Linearity: syntax vs. semantics

Luca Paolini: Università di Torino

Marco Gaboardi: Università di Bologna

Mauro Piccolo: Università di Torino

June 2010

... Introduction

...Introduction Linearity

Linear model

Background

- □ Coherence Spaces has been introduced by Jean-Yves Girard after a fine analysis of stable semantics: stable functions were decomposed in linear functions and exponential. Such a decomposition is patently reflected in linear logic syntax.
- □ In the context of programming languages, linearity were quickly adopted, at first to eliminate garbage collection and shortly thereafter to handle mutable state.
- □ Variants, refinements, and improvements on linear type systems have been proposed for many applications, including explicit memory management and control of aliasing, capabilities, tracking state changes for program analysis, typestates for well-behaving API calls, and session types of a channel use agreement.

... Introduction

...Introduction
Linearity
Linear model

Background

- □ Coherence Spaces has been introduced by Jean-Yves Girard after a fine analysis of stable semantics: stable functions were decomposed in linear functions and exponential. Such a decomposition is patently reflected in linear logic syntax.
- □ In the context of programming languages, linearity were quickly adopted, at first to eliminate garbage collection and shortly thereafter to handle mutable state.
- □ Variants, refinements, and improvements on linear type systems have been proposed for many applications, including explicit memory management and control of aliasing, capabilities, tracking state changes for program analysis, typestates for well-behaving API calls, and session types of a channel use agreement.

... Introduction

...IntroductionLinearityLinear model

Background

- □ Coherence Spaces has been introduced by Jean-Yves Girard after a fine analysis of stable semantics: stable functions were decomposed in linear functions and exponential. Such a decomposition is patently reflected in linear logic syntax.
- □ In the context of programming languages, linearity were quickly adopted, at first to eliminate garbage collection and shortly thereafter to handle mutable state.
- □ Variants, refinements, and improvements on linear type systems have been proposed for many applications, including explicit memory management and control of aliasing, capabilities, tracking state changes for program analysis, typestates for well-behaving API calls, and session types of a channel use agreement.

1. Syntactical linearity claims a linear use of variables in terms.

- 1. Syntactical linearity claims a linear use of variables in terms.
- 2. Typing linearity claims the linearity of typing (multiplicative and/or additive) which avoid weakening and contraction.

- 1. Syntactical linearity claims a linear use of variables in terms.
- 2. Typing linearity claims the linearity of typing (multiplicative and/or additive) which avoid weakening and contraction.
- 3. Reduction linearity claims that a reduction cannot duplicate/erase redex-occurrences (apart to consume itself).

- 1. Syntactical linearity claims a linear use of variables in terms.
- 2. Typing linearity claims the linearity of typing (multiplicative and/or additive) which avoid weakening and contraction.
- 3. Reduction linearity claims that a reduction cannot duplicate/erase redex-occurrences (apart to consume itself).
- 4. Operational linearity claims that redexes are not duplicated during the operational evaluation.

- 1. Syntactical linearity claims a linear use of variables in terms.
- 2. Typing linearity claims the linearity of typing (multiplicative and/or additive) which avoid weakening and contraction.
- 3. Reduction linearity claims that a reduction cannot duplicate/erase redex-occurrences (apart to consume itself).
- 4. Operational linearity claims that redexes are not duplicated during the operational evaluation.
- 5. Denotational linearity claims that programs correspond to linear functions between domains.

Stably-Linear Model: Functions vs. Programs

...Introduction
Linearity
Linear model

Background

Novelties

The starting point is the least full subcategory of coherence spaces endowed with linear functions as morphisms and including as object infinite flat domain and closed under linear-function spaces.

Stably-Linear Model: Functions vs. Programs

...Introduction
Linearity
Linear model

Background

- □ The starting point is the least full subcategory of coherence spaces endowed with linear functions as morphisms and including as object infinite flat domain and closed under linear-function spaces.
- □ We avoided the use of exponential domain constructors, thus it should be clear that the considered linear model is not correct (w.r.t. standard interpretation) for a wide number of languages inspired to linear logic.

Stably-Linear Model: Functions vs. Programs

...Introduction
Linearity
Linear model

Background

- ☐ The starting point is the least full subcategory of coherence spaces endowed with linear functions as morphisms and including as object infinite flat domain and closed under linear-function spaces.
- □ We avoided the use of exponential domain constructors, thus it should be clear that the considered linear model is not correct (w.r.t. standard interpretation) for a wide number of languages inspired to linear logic.
- □ We study PCF-like languages able to program only functions of such a purely linear model.

...Introduction

Linearity

Linear model

Background

Moral

Strictness

Typing

Evaluating

which?

 $\mathcal{S}\!\ell\mathrm{PCF}_{\mathbf{tk}}$

Novelties

Background

Ground Moral

...Introduction Linearity

Linear model

Background

▶ Moral

Strictness

Typing

Evaluating

 $\quad \hbox{which?} \quad$

 $\mathcal{S}\ell \mathrm{PCF}_{\mathbf{tk}}$

Novelties

All stable endofunctions in $\iota \to \iota$ are linear, but the constant-functions (having trace $\{(\emptyset, n) \mid n \in \mathbb{N}\}$).

Ground Moral

... Introduction

Linearity Linear model

Background

Moral

Strictness

Typing

Evaluating

which?

SlPCF_{tk}

Novelties

All stable endofunctions in $\iota \to \iota$ are linear, but the constant-functions (having trace $\{(\emptyset, n) \mid n \in \mathbb{N}\}$).

As instance,
$$\{(n,\underbrace{n+\cdots+n})|n\in\mathbb{N}\}\ ,$$

$$\{(n,\underbrace{n*\cdots*n})|n\in\mathbb{N}\}$$

and
$$\{\ (n,n) \mid n \in \mathbb{N}\}$$
 are linear traces.

Ground Moral

...Introduction Linearity

Linear model

Background

Moral

Strictness

Typing

Evaluating

which?

 $\mathcal{S}\ell \mathrm{PCF}_{\mathbf{t}\mathbf{k}}$

Novelties

All stable endofunctions in $\iota \to \iota$ are linear, but the constant-functions (having trace $\{(\emptyset, n) \mid n \in \mathbb{N}\}$).

As instance,
$$\{(n,\underbrace{n+\cdots+n}|n\in\mathbb{N}\}\ ,$$

$$\{(n,\underbrace{n*\cdots*n})|n\in\mathbb{N}\}$$

and
$$\{(n,n)^n\}$$
 are linear traces.

In order to represent all functions in N o N, $\mathcal{S}\ell PCF_{tk}$ does not put syntactical-linear constraints on occurrences of ground variables.

...Introduction Linearity

Linear model

Background

▶ Moral

Strictness

Typing

Evaluating

which?

 $\mathcal{S}\ell \mathrm{PCF}_{\mathbf{tk}}$

Novelties

Note that this liberality on the management of ground variables entails that we may also use a high-order term many times, provided that we apply it always to the same sequence of arguments.

 $\dots Introduction\\$

Linearity

Linear model

Background

▶ Moral

Strictness

Typing

Evaluating

which?

 $\mathcal{S}\ell PCF_{\mathbf{t},\mathbf{k}}$

Novelties

Take into account,

$$\lambda F^{\sigma_0 \to \dots \to \sigma_k \to \iota} . (\lambda x^{\iota}. x \text{ Op } x) (FM_1^{\sigma_0} \dots M_k^{\sigma_k})^{\iota} .$$

 \dots Introduction

Linearity

Linear model

Background

▶ Moral

Strictness

Typing

Evaluating

which?

 $\mathcal{S}\ell PCF_{t,k}$

Novelties

Take into account,

$$\lambda F^{\sigma_0 \to \dots \to \sigma_k \to \iota} . (\lambda x^{\iota}. x \text{ Op } x) (FM_1^{\sigma_0} \dots M_k^{\sigma_k})^{\iota} .$$

The previous term is expected to be equivalent to

$$\lambda F^{\sigma_0 o \dots o \sigma_k o \iota}.(FM_1^{\sigma_0} \dots M_k^{\sigma_k}) \ { t Op} \ (FM_1^{\sigma_0} \dots M_k^{\sigma_k})$$

...Introduction Linearity

Linear model

Background

▶ Moral

Strictness

Typing

Evaluating

which?

 $\mathcal{S}\ell \mathrm{PCF}_{\mathrm{tk}}$

Novelties

Take into account,

$$\lambda \mathtt{F}^{\sigma_0 \to \ldots \to \sigma_k \to \iota}. (\lambda \mathtt{x}^\iota.\mathtt{x} \ \mathtt{Op} \ \mathtt{x}) (\mathtt{FM}_1^{\sigma_0} \ldots \mathtt{M}_k^{\sigma_k})^{\boldsymbol{\iota}} \ .$$

The previous term is expected to be equivalent to

$$\lambda F^{\sigma_0 o \dots o \sigma_k o \iota}.(FM_1^{\sigma_0} \dots M_k^{\sigma_k}) \ \mathsf{Op} \ (FM_1^{\sigma_0} \dots M_k^{\sigma_k})$$

Now, if $N_i^{\sigma_i}$ is the evaluation of $M_i^{\sigma_i}$ then the previous term is expected to be equivalent to

$$\lambda F^{\sigma_0 o \dots o \sigma_k o \iota}.(FN_1^{\sigma_0} \dots N_k^{\sigma_k}) \ \mathsf{Op} \ (FM_1^{\sigma_0} \dots M_k^{\sigma_k})$$

Strictness & Fixpoints

...Introduction Linearity

Linear model

Background

Moral

Strictness

Typing

Evaluating

which?

 $\mathcal{S}\ell \mathrm{PCF}_{\mathbf{t}\mathbf{k}}$

Novelties

All linear functions are strict, in case:

- ☐ Ground Variables: call-by-value parameter passing.
- ☐ High-Order Variables: syntactical linearity.

Strictness & Fixpoints

...Introduction
Linearity
Linear model

Background

Moral

Strictness

Typing

Evaluating

which?

 $\mathcal{S}\ell PCF_{t,k}$

Novelties

All linear functions are strict, in case:

- ☐ Ground Variables: call-by-value parameter passing.
- High-Order Variables: syntactical linearity.

In order to add all first-order strict stable-functions to our linear-language, we need fixpoints. Unfortunately, the least fixpoint of a linear function is always the bottom of the considered domain, because strictness.

Strictness & Fixpoints

...Introduction
Linearity
Linear model

Background

Moral

Strictness

Typing

Evaluating

which?

 $\mathcal{S}\!\ell\mathrm{PCF}_{\mathbf{tk}}$

Novelties

All linear functions are strict, in case:

- ☐ Ground Variables: call-by-value parameter passing.
- ☐ High-Order Variables: syntactical linearity.

In order to add all first-order strict stable-functions to our linear-language, we need fixpoints. Unfortunately, the least fixpoint of a linear function is always the bottom of the considered domain, because strictness.

 $\mathcal{S}\ell PCF_{tk}$ will contain a special kind of variables: stable variables. We don't permit to λ -abstract those variables, they will be used only in order to obtain fixpoints.

Typing the Core of $\mathcal{S}\ell\mathrm{PCF}_{tk}$

$$\frac{1}{\mathbf{x}^{\iota} \vdash \mathbf{x} : \iota} \text{ (gv)} \qquad \frac{1}{\mathbf{f}^{\sigma \multimap \tau} \vdash \mathbf{f} : \sigma \multimap \tau} \text{ (hv)} \qquad \frac{1}{F^{\sigma} \vdash F : \sigma} \text{ (sv)}$$

Typing the Core of $\mathcal{S}\ell PCF_{tk}$

Typing the Core of $\mathcal{S}\ell PCF_{tk}$

Evaluating the Core of $\mathcal{S}\ell\mathrm{PCF}_{tk}$

... Introduction

Linearity

Linear model

Background

Moral

Strictness

Typing

Evaluating

which?

 $\mathcal{S}\ell PCF_{t,k}$

$$\frac{\underline{0} \Downarrow \underline{0}}{0 \Downarrow \underline{0}} (0) \qquad \frac{\underline{M} \Downarrow \underline{n}}{\operatorname{succ} \underline{M} \Downarrow \operatorname{succ} \underline{n}} (s) \qquad \frac{\underline{M} \Downarrow \operatorname{succ} \underline{n}}{\operatorname{pred} \underline{M} \Downarrow \underline{n}} (p)$$

$$\frac{\texttt{M} \Downarrow \underline{\texttt{O}} \quad \texttt{L} \Downarrow \underline{\texttt{m}}}{\ell \texttt{if} \; \texttt{M} \; \texttt{L} \; \texttt{R} \Downarrow \underline{\texttt{m}}} \; \; (\mathsf{ifl}) \qquad \frac{\texttt{M} \Downarrow \texttt{succ}(\underline{\texttt{n}}) \quad \texttt{R} \Downarrow \underline{\texttt{m}}}{\ell \texttt{if} \; \texttt{M} \; \texttt{L} \; \texttt{R} \Downarrow \underline{\texttt{m}}} \; \; (\mathsf{ifr})$$

$$\frac{\mathbb{N} \Downarrow \underline{\mathbb{m}} \quad \mathbb{M}[\underline{\mathbb{m}}/x] P_{1} \cdots P_{i} \Downarrow \underline{\mathbb{v}}}{(\lambda x^{\iota}.\mathbb{M}) \mathbb{N} P_{1} \cdots P_{i} \Downarrow \underline{\mathbb{v}}} (\lambda^{\iota}) \qquad \frac{\mathbb{M}[\mathbb{N}/f] P_{1} \cdots P_{i} \Downarrow \underline{\mathbb{v}}}{(\lambda f^{\sigma - \circ \tau}.\mathbb{M}) \mathbb{N} P_{1} \cdots P_{i} \Downarrow \underline{\mathbb{v}}} (\lambda^{-\circ})$$

$$\frac{M[\mu F.M/F]P_1 \cdots P_i \Downarrow \underline{v}}{(\mu F.M)P_1 \cdots P_i \Downarrow v} (\mu)$$

$\mathcal{S}\ell \mathrm{PCF}_{tk}$: which?

... Introduction

Linearity

Linear model

Background

Moral

Strictness

Typing

Evaluating

 $\mathcal{S}\!\ell\mathrm{PCF}_{\mathbf{tk}}$

Novelties

If $M^{(\iota \multimap \iota) \multimap \iota}$ program a linear function, then $M(\lambda x^{\iota}.x) \Downarrow \underline{n}$ implies that there is \underline{k} such that

$$\mathtt{M}\Big(\lambda\mathtt{x}^\iota.\mathtt{if}(\mathtt{x}\doteq\mathtt{k})\ \underline{\mathtt{k}}\ \Omega^\iota\Big) \Downarrow \underline{\mathtt{n}}$$

$\mathcal{S}\ell PCF_{tk}$: which?

 \dots Introduction

Linearity

Linear model

Background

Moral

Strictness

Typing

Evaluating

 $\mathcal{S}\!\ell\mathrm{PCF}_{\mathbf{tk}}$

Novelties

If $M^{(\iota \multimap \iota) \multimap \iota}$ program a linear function, then $M(\lambda x^{\iota}.x) \Downarrow \underline{n}$ implies that there is \underline{k} such that

$$\mathtt{M}\Big(\lambda\mathtt{x}^{\iota}.\mathtt{if}(\mathtt{x} \doteq \mathtt{k}) \ \underline{\mathtt{k}} \ \Omega^{\iota}\Big) \ \psi \ \underline{\mathtt{n}}$$

A further operator is which? : $((\iota \multimap \iota) \multimap \iota) \multimap \iota$

$$\frac{}{\text{ which? } \mathtt{M}^{(\iota \multimap \iota) \multimap \iota} \Downarrow \langle \underline{\mathtt{n}}, \underline{\mathtt{k}} \rangle} \ \ (\mathtt{w}^{\underline{\mathtt{k}}})$$

$\mathcal{S}\ell PCF_{tk}$: which?

... Introduction

Linearity

Linear model

Background

Moral

Strictness

Typing

Evaluating

 $\mathcal{S}\!\ell\mathrm{PCF}_{\mathbf{tk}}$

Novelties

If $M^{(\iota \multimap \iota) \multimap \iota}$ program a linear function, then $M(\lambda x^{\iota}.x) \Downarrow \underline{n}$ implies that there is \underline{k} such that

$$\mathtt{M}\Big(\lambda\mathtt{x}^{\iota}.\mathtt{if}(\mathtt{x} \doteq \mathtt{k}) \ \underline{\mathtt{k}} \ \Omega^{\iota}\Big) \ \psi \ \underline{\mathtt{n}}$$

A further operator is which? : $((\iota \multimap \iota) \multimap \iota) \multimap \iota$

$$\frac{\mathtt{M}\Big(\lambda\mathtt{x}^{\iota}.\mathtt{if}(\underline{\mathtt{k}} \doteq \mathtt{x}) \; \underline{\mathtt{k}} \; \Omega^{\iota}\Big) \Downarrow \underline{\mathtt{n}}}{\mathtt{which?} \; \mathtt{M}^{(\iota \multimap \iota) \multimap \iota} \; \Downarrow \; \langle \underline{\mathtt{n}}, \underline{\mathtt{k}} \rangle} \; (\mathtt{w}^{\underline{\mathtt{k}}})$$

...Introduction

Linearity Linear model

Background

Moral

Strictness

Typing

Evaluating

which?

 \triangleright $\mathcal{S}\ell PCF_{tk}$

Novelties

Selection Selection Selection [Selection of Linear Stable Functions among Coherence Spaces.

☐ Formalization of a Turing-complete linear language

...Introduction

Linearity Linear model

Background

Moral

Strictness

Typing

Evaluating

which?

 \triangleright $\mathcal{S}\ell PCF_{tk}$

Novelties

SlPCF_{tk} was introduced in [Gaboardi and Paolini 2007, Paolini and Piccolo 2008] as the syntactical counterpart of Linear Stable Functions among Coherence Spaces.

- ☐ Formalization of a Turing-complete linear language
- ☐ Language assures token-definability

...Introduction

Linear model

Background

Moral

Strictness

Typing

Evaluating

which?

 \triangleright SlPCF_{tk}

Novelties

Selective Select

- ☐ Formalization of a Turing-complete linear language
- □ Language assures token-definability
- Restricted Full Abstraction for Linear Stable Functions

...Introduction Linearity

Linear model

Background

Moral

Strictness

Typing

Evaluating

which?

 \triangleright SlPCF_{tk}

Novelties

Selection Selection Selection [Selection of Linear Stable Functions among Coherence Spaces.

- ☐ Formalization of a Turing-complete linear language
- □ Language assures token-definability
- □ Restricted Full Abstraction for Linear Stable Functions
- Introduction of novel linear operators

...Introduction Linearity

Linear model

Background

Moral

Strictness

Typing

Evaluating

which?

 \triangleright SlPCF_{tk}

Novelties

SlPCF_{tk} was introduced in [Gaboardi and Paolini 2007, Paolini and Piccolo 2008] as the syntactical counterpart of Linear Stable Functions among Coherence Spaces.

- ☐ Formalization of a Turing-complete linear language
- □ Language assures token-definability
- □ Restricted Full Abstraction for Linear Stable Functions
- Introduction of novel linear operators
- □ New knowledge on higher-type computation

...Introduction

Linearity

Linear model

Background

Novelties

Extensions

Trees

Embedding

let-lor

Coincidences

Constructive

Outline

Future works

Extensions of $\mathcal{S}\ell PCF_{tk}$

$$\left\{ \begin{array}{l} \boldsymbol{(}(0,0)\,,\,(1,0)\,,\,(0,1)\,,\,0\boldsymbol{)} \\ \boldsymbol{(}(0,1)\,,\,(0,0)\,,\,(1,0)\,,\,1\boldsymbol{)} \\ \boldsymbol{(}(1,0)\,,\,(0,1)\,,\,(0,0)\,,\,2\boldsymbol{)} \\ \boldsymbol{(}(1,1)\,,\,(1,1)\,,\,(1,1)\,,\,3\boldsymbol{)} \end{array} \right\}$$

in $(\iota \multimap \iota) \multimap (\iota \multimap \iota) \multimap (\iota \multimap \iota) \multimap \iota$ is linear,

but it cannot be defined in $\mathcal{S}\ell PCF_{tk}$.

Extensions of $\mathcal{S}\ell PCF_{tk}$

$$\left\{ \begin{array}{l} \boldsymbol{(}(0,0)\,,\,(1,0)\,,\,(0,1)\,,\,0\boldsymbol{)} \\ \boldsymbol{(}(0,1)\,,\,(0,0)\,,\,(1,0)\,,\,1\boldsymbol{)} \\ \boldsymbol{(}(1,0)\,,\,(0,1)\,,\,(0,0)\,,\,2\boldsymbol{)} \\ \boldsymbol{(}(1,1)\,,\,(1,1)\,,\,(1,1)\,,\,3\boldsymbol{)} \end{array} \right\}$$

but it cannot be defined in $\mathcal{S}\ell PCF_{tk}$.

 $\text{in } (\iota \multimap \iota) \multimap (\iota \multimap \iota) \multimap (\iota \multimap \iota) \multimap \iota \text{ is linear,} \\ \text{but it cannot be defined in } \mathcal{S}\ell \underline{\mathsf{PCF}}_{tk} \\ \text{We can add } \underline{\mathsf{Gor}} : (\iota \multimap \iota) \multimap (\iota \multimap \iota) \multimap (\iota \multimap \iota) \multimap \iota \text{ to } \mathcal{S}\ell \underline{\mathsf{PCF}}_{tk}^+ \text{ with the} \\$ following operational semantics

Extensions of $\mathcal{S}\ell PCF_{tk}$

$$\left\{ \begin{array}{l} \boldsymbol{(}(0,0)\,,\,(1,0)\,,\,(0,1)\,,\,0\boldsymbol{)} \\ \boldsymbol{(}(0,1)\,,\,(0,0)\,,\,(1,0)\,,\,1\boldsymbol{)} \\ \boldsymbol{(}(1,0)\,,\,(0,1)\,,\,(0,0)\,,\,2\boldsymbol{)} \\ \boldsymbol{(}(1,1)\,,\,(1,1)\,,\,(1,1)\,,\,3\boldsymbol{)} \end{array} \right\}$$

in $(\iota \multimap \iota) \multimap (\iota \multimap \iota) \multimap (\iota \multimap \iota) \multimap \iota$ is linear,

but it cannot be defined in $\mathcal{S}\ell PCF_{tk}$.

We can add $G_{or}^2: (\iota \multimap \iota) \multimap (\iota \multimap \iota) \multimap (\iota \multimap \iota) \multimap \iota$ to $\mathcal{S}\ell PCF_{tk}^+$ with the following operational semantics

$$\frac{P_1 \underline{0} \Downarrow \underline{0} \quad P_1 \underline{1} \Downarrow \underline{0} \quad P_2 \underline{0} \Downarrow \underline{1}}{\overset{2}{\text{Gor}} P_0 P_1 P_2 \Downarrow \underline{0}} (G_{\text{or}_0}^2) \qquad \frac{P_1 \underline{0} \Downarrow \underline{1} \quad P_1 \underline{0} \Downarrow \underline{0} \quad P_2 \underline{1} \Downarrow \underline{0}}{\overset{2}{\text{Gor}} P_0 P_1 P_2 \Downarrow \underline{1}} (G_{\text{or}_1}^2) \qquad \frac{P_1 \underline{1} \Downarrow \underline{0} \quad P_1 \underline{0} \Downarrow \underline{1} \quad P_2 \underline{0} \Downarrow \underline{0}}{\overset{2}{\text{Gor}} P_0 P_1 P_2 \Downarrow \underline{1}} (G_{\text{or}_3}^2) \qquad \frac{P_1 \underline{1} \Downarrow \underline{1} \quad P_1 \underline{1} \Downarrow \underline{1} \quad P_2 \underline{1} \Downarrow \underline{1}}{\overset{2}{\text{Gor}} P_0 P_1 P_2 \Downarrow \underline{3}} (G_{\text{or}_3}^2)$$

Tokens are Trees of Integers

 \dots Introduction

Linearity

Linear model

Background

Novelties

Extensions

> Trees

Embedding

let-lor

Coincidences

Constructive

Outline

Future works

Tokens are Trees of Integers respecting the type-trees!

Tokens are Trees of Integers

...Introduction

Linearity Linear model

Background

Novelties

Extensions

Trees

Embedding

 ℓ et- ℓ or

Coincidences

Constructive

Outline

Future works

Tokens are Trees of Integers respecting the type-trees!

As instance, the first token of Gor is (0,0), (1,0), (0,1), 0

Tokens are Trees of Integers

...Introduction Linearity

Linear model

Background

Novelties

Extensions

Trees

Embedding

 ℓ et- ℓ or

Coincidences

Constructive

Outline

Future works

Tokens are Trees of Integers respecting the type-trees!

As instance, the first token of Gor is (0,0), (1,0), (0,1), 0

Token Embedding

 $\dots Introduction \\$

Linearity

Linear model

Background

Novelties

Extensions

Trees

Embedding

 ℓ et- ℓ or

Coincidences

Constructive

Outline

Future works

 $\operatorname{Tkn}_{\mathbf{n}}^{\sigma}:\sigma$ and $\operatorname{Chk}_{\mathbf{n}}^{(\sigma)}:\sigma\multimap\iota$ are defined by mutual induction on σ .

 \square case $\sigma = \iota$.

$$\mathtt{Tkn}^{\iota}_{\mathtt{n}} = \underline{\mathtt{n}} \qquad \mathtt{Chk}^{(\iota)}_{\mathtt{n}} = \lambda \mathtt{y}^{\iota}.\ell\mathtt{if}\ \underline{\mathtt{n}} \doteq \mathtt{y}\ \underline{\mathtt{0}}\ \Omega^{\iota}$$

 \square case $\sigma = \sigma_1 \multimap \sigma_2$ (where $\sigma_2 = \tau_1 \multimap \ldots \multimap \tau_k \multimap \iota$).

$$\begin{array}{lll} \mathtt{Tkn}_{n}^{\sigma} & = & \lambda \mathtt{f}^{\sigma_{1}}.\lambda \mathtt{g}_{1}^{\tau_{1}}\dots\lambda \mathtt{g}_{k}^{\tau_{k}}. \\ & & \ell \mathtt{if} \; (\mathtt{Chk}_{\pi_{1}(n)}^{(\sigma_{1})} \; \mathtt{f}) \; (\mathtt{Tkn}_{\pi_{2}(n)}^{\sigma_{2}} \mathtt{g}_{1}\dots \mathtt{g}_{k}) \; (\Omega^{\sigma_{2}} \mathtt{g}_{1}\dots \mathtt{g}_{k}) \end{array}$$

$$\mathtt{Chk}_{\mathbf{n}}^{(\sigma)} \ = \ \lambda \mathtt{f}^{\sigma}.\ell \mathtt{if} \ (\mathtt{Chk}_{\pi_2(\mathbf{n})}^{(\sigma_2)} (\mathtt{f} \ \mathtt{Tkn}_{\pi_1(\mathbf{n})}^{(\sigma_1)})) \ \underline{\mathtt{0}} \ \Omega^{\iota}$$

Token Embedding

 \dots Introduction

Linearity

Linear model

Background

Novelties

Extensions

Trees

Embedding

 ℓ et- ℓ or

Coincidences

Constructive

Outline

Future works

Let $a \in |[\![\sigma_1 \multimap \ldots \sigma_m \multimap \iota]\!]|$ and let $n = (\![a_1, \ldots, a_m, k)\!]$.

1.
$$[Tkn^{(\sigma)}(\underline{\mathbf{n}})] \rho = \{(a_1, \dots, a_m, k)\}$$

2. If
$$N^{\sigma} \in \mathcal{S}\ell \mathrm{PCF}_{\mathsf{tk}}$$
 and $[\![\mathsf{Chk}_{\mathtt{n}}^{(\sigma)}\ N]\!]\rho = [\![\underline{\mathtt{0}}]\!]\rho$

then
$$(a_1,\ldots,a_m,k)\in \llbracket \mathbb{N} \rrbracket \rho$$

Linear Non-Determinism: ℓ et- ℓ or

$$\frac{\Delta_{\mathbb{k}} = \mathbf{f}_{\mathbf{1}}^{\sigma_{\mathbf{1}}}, \dots, \mathbf{f}_{\mathbf{k}}^{\sigma_{\mathbf{k}}} \quad \Gamma_{\mathbf{1}} \vdash \mathbb{N}_{\mathbf{1}} : \sigma_{\mathbf{1}} \ \dots \ \Gamma_{\mathbf{k}} \vdash \mathbb{N}_{\mathbf{k}} : \sigma_{\mathbf{k}} \quad \Delta \vdash \mathbb{M}_{\mathbf{i}} : \iota \ (i \in \{1, 2, 3\})}{\Gamma_{1}, \dots, \Gamma_{\mathbf{k}}, \Delta_{\mathbb{k}} \ , \Delta_{\mathbb{k}} \vdash \underline{\ell}\underline{\mathbf{et}} \ \mathbf{f}_{\mathbf{1}} = \mathbb{N}_{\mathbf{1}}, \dots, \mathbf{f}_{\mathbf{k}} = \mathbb{N}_{\mathbf{k}} \ \underline{\underline{in}\ell or} \ \mathbb{M}_{\mathbf{1}} \ \mathbb{M}_{\mathbf{2}} \ \mathbb{M}_{\mathbf{3}} : \iota } \ (\ell\underline{\mathbf{et}}\underline{-\ell}\underline{\mathbf{or}})$$

Linear Non-Determinism: ℓ et- ℓ or

$$\frac{\Delta_{\!\!\lceil \ell \>} = \mathbf{f}_{\mathbf{1}}^{\sigma_{\mathbf{1}}}, \ldots, \mathbf{f}_{\mathbf{k}}^{\sigma_{\mathbf{k}}} \quad \Gamma_{\mathbf{1}} \vdash \mathbb{N}_{\mathbf{1}} : \sigma_{\mathbf{1}} \ \ldots \ \Gamma_{k} \vdash \mathbb{N}_{\mathbf{k}} : \sigma_{k} \quad \Delta \vdash \mathbb{M}_{\mathbf{i}} : \iota \ (i \in \{1, 2, 3\})}{\Gamma_{\mathbf{1}}, \ldots, \Gamma_{k}, \Delta_{\!\lceil \! \mathbf{s} \>}, \Delta_{\!\lceil \! \mathbf{i} \>} \vdash \underline{\ell} \mathbf{et} \ \mathbf{f}_{\mathbf{1}} = \mathbb{N}_{\mathbf{1}}, \ldots, \mathbf{f}_{\mathbf{k}} = \mathbb{N}_{\mathbf{k}} \ \underline{\mathtt{in}} \ell \mathtt{or} \ \mathbb{M}_{\mathbf{1}} \ \mathbb{M}_{\mathbf{2}} \ \mathbb{M}_{\mathbf{3}} : \iota } \ (\ell \mathtt{et} - \ell \mathtt{or})$$

Linear Non-Determinism: ℓ et- ℓ or

$$\frac{\Delta_{\stackrel{\circ}{l}} = \mathbf{f}_{1}^{\sigma_{1}}, \dots, \mathbf{f}_{k}^{\sigma_{k}} \quad \Gamma_{1} \vdash \mathbb{N}_{1} : \sigma_{1} \quad \dots \quad \Gamma_{k} \vdash \mathbb{N}_{k} : \sigma_{k} \quad \Delta \vdash \mathbb{M}_{i} : \iota \; (i \in \{1, 2, 3\})}{\Gamma_{1}, \dots, \Gamma_{k}, \Delta_{\stackrel{\circ}{l}_{S}}, \Delta_{\stackrel{\circ}{l}_{L}} \vdash \underbrace{\ell e t} \; \mathbf{f}_{1} = \mathbb{N}_{1}, \dots, \mathbf{f}_{k} = \mathbb{N}_{k} \; \underline{i n \ell o r} \; \mathbb{M}_{1} \; \mathbb{M}_{2} \; \mathbb{M}_{3} : \iota} \; (\ell e t - \ell o r)}$$

$$\frac{\exists \mathbf{n}_{1} \dots \mathbf{n}_{k} \quad \mathbb{M}_{1} [\mathsf{Tkn}_{\mathbf{n}_{1}}^{\sigma_{1}} / \mathbf{f}_{1}, \dots, \mathsf{Tkn}_{\mathbf{n}_{k}}^{\sigma_{k}} / \mathbf{f}_{k}] \; \psi \; \underline{0} \qquad (j \in \{1, \dots, k\})}{\mathbb{M}_{2} [\mathsf{Tkn}_{\mathbf{n}_{1}}^{\sigma_{1}} / \mathbf{f}_{1}, \dots, \mathsf{Tkn}_{\mathbf{n}_{k}}^{\sigma_{k}} / \mathbf{f}_{k}] \; \psi \; \underline{0} \qquad (j \in \{1, \dots, k\})} \\ \frac{\ell e t \; \mathbf{f}_{1}^{\sigma_{1}} = \mathbb{N}_{1}, \dots, \mathbf{f}_{k}^{\sigma_{k}} = \mathbb{N}_{k} \; \underline{i n \ell o r} \; \mathbb{M}_{1} \; \mathbb{M}_{2} \; \mathbb{M}_{3} \; \psi \; \underline{0}}{\mathbb{M}_{3} [\mathsf{Tkn}_{\mathbf{n}_{1}}^{\sigma_{1}} / \mathbf{f}_{1}, \dots, \mathsf{Tkn}_{\mathbf{n}_{k}}^{\sigma_{k}} / \mathbf{f}_{k}] \; \psi \; \underline{0}} \qquad (j \in \{1, \dots, k\})} \\ \frac{\ell e t \; \mathbf{f}_{1}^{\sigma_{1}} = \mathbb{N}_{1}, \dots, \mathbf{f}_{k}^{\sigma_{k}} = \mathbb{N}_{k} \; \underline{i n \ell o r} \; \mathbb{M}_{1} \; \mathbb{M}_{2} \; \mathbb{M}_{3} \; \psi \; \underline{0}}{\mathbb{M}_{3} [\mathsf{Tkn}_{\mathbf{n}_{1}}^{\sigma_{1}} / \mathbf{f}_{1}, \dots, \mathsf{Tkn}_{\mathbf{n}_{k}}^{\sigma_{k}} / \mathbf{f}_{k}] \; \psi \; \underline{0}} \qquad (j \in \{1, \dots, k\})} \\ \frac{\mathbb{M}_{1} [\mathsf{Tkn}_{\mathbf{n}_{1}}^{\sigma_{1}} / \mathbf{f}_{1}, \dots, \mathsf{Tkn}_{\mathbf{n}_{k}}^{\sigma_{k}} / \mathbf{f}_{k}] \; \psi \; \underline{0}}{\mathbb{M}_{1} [\mathsf{Tkn}_{\mathbf{n}_{1}}^{\sigma_{1}} / \mathbf{f}_{1}, \dots, \mathsf{Tkn}_{\mathbf{n}_{k}}^{\sigma_{k}} / \mathbf{f}_{k}] \; \psi \; \underline{0}} \qquad (j \in \{1, \dots, k\})} \\ \frac{\ell e t \; \mathbf{f}_{1}^{\sigma_{1}} = \mathbb{N}_{1}, \dots, \mathsf{Tkn}_{\mathbf{n}_{k}}^{\sigma_{k}} / \mathbf{f}_{k}] \; \psi \; \underline{0}}{\mathbb{M}_{1} [\mathsf{Tkn}_{\mathbf{n}_{1}}^{\sigma_{1}} / \mathbf{f}_{1}, \dots, \mathsf{Tkn}_{\mathbf{n}_{k}}^{\sigma_{k}} / \mathbf{f}_{k}] \; \psi \; \underline{0}} \qquad (3 \operatorname{lgor})}$$

Pre-orders Coincidence

Let
$$\mathbf{x_1}^{\iota}, \dots, \mathbf{x_n}^{\iota}, \mathbf{f_1}^{\tau_1}, \dots, \mathbf{f_m}^{\tau_m}, \mathbf{f_1}^{\mu_1}, \dots, \mathbf{f_l}^{\mu_l} \vdash \mathbf{M}, \mathbf{N} : \sigma_1 \multimap \dots \sigma_k \multimap \iota$$
.

1. $\mathbb{M} \lesssim_{\sigma} \mathbb{N}$ whenever, for all $C[\cdot^{\sigma}]$ s.t. $C[\mathbb{M}], C[\mathbb{N}] \in \mathcal{P}$,

if $C[M] \Downarrow \underline{n}$ then $C[N] \Downarrow \underline{n}$.

Pre-orders Coincidence

Let
$$\mathbf{x_1}^{\iota}, \ldots, \mathbf{x_n}^{\iota}, \mathbf{f_1}^{\tau_1}, \ldots, \mathbf{f_m}^{\tau_m}, \boldsymbol{\digamma}_1^{\mu_1}, \ldots, \boldsymbol{\digamma}_l^{\mu_l} \vdash \mathbf{M}, \mathbf{N} : \sigma_1 \multimap \ldots \sigma_k \multimap \iota$$
.

1. $\mathbb{M} \lessapprox_{\sigma} \mathbb{N}$ whenever, for all $C[\cdot^{\sigma}]$ s.t. $C[\mathbb{M}], C[\mathbb{N}] \in \mathcal{P}$,

if $C[M] \Downarrow \underline{n}$ then $C[N] \Downarrow \underline{n}$.

2. $\mathbb{M} \lesssim_{\sigma} \mathbb{N}$ whenever, for all closed term $P_1^{\sigma_1}, \dots P_n^{\sigma_n}$, for all $C[\cdot^{\sigma}]$ s.t. $C[\mathbb{M}[P_1/\digamma_1, \dots, P_n/\digamma_n]], C[\mathbb{N}[P_1/\digamma_1, \dots, P_n/\digamma_n]] \in \mathcal{P}$, if $C[\mathbb{M}[P_1/\digamma_1, \dots, P_n/\digamma_n]] \Downarrow \underline{n}$ then $C[\mathbb{N}[P_1/\digamma_1, \dots, P_n/\digamma_n]] \Downarrow \underline{n}$.

CONCERTO Meeting

Pre-orders Coincidence

Let
$$\mathbf{x_1}^{\iota}, \dots, \mathbf{x_n}^{\iota}, \mathbf{f_1}^{\tau_1}, \dots, \mathbf{f_m}^{\tau_m}, \boldsymbol{\digamma}_1^{\mu_1}, \dots, \boldsymbol{\digamma}_l^{\mu_l} \vdash \mathbf{M}, \mathbf{N} : \sigma_1 \multimap \dots \sigma_k \multimap \iota$$
.

1. $\mathbb{M} \lesssim_{\sigma} \mathbb{N}$ whenever, for all $C[\cdot^{\sigma}]$ s.t. $C[\mathbb{M}], C[\mathbb{N}] \in \mathcal{P}$,

if $C[M] \Downarrow \underline{n}$ then $C[N] \Downarrow \underline{n}$.

- 2. $\mathbb{M} \lesssim_{\sigma} \mathbb{N}$ whenever, for all closed term $\mathbb{P}_{1}^{\sigma_{1}}, \dots, \mathbb{P}_{n}^{\sigma_{n}}$, for all $C[\cdot^{\sigma}]$ s.t. $C[\mathbb{M}[\mathbb{P}_{1}/\digamma_{1}, \dots, \mathbb{P}_{n}/\digamma_{n}]], C[\mathbb{N}[\mathbb{P}_{1}/\digamma_{1}, \dots, \mathbb{P}_{n}/\digamma_{n}]] \in \mathcal{P}$, if $\mathbb{C}[\mathbb{M}[\mathbb{P}_{1}/\digamma_{1}, \dots, \mathbb{P}_{n}/\digamma_{n}]] \Downarrow \underline{n}$ then $\mathbb{C}[\mathbb{N}[\mathbb{P}_{1}/\digamma_{1}, \dots, \mathbb{P}_{n}/\digamma_{n}]] \Downarrow \underline{n}$.
- 3. $\mathbb{M} \lesssim_{\sigma}^{A} \mathbb{N}$ whenever, for all closed terms $P_{1}^{\iota}, \ldots, P_{n}^{\iota}, \mathbb{Q}_{1}^{\tau_{1}}, \ldots, \mathbb{Q}_{m}^{\tau_{m}}, R_{1}^{\mu_{1}}, \ldots, R_{1}^{\mu_{1}}, L_{1}^{\sigma_{1}}, \ldots, L_{k}^{\sigma_{k}}$ if $(\lambda \vec{x}.\lambda \vec{f}.\mathbb{M}[\vec{R}/\vec{\digamma}])\vec{P}\vec{Q}\vec{L} \Downarrow \underline{p}$ then $(\lambda \vec{x}.\lambda \vec{f}.\mathbb{N}[\vec{R}/\vec{\digamma}])\vec{P}\vec{Q}\vec{L} \Downarrow \underline{p}$.

$$\frac{\langle \underline{\mathbf{0}} | e \rangle \Rightarrow \langle \underline{\mathbf{0}} | e \rangle}{\langle \underline{\mathbf{0}} | e \rangle} \ (0) \quad \frac{\langle \underline{\mathbf{M}} | e_0 \rangle \Rightarrow \langle \underline{\mathbf{n}} | e_1 \rangle}{\langle \underline{\mathbf{succ}} \, \underline{\mathbf{M}} | e_0 \rangle \Rightarrow \langle \underline{\mathbf{succ}} \, \underline{\mathbf{n}} | e_1 \rangle} \ (s) \quad \frac{\langle \underline{\mathbf{M}} | e_0 \rangle \Rightarrow \langle \underline{\mathbf{succ}} \, \underline{\mathbf{n}} | e_1 \rangle}{\langle \underline{\mathbf{pred}} \, \underline{\mathbf{M}} | e_0 \rangle \Rightarrow \langle \underline{\mathbf{n}} | e_1 \rangle} \ (p)$$

$$\frac{\langle \mathtt{M} | e_0 \rangle \Rightarrow \langle \underline{\mathtt{O}} | e_1 \rangle \quad \langle \mathtt{L} | e_1 \rangle \Rightarrow \langle \underline{\mathtt{m}} | e_2 \rangle}{\langle \ell \mathtt{if} \, \mathtt{M} \, \mathtt{L} \, \mathtt{R} | e_0 \rangle \Rightarrow \langle \underline{\mathtt{m}} | e_2 \rangle} \; (\mathsf{ifl}) \quad \frac{\langle \mathtt{M} | e_0 \rangle \Rightarrow \langle \mathtt{succ}(\underline{\mathtt{n}}) | e_1 \rangle \quad \langle \mathtt{R} | e_1 \rangle \Rightarrow \langle \underline{\mathtt{m}} | e_2 \rangle}{\langle \ell \mathtt{if} \, \mathtt{M} \, \mathtt{L} \, \mathtt{R} | e_0 \rangle \Rightarrow \langle \underline{\mathtt{m}} | e_2 \rangle} \; (\mathsf{ifr})$$

$$\frac{\langle \mathbf{M}[\mathbf{h}/\mathbf{f}]\mathbf{P}_{1}\dots\mathbf{P}_{\mathbf{k}}|e_{0}[\mathbf{h}:=\mathbf{N}]\rangle \Rightarrow \langle \underline{\mathbf{n}}|e_{1}\rangle}{\langle (\lambda\mathbf{f}^{\sigma-\circ\tau}.\mathbf{M})\mathbf{N}\mathbf{P}_{1}\dots\mathbf{P}_{\mathbf{k}}|e_{0}\rangle \Rightarrow \langle \underline{\mathbf{n}}|e_{1}|_{\{\mathbf{h}\}}\rangle} (\lambda^{-\circ})$$

$$\frac{\langle \mathbb{N} | e_0 \rangle \Rightarrow \langle \underline{\mathbf{m}} | e_1 \rangle \quad \langle \mathbb{M}[\mathbf{z}/\mathbf{x}] P_1 \dots P_k | e_1[\mathbf{z} := \underline{\mathbf{m}}] \rangle \Rightarrow \langle \underline{\mathbf{n}} | e_2 \rangle}{\langle (\lambda \mathbf{x}^{\iota}.\mathbb{M}) \mathbb{N} P_1 \dots P_k | e_0 \rangle \Rightarrow \langle \underline{\mathbf{n}} | e_2 |_{\{\mathbf{z}\}} \rangle}$$
 (λ^{ι})

$$\frac{\langle \mathtt{g}\mathtt{P}_2\dots\mathtt{P}_\mathtt{k}|e_1[\mathtt{h}:=\mathtt{P}_1,\mathtt{g}:=\mathtt{M}[\mathtt{h}/\mathtt{x}]]-\mathtt{f}\rangle \ \mapsto \langle \underline{\mathtt{n}}|e_2\rangle}{\langle \mathtt{f}\mathtt{P}_1\dots\mathtt{P}_\mathtt{k}|e_0[\mathtt{f}:=\lambda\mathtt{x}^{\sigma-\circ\tau}.\mathtt{M}]\rangle \ \mapsto \langle \underline{\mathtt{n}}|e_2[\mathtt{f}=e_2(\mathtt{h})\odot e_2(\mathtt{g})]\!\!\upharpoonright_{\{\mathtt{h},\mathtt{g}\}}\rangle} \ \ (\mathsf{abs}^{-\circ})$$

$$\frac{\langle \mathtt{hNP_1} \dots \mathtt{P_k} | e_0[\mathtt{h} := \mathtt{M}] - \mathtt{f} \rangle \Rightarrow \langle \underline{\mathtt{n}} | e_1 \rangle}{\langle \mathtt{fP_1} \dots \mathtt{P_k} | e_0[\mathtt{f} := \mathtt{MN}] \rangle \Rightarrow \langle \underline{\mathtt{n}} | e_1[\mathtt{f} := \pi_2(e_1(\mathtt{h}))] |_{\{\mathtt{h}\}} \rangle} \text{ (app)}$$

$$\frac{\langle hP_1 \dots P_k | e_0 - f \rangle \Rightarrow \langle \underline{n} | e_1 \rangle}{\langle fP_1 \dots P_k | e_0 [f := h] \rangle \Rightarrow \langle \underline{n} | e_1 [f := h] \rangle} \text{ (var)}$$

$$\frac{\langle \mathtt{hI} | e_0 [\mathtt{h} := \mathtt{M}] \rangle \Rightarrow \langle \underline{\mathtt{n}} | e_1 \rangle}{\langle \mathtt{which}? \mathtt{M}^{(\iota \multimap \iota) \multimap \iota} | e_0 \rangle \Rightarrow \langle \underline{\mathtt{n}} \odot \pi_1(e_1(\mathtt{h})) | e_1 \rangle} \ (\mathtt{w})$$

$$\frac{\langle P_1 | e_0 - f \rangle \Rightarrow \langle \underline{m} | e_1 \rangle \quad \langle f P_2 \dots P_k | e_1 [z := \underline{m}, g := M[z/x]] \rangle \Rightarrow \langle \underline{n} | e_2 \rangle}{\langle f P_1 \dots P_k | e_0 [f := \lambda x^{\iota}.M] \rangle \Rightarrow \langle \underline{n} | e_2 [f = e_2(h) \odot e_2(g)] |_{\{z,g\}} \rangle}$$
 (abs^{\(\text{\lambda}\)}

$$\frac{\langle \mathbf{M}[\mu F.\mathbf{M}/F] \mathbf{P}_{1} \dots \mathbf{P}_{\mathbf{k}} | e_{0} \rangle \Rightarrow \langle \underline{\mathbf{n}} | e_{1} \rangle}{\langle (\mu F.\mathbf{M}) \mathbf{P}_{1} \dots \mathbf{P}_{\mathbf{k}} | e_{0} \rangle \Rightarrow \langle \underline{\mathbf{n}} | e_{1} \rangle} \quad (\mu) \qquad \frac{\langle \mathbf{x}^{\iota} | e[\mathbf{x} := \underline{\mathbf{n}}] \rangle \Rightarrow \langle \underline{\mathbf{n}} | e[\mathbf{x} := \underline{\mathbf{n}}] \rangle}{\langle \mathbf{x}^{\iota} | e[\mathbf{x} := \underline{\mathbf{n}}] \rangle} \quad (\mathsf{gvar})$$

$$\frac{\langle M_1 | e_0 \rangle \Rightarrow \langle \underline{\mathbf{n}}_1 | e_1 \rangle \quad \langle M_2 | e_1 \rangle \Rightarrow \langle \underline{\mathbf{n}}_2 | e_2 \rangle}{\langle M_1 \odot M_2 | e_0 \rangle \Rightarrow \langle \underline{\mathbf{n}}_1 \odot \underline{\mathbf{n}}_2 | e_2 \rangle} \quad (\odot)$$

$$\frac{\langle \mathbb{M} | e_0 \rangle \Rightarrow \langle \underline{\mathbf{n}}_1 \odot \underline{\mathbf{n}}_2 | e_1 \rangle \quad \langle \mathbb{M}[\mathbf{z}_1/\mathbf{x}_1, \mathbf{z}_2/\mathbf{x}_2] P_1 \dots P_k | e_1[\mathbf{z}_1 := \underline{\mathbf{n}}_1, \mathbf{z}_2 := \underline{\mathbf{n}}_2] \rangle \Rightarrow \langle \underline{\mathbf{n}} | e_2 \rangle}{\langle (\underline{\mathtt{let}} \ \mathbf{x}_1, \mathbf{x}_2 = \mathbb{M} \ \underline{\mathtt{in}} \ \mathbb{N}) P_1 \dots P_n | e_0 \rangle \Rightarrow \langle \underline{\mathbf{n}} | e_2 \rangle} \quad (\underline{\mathtt{let}} \)$$

$$\frac{\langle M_{1}|e_{0}[f_{1}:=N_{1},...,f_{k}:=N_{k}]\rangle \Rightarrow \langle \underline{0}|e_{1}\rangle}{\langle M_{2}|e_{0}[f_{1}:=N_{1},...,f_{k}:=N_{k}]\rangle \Rightarrow \langle \underline{m}+\underline{1}|e_{2}\rangle} \forall i \leq k, \ e_{1}(f_{i}) = e_{2}(f_{i})} \frac{\langle \underline{\ell}et \ f_{1}^{\sigma_{1}} = N_{1},...,f_{k}^{\sigma_{k}} = N_{k} \underline{in\ell or} \ M_{1} \ M_{2} \ M_{3}|e_{0}\rangle \Rightarrow \langle \underline{m}|e_{1}|_{\{f_{1},...,f_{k}\}}\rangle}$$
(11gor)

$$\frac{\langle M_{2}|e_{0}[f_{1} := N_{1}, \dots, f_{k} := N_{k}] \rangle \Rightarrow \langle \underline{0}|e_{2} \rangle}{\langle M_{3}|e_{0}[f_{1} := N_{1}, \dots, f_{k} := N_{k}] \rangle \Rightarrow \langle \underline{m} + \underline{1}|e_{3} \rangle} \quad \forall i \leq k, \ e_{2}(f_{i}) = e_{3}(f_{i}) \\
\underline{\langle \underline{\ell}et f_{1}^{\sigma_{1}} = N_{1}, \dots, f_{k}^{\sigma_{k}} = N_{k} \underline{in\ell or} M_{1} M_{2} M_{3}|e_{0} \rangle \Rightarrow \langle \underline{m}|e_{2}|_{\{f_{1}, \dots, f_{k}\}} \rangle} \quad (21gor)$$

$$\frac{\langle \mathsf{M}_3 | e_0[\mathsf{f}_1 := \mathsf{N}_1, \dots, \mathsf{f}_k := \mathsf{N}_k] \rangle \Rightarrow \langle \underline{0} | e_3 \rangle}{\langle \mathsf{M}_1 | e_0[\mathsf{f}_1 := \mathsf{N}_1, \dots, \mathsf{f}_k := \mathsf{N}_k] \rangle \Rightarrow \langle \underline{m} + \underline{1} | e_1 \rangle} \forall \mathsf{i} \leq \mathsf{k}, \ e_3(\mathsf{f}_{\mathsf{i}}) = e_1(\mathsf{f}_{\mathsf{i}})} \langle \underline{\ell} \mathsf{et} \mathsf{f}_1^{\sigma_1} = \mathsf{N}_1, \dots, \mathsf{f}_k^{\sigma_k} = \mathsf{N}_k \underline{\mathsf{in}} \ell \mathsf{or} \ \mathsf{M}_1 \ \mathsf{M}_2 \ \mathsf{M}_3 | e_0 \rangle \Rightarrow \langle \underline{m} | e_3 |_{\{\mathsf{f}_1, \dots, \mathsf{f}_k\}} \rangle}$$
(31gor)

Outline of Results

 \dots Introduction

Linearity

Linear model

Background

Novelties

Extensions

Trees

Embedding

let-lor

Coincidences

Constructive

Outline

Future works

- □ Clique-Definability
- ☐ Full-Abstraction and Equivalences coincidence
- Constructive Semantics

Future works

...Introduction

Linearity

Linear model

Background

Novelties

Extensions

Trees

Embedding

let-lor

Coincidences

Constructive

Outline

Future works

- Universality
- □ Optimization of Evaluation
- Applications