating ex-
pressions representing formalized declarative and irnpera-
live sentences so that the Advice Taker system could make
deductions.

In the course of its development the Lisp system went
through several stages of simplification and eventually
came to be based on a scheme for representing the partial
recursive functions of a certain class of symbolic expres-
sions. This representation is independent of the IBM 704
computer, or of any other electronic computer, and it now
seems expedient to expound the system by starting with
the class of expressions called S-expressions and the func-
tions called S-functions.

In this article, we first describe a formalism for defining
functions reeursively. We believe this formalism has ad-
vantages both as a programming language and as vehicle
for developing a theory of computation. Next, we describe
S-expressions and S-functions, give some examples, and
then describe the universM S-function apply which plays
the theoretical role of a universal Turing machine and
the practical role of an interpreter. Then we describe the
representation of S-expressions in the memmT of the
IBM 704 by list structures similar to those used by Newell,
Shaw and Simon [2], and the representation of S-functions
by program. Then we mention the main features of the
Lisp programming system for the IBM 704. Next comes
another way of describing computations with symbolic
expressions, and finally we give a recursive function in-
terpretation of flow charts.

We hope to describe some of the sylnbolie computations
for which LISP has been used in another paper, and also to
give elsewhere some applications of our reeursive function
formalism to mathematical logic and to the problem of
mechanical theorem proving.

184 C o m m u n i c a t i o n s o f t h e ACM

2. F u n c t i o n s and F u n c t i o n Def in i t ions

We shMl need a number of mathematical ideas ar:d
notations concerning functions in general. Most of the
ideas are well known, but the notion of conditional e,~pre~'-
sion is believed to be new, and ihe use of conditional
expressions permits functions to be defined recursively in a
new and convenient way.

a. Partial Functions. A partial function is a funct on
that is defined only on part of its domain. Partial funetio:~s
necessarily arise when functions are defined by eomputa~
tions because for some values of the arguments t:he Pomp:>
ration defining the value of the function may not ter-
minate. However, some of our elementary functions wilt be
defined as partial functions.

b. Propositional Expres.s'ions and Predicates. A t)ropo~i-
tionM expression is an expression whose possible values
are T (for truth) and F (for falsity). We shall assume
that the reader is fanfiliar with the propositionM eom~ee-
lives A ("and"), V ("or") , and ~ ("not") , Typieai
propositional expressions are:

x < y

(x < y) A (b = e)

x is prime

A predicate is a function whose range consists of ih{:
t ruth values T and F.

e. Conditional Expressions. The dependence of truth
values on the vahtes of quantities of other kinds is ex-
pressed in mathematics by predicates, and the depende~ee
of t ruth values on other t ruth values by logical comxee-
~ives. However, the notations for expressing symbol (alE"
the dependence of quantities of other kinds on trutt~
vMues is inadequate, so that English words and phrases
are generMly used for expressing these depende~tces i:~
texts that, describe other dependences symbolically. I!'<~r
example, the function Ix I is ustmlly defined in words.

Conditional expressions are a deviee for expressing the
dependence of quantities on propositional quantities. :\
conditional expression has the form

(p : - + e l , - . - , p ~ --+ e , ,)

where the p's are propositionM expressions and the e's are
expressions of any kind. I t may be read, "If p~ thexx <,

(

Communications of the ACM Volume 3, April 1960

19 |

Symbolic structures: LISP

evalquote[fn; x] = apply[fn; x; NIL]

 apply[fn; x; a] = [
 atom[fn] → [eq[fn; CAR] → caar[x];
 eq[fn; CDR] → cdar[x];
 eq[fn; CONS] → cons[car[x]; cadr[x]];
 eq[fn; ATOM] → atom[car[x]];
 T → apply[eval[fn; a]; x; a]];
 eq[car[fn]; LAMBDA] →
 eval[caddr[fn]]; pairlis[cadr[fn]]; x;a];
 eq[car[fn]; LABEL] →
 apply[caddr[fn]; x; cons[cons[cadr[fn]; caddr[fn];a]]]

eval[e; a] = [
 atom[e] → cdr[assoc[e;a]];
 atom[car[e]] → [eq[car[e]; QUOTE] → cadr[e]];
 eq[car[e]; COND] → evcon[cdr[e];a];
 T → apply[car[e]; evlis[cdr[e];a];a]];
 T → apply[car[e]; evlis[cdr[e];a];a]]

20 |

Different domains, different machines

Scientific: FORTRAN, on IBM the 7090 and the IBM 1620

Business: COBOL, on the IBM 7080 and the IBM 1401

Real-time: JOVIAL, on the IBM 7750 and IBM 7950 (Harvest)

21 |

Abstraction over the machine: Hoare

It was a firm principle of our implementation that the results of any
program, even erroneous, should be comprehensible without knowing
anything about the machine or its storage layout.

[Hoare, personal communication, 2014]

22 |

Taking stock, 1

1. PLs do not give instructions to the (physical) machine:
they hide it.

2. PLs are sets of abstraction mechanisms,
- over control (structured control, procedures)
- and data (data types).

3. Programs are abstract, computational models of
“the real world” (cf Hoare).

23 |

The myth of the total language

24 |

IBM System/360, 1964 ff

25 |

The ultimate language

One machine, one language: for all

▶ users need to learn only one language
▶ only one compiler to be maintained
▶ programs could be easily shared

“A universal programming language that would meld and displace
FORTRAN and COBOL” [Brooks and Shustek, 2015]

26 |

PL/I: Some design choices

▶ Anything goes
“If a particular combination of symbols has
a reasonably sensible meaning,
that meaning will be made official”

▶ Full access to machine and operating system
▶ Cater to the novice

[G. Radin, H.P. Rogoway. NPL: Highlights of A New Programming Language. CACM 8(1), 1965]

27 |

PL/I: An inconsistent model

29 |

PL/I: An inconsistent model

30 |

PL/I: defeat

Different domains raise
different classes of problems that require
different sets of representations.

PL/I was designed in order to forget about such peculiarities.

31 |

Other driving forces: correctness

Algol’s research programme:
a (Kuhn) paradigm for programming language design, and
correct software development.

A language for the new science

32 |

Ada: 1977 ff

Designed for the US Department of Defence:

▶ concurrency
▶ real-time
▶ embedded computing
▶ life-critical applications
▶ reliability
▶ formal definition
▶ simplicity

33 |

Ada, the last total language

Jean Ichbiah (Ada’s main designer):

In ten years from now [scil. 1979-80], only two programming languages will
remain: Ada and Lisp.

[according to Rosen, The Ada paradox(es), Ada Letters 24, 2009]

34 |

Another attempt to universality

35 |

Total language

vs. Extensible language

36 |

Total language vs. Extensible language

36 |

Extensible languages

SllP[ll tstices
Volo 4~ No, 8, 1969 August

SPECIAL INTfRESTGROUP ON PROGRAMMING LANGUAGES

PROCEEDINGS OF THE

Extensible Languages
Symposium

An informal monthly publi-
cation of the Special Interest
Group on Programming Languages
(SIGPLAN) of the Association
for Computing Machinery (ACM)~
incorporating the PL/I Bulletins
the Snobol Bulletins the Algol
Bulletins the LISP Bulletin~ and
the Fortran Information Bulletin
as occasional supplements°

Current SIGPLAN officers
are: the Chairman, Profo Peter
Wegner~ Division of Applied
Mathematics~ Brown University~
Providence~ Rhode Island 02912~
telephone 40],/863 2115;
the Vice-Chairman, Dr. Thomas
A. Standish~ Aiken Computation
Laboratory, Harvard University,
33 Oxford Street, Cambridge,
Massachusetts 02138; and the
Secretary-Treasurer, Miss Caral
A° Sampson, Applied Data Re-
seareh~ Ins°, 2425 Wilson Blvd°~
Arlington~ Virginia~ telephone
703/528-3141.

SIGPLANNotiaes is edited
by Christopher Jo Shaw, System
Development Corporation~ 2500
Colorado Avenue, Santa Moniea~
California 90406, telephone
213/393-9411.

SIGPLAN membership appli-
cations are available from any
of the officers or from national
headquarters: ACM SIGPLAN, i133
Avenue of the Americas> New York,
NoY° 10036, telephone 212/265-
6300° CHANGES OF ADDRESS AND
OTHER MATTERS PERTAINING TO
THE SIGPLAN MAILING LIST SHOULD
BE SENT TO NATIONAL HEADQUARTERS.
Copies of SIGPLAN Notices Special
issue "Proceedings of the Exten-
sible Languages Symposium" are
available from ACM at the above
address: Price $4°00 prepaid°

edited by
Carlos Christensen and Christopher J° Shaw

sponsored by SIGPLAN
Boston$ Massachusetts~ 1969 May 13

Symposium Chairman: Carlos Christensen~ ADR/Com=
puter Associates

Arrangements Chairman: Helen Mr Willett$ Willett
Associates

[Measurer: Peter C° Waal, ADR/Computer Associates
Program Committee: Carlos Christensen (Chairman)

Norman Glick9 Department of Defense
Maxim G, Smith> RCA Information Systems Div~
Peter Wegner$ Cornell University

TABLE OF CONTENTS

2 Chairman's Introduction
2 Editors ~ Note
3~5 Alan J° Perlis~ Introduction to Extensible

Languages

SEVEN EXTENSIBLE LANGUAGES
6=8 Jan V° Garwick GPL
9-13 B°Jo Neilloux and J.EoL° Peck Algol 68
14-17 Jorrand Basel
18~19 E°T. Irons Imp
20~26 Thomas A. Standish PPL
27-31 James Bell Proteus
32~36 M. Donald M~cLaren EPS

37~39 Panel of Language Authors
40~44 John Nicholls+ PL/I Compile Time Extensib~

ility

TWO VIEWS OF EXTENSIBLELANGUAGES
45~49 T.E. Cheatham, Jr, Motivation for Extensible

Languages (Discussion)
50~52 M°Do McIlroy. Alternatives to Extensible

Languages (Discussion)

53~54 Panel on the Concept of Extensibility
55-62 Thomas A° Standish° Some Compiler-Compiler

Techniques for Use in Extensible
Languages (Supplement)

37 |

An assessment on extensible languages, 1975

Extending a simple base results often in long,
thin extension cascades that are often ugly and inefficient.

[Standish, Extensibility in programming language design. AFIPS 1975]

Buy instead of build

38 |

An assessment on extensible languages, 1975

Extending a simple base results often in long,
thin extension cascades that are often ugly and inefficient.

[Standish, Extensibility in programming language design. AFIPS 1975]

Buy instead of build

38 |

Nice try, though

Total languages are closed (technical) objects

Extensible languages are (more) open (technical) objects

39 |

Taking stock, again

40 |

Taking stock, 1 (again)

1. PLs do not give instructions to the (physical) machine:
they hide it.

2. PLs are sets of abstraction mechanisms,
- over control (structured control, procedures)
- and data (data types).

3. Programs are abstract, computational models of
“the real world” (cf Hoare).

41 |

Taking stock, 2

4. Each PL has its own “embedded” model

5. Different domains need different models

6. External drivers

42 |

An interesting pluralism: Languages as mediators

43 |

Complete relativism?

No criteria for discernment?

44 |

Let’s take the “language metaphor” seriously:
a PL is a medium for dialogue with the machine

The machine is a source of alienation

The criteria: reduce alienation

45 |

Let’s take the “language metaphor” seriously:
a PL is a medium for dialogue with the machine

The machine is a source of alienation

The criteria: reduce alienation

45 |

Gilbert Simondon

Gilbert Simondon, 1924-1989

Les objets techniques qui
produisent le plus d’aliénation
sont ceux qui sont destinés à des
utilisateurs ignorants.

[Du mode d’existence des objets techniques, 1958]

46 |

Open and closed technical objects

Closed technical object
▶ its user does not understand how and why it works
▶ it cannot be repaired
▶ it is unmodifiable
▶ it evokes the sacred, the untouchable

Open technical object
▶ its user knows how it works, and how it could be repaired
▶ “to be” instead of “to appearing” (être et ne pas paraître)
▶ it shows the traces of its own evolution

47 |

Open and closed technical objects

Closed technical object
▶ its user does not understand how and why it works
▶ it cannot be repaired
▶ it is unmodifiable
▶ it evokes the sacred, the untouchable

Open technical object
▶ its user knows how it works, and how it could be repaired
▶ “to be” instead of “to appearing” (être et ne pas paraître)
▶ it shows the traces of its own evolution

47 |

“Open” programming languages

Let everyone be allowed to use a language that suits them

A language that reveals and mediates the machine within the limits,
aspirations, and competences of that user

Such a language can reduce their alienation

48 |

Languages as extensible systems

Logo: S. Papert et al., 1967. BBN, MIT

Smalltalk: A. Kay et al., 1975. Xerox PARC

Per conoscere il mondo bisogna costruirlo
Cesare Pavese, Il mestiere di vivere. 1952

49 |

Babel?

50 |

©E. De Guzman, 2014

ἤκουον εἷς ἕκαστος τῇ ἰδίᾳ διαλέκτῳ λαλούντων αὐτῶν·
[At. 2, 6]

51 |

Babel was the contrary of a curse.
The gift of tongues is precisely that;
a gift and benediction beyond reckoning.

[G. Steiner. Errata. 1998 (p. 99)]

How monotone must love-making have been in Paradise.

[(p. 102)]

52 |

Babel was the contrary of a curse.
The gift of tongues is precisely that;
a gift and benediction beyond reckoning.

[G. Steiner. Errata. 1998 (p. 99)]

How monotone must love-making have been in Paradise.

[(p. 102)]

52 |

Babel was the contrary of a curse.
The gift of tongues is precisely that;
a gift and benediction beyond reckoning.

[G. Steiner. Errata. 1998 (p. 99)]

How monotone must love-making have been in Paradise.
programming

[(p. 102)]

53 |

	anm0:
	0.33:
	0.32:
	0.31:
	0.30:
	0.29:
	0.28:
	0.27:
	0.26:
	0.25:
	0.24:
	0.23:
	0.22:
	0.21:
	0.20:
	0.19:
	0.18:
	0.17:
	0.16:
	0.15:
	0.14:
	0.13:
	0.12:
	0.11:
	0.10:
	0.9:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

