
A PolyTime Functional Language

from Light Linear Logic∗

Patrick Baillot!, Marco Gaboardi† and Virgile Mogbil§

!École Normale Supérieure de Lyon
†Università di Bologna
§Université Paris 13

PICS ”Logique linaire et applications”
CONCERTO Controllo e certificazione dell’uso delle risorse

June 9, 2010, Torino

(presented at ESOP10, March 2010, Paphos, Cyprus)

∗Partially supported by project ANR-08-BLANC-0211-01 “ComplICE”

V. Mogbil (Univ. Paris 13) LPL PICS/CONCERTO 1 / 19

A PolyTime Functional Language

from Light Linear Logic∗

Aim

Design a concrete functional language for polynomial time computations

inspired by a linear logic based characterization (LLL) of the PTIME class.

PTIME

m proof
as

programs

LLL
Light Linear Logic

V. Mogbil (Univ. Paris 13) LPL PICS/CONCERTO 2 / 19

A PolyTime Functional Language

from Light Linear Logic∗

Aim
Design a concrete functional language for polynomial time computations
inspired by a linear logic based characterization (LLL) of the PTIME class.

PTIME

m proof
as

programs

LLL
Light Linear Logic

=⇒ LPL - Light linear
Programming Language

V. Mogbil (Univ. Paris 13) LPL PICS/CONCERTO 2 / 19

A PolyTime Functional Language

from Light Linear Logic∗

Aim
Design a concrete functional language for polynomial time computations
inspired by a linear logic based characterization (LLL) of the PTIME class.

Outline

Introduction and background: Light Linear Logic

Light linear Programming Language (LPL) and its Type System

Main results and proof ideas

V. Mogbil (Univ. Paris 13) LPL PICS/CONCERTO 2 / 19

The general setting

Implicit Computational Complexity (ICC) aims at characterizing
complexity properties by restrictions on programming languages
constructions.

General goals:
I characterize complexity classes of functions, e.g. PTIME, PSPACE
I design methods to statically guarantee complexity properties of

programs

It generally borrows techniques from Mathematical Logic :
I Recursion Theory
I Structural Proof Theory
I Model Theory

V. Mogbil (Univ. Paris 13) LPL PICS/CONCERTO 3 / 19

The general setting

Implicit Computational Complexity (ICC) aims at characterizing
complexity properties by restrictions on programming languages
constructions.

General goals:
I characterize complexity classes of functions, e.g. PTIME, PSPACE
I design methods to statically guarantee complexity properties of

programs

It generally borrows techniques from Mathematical Logic :
I Recursion Theory
I Structural Proof Theory
I Model Theory

V. Mogbil (Univ. Paris 13) LPL PICS/CONCERTO 3 / 19

Functional characterization of the class PTIME

Higher-Order Calculi:

1 light linear logic approach (LLL [Girard 98], SLL [Lafont 04]): provide
term languages (λ-light [Terui 01], λ-soft [Baillot-Mogbil 04]) or type
systems as criteria (DLAL [Baillot-Terui 09], STA [Gaboardi-Ronchi
della Rocha 07]),

2 ramification [Bellantoni-Cook 92, Leivant 91] approach and/or
inspired from system T (safe recursion with higher-order types SLR
[Hofmann 00, Bellantoni-Niggl-Schwichtenberg 00], linear HO [Dal
Lago-Martini-Roversi 03, Dal Lago 09]), non-size-increasing LFPL
[Hofmann 99]).

PROS: Proof-as-program paradigm ⇒ higher-order and
polymorphism. CONS: Algorithms represented are limited: not so
user-friendly.

V. Mogbil (Univ. Paris 13) LPL PICS/CONCERTO 4 / 19

Functional characterization of the class PTIME

Higher-Order Calculi:

1 light linear logic approach (LLL [Girard 98], SLL [Lafont 04]): provide
term languages (λ-light [Terui 01], λ-soft [Baillot-Mogbil 04]) or type
systems as criteria (DLAL [Baillot-Terui 09], STA [Gaboardi-Ronchi
della Rocha 07]),

2 ramification [Bellantoni-Cook 92, Leivant 91] approach and/or
inspired from system T (safe recursion with higher-order types SLR
[Hofmann 00, Bellantoni-Niggl-Schwichtenberg 00], linear HO [Dal
Lago-Martini-Roversi 03, Dal Lago 09]), non-size-increasing LFPL
[Hofmann 99]).

PROS: Proof-as-program paradigm ⇒ higher-order and
polymorphism. CONS: Algorithms represented are limited: not so
user-friendly.

V. Mogbil (Univ. Paris 13) LPL PICS/CONCERTO 4 / 19

Functional characterization of the class PTIME

Higher-Order Calculi:

1 light linear logic approach (LLL [Girard 98], SLL [Lafont 04]): provide
term languages (λ-light [Terui 01], λ-soft [Baillot-Mogbil 04]) or type
systems as criteria (DLAL [Baillot-Terui 09], STA [Gaboardi-Ronchi
della Rocha 07]),

2 ramification [Bellantoni-Cook 92, Leivant 91] approach and/or
inspired from system T (safe recursion with higher-order types SLR
[Hofmann 00, Bellantoni-Niggl-Schwichtenberg 00], linear HO [Dal
Lago-Martini-Roversi 03, Dal Lago 09]), non-size-increasing LFPL
[Hofmann 99]).

CONS: higher-order is quite constrained (linearity), AND/OR: from
system T ⇒ not easy to program, far from ordinary functional
languages.

V. Mogbil (Univ. Paris 13) LPL PICS/CONCERTO 4 / 19

Functional characterization of the class PTIME

Higher-Order Calculi:

1 light linear logic approach (LLL [Girard 98], SLL [Lafont 04]): provide
term languages (λ-light [Terui 01], λ-soft [Baillot-Mogbil 04]) or type
systems as criteria (DLAL [Baillot-Terui 09], STA [Gaboardi-Ronchi
della Rocha 07]),

2 ramification [Bellantoni-Cook 92, Leivant 91] approach and/or
inspired from system T (safe recursion with higher-order types SLR
[Hofmann 00, Bellantoni-Niggl-Schwichtenberg 00], linear HO [Dal
Lago-Martini-Roversi 03, Dal Lago 09]), non-size-increasing LFPL
[Hofmann 99]).

CONS: higher-order is quite constrained (linearity), AND/OR: from
system T ⇒ not easy to program, far from ordinary functional
languages.

V. Mogbil (Univ. Paris 13) LPL PICS/CONCERTO 4 / 19

Functional characterization of the class PTIME

1st Order Calculi:

1 Quasi-interpretations [Marion-Moyen 00, Bonfante-Marion-Moyen 01,
Amadio 05] and sup-interpretations [Marion-Péchoux 08,09] provide
functional languages with recursion and pattern matching.

PROS: expressivity on the considered programs, thanks to a combined
criterion: termination condition + size bound.
CONS: no higher-order, type checking easier than checking of
quasi/sup-interpretations.

V. Mogbil (Univ. Paris 13) LPL PICS/CONCERTO 5 / 19

Functional characterization of the class PTIME

1st Order Calculi:

1 Quasi-interpretations [Marion-Moyen 00, Bonfante-Marion-Moyen 01,
Amadio 05] and sup-interpretations [Marion-Péchoux 08,09] provide
functional languages with recursion and pattern matching.

PROS: expressivity on the considered programs, thanks to a combined
criterion: termination condition + size bound.
CONS: no higher-order, type checking easier than checking of
quasi/sup-interpretations.

V. Mogbil (Univ. Paris 13) LPL PICS/CONCERTO 5 / 19

Bring together the PROS ?

Refined goals:

using LLL to bring together higher-order and recursion style
programming, with pattern-matching, in a functional language with
guaranteed PTIME bounds

LLL: light logic
(proof-nets)

[Girard97]

⇒
DLAL: type systems

for λ-calculus

[BaillotTerui04]

⇒
LPL: Light Linear

programming language

[BGM-Esop10]

Approach:

we are not aiming at an encoding of a language into LLL or DLAL

we would follow LLL architecture and principles

we would combine syntactic and typing conditions

V. Mogbil (Univ. Paris 13) LPL PICS/CONCERTO 6 / 19

Bring together the PROS ?

Refined goals:

using LLL to bring together higher-order and recursion style
programming, with pattern-matching, in a functional language with
guaranteed PTIME bounds

LLL: light logic
(proof-nets)

[Girard97]

⇒
DLAL: type systems

for λ-calculus

[BaillotTerui04]

⇒
LPL: Light Linear

programming language

[BGM-Esop10]

Approach:

we are not aiming at an encoding of a language into LLL or DLAL

we would follow LLL architecture and principles

we would combine syntactic and typing conditions

V. Mogbil (Univ. Paris 13) LPL PICS/CONCERTO 6 / 19

A difficulty in dealing with λ-calculus and recursion

We can easily combine apparently harmless terms to obtain exponential
blow up.

Example 1
Take the recursive definition of mul on numerals n and consider:

λx.x(λy. mul 2 y)1

It is apparently harmless!
But for each Church numeral cn = λs.λz.snz it returns the numeral 2n.

A tight control on both recursive calls and β-reduction steps is needed.

V. Mogbil (Univ. Paris 13) LPL PICS/CONCERTO 7 / 19

A difficulty in dealing with λ-calculus and recursion

We can easily combine apparently harmless terms to obtain exponential
blow up.

Example 2
Take ListOf2 that given numeral n returns a list of 2 of length n and
foldr defined as usual. The following term is exponential in its argument.

λx.foldr mul 1 (ListOf2 x)

Types can be used to prevent this.

V. Mogbil (Univ. Paris 13) LPL PICS/CONCERTO 7 / 19

Light Linear Logic (LLL)
Types we use here:

A ::= D | A (B | !A (B | §A
D ::= N | W | L | T (base data types)

The logical rules (for modalities ! and §) imply that:

a non-linear argument (of a !A (B) has at most one free variable

iteration:
step : A (A base : §A

N (§A

an iteration cannot be used as the step of another iteration

type time bound size bound on result
N (N O(n2) O(n)
N (§N O(n4) O(n4)

N (§dN O(n2d+1
) O(n2d+1

)

V. Mogbil (Univ. Paris 13) LPL PICS/CONCERTO 8 / 19

LLL proof nets

Every proof-net Π has a maximal level d (depth) and is stratified into
levels 0, 1, . . . , d

I level i does not depend from levels j > i
I potential complexity: contraction nodes, i.e. a contraction node at

level i can duplicate objects at levels j > i

The evaluation can be done level-by-level, in successive rounds:
0, 1, . . . , d .

After the round at each level, the size increases quadratically.

We get an overall bound O(|Π|2d
) both for size and computation

time.

Note: in LLL, data types have a fixed depth. This means that the
exponent d depends just on the program part, hence we can work in
polynomial time.

V. Mogbil (Univ. Paris 13) LPL PICS/CONCERTO 9 / 19

LPL: a small functional programming language

The Language:

M, N ::= x | c t1 · · · tn | X | F t1 · · · tn | λx.M | MM terms
v ::= c v1 · · · vn values
t ::= X | c t1 . . . tn patterns
dF ::= F t1 . . . tn = N function def.
p ::= M | LetRec dF, ..., dF in p programs

There is no mutually defined functions

the scope of LetRec is static and global.

Patterns are linear: X occurs at most once in c t1 . . . tn

We consider a reduction mechanism consisting in the usual
β-reduction and a LetRecF matching reduction.

V. Mogbil (Univ. Paris 13) LPL PICS/CONCERTO 10 / 19

Examples

Addition:

LetRec Add (x + 1) y = (Add x y) + 1 ,
Add 0 y = y

in Add (Add 3 2) 4

Map:
LetRec Map f (x : xs) = (fx) : (Map f xs) ,

Map f nil = nil
in Map (+1) (1 : 1 : 0 : 1)

Append on lists:

LetRec Append (x : xs) ys = x : (Append xs ys) ,
Append nil ys = ys

in Append (Append (1 : nil) (0 : 1 : nil)) (1 : nil)

V. Mogbil (Univ. Paris 13) LPL PICS/CONCERTO 11 / 19

The combined criterion

The difficulty:
A reduction mixing of β-reduction and rewriting (LetRecF).

The solution:

Combined Criterion

Syntactic Termination
Condition

Light Linear Typing
Condition

Controlling the number
of recursive steps for

individual recursive calls

Controlling β-steps
and the nesting

of recursions

V. Mogbil (Univ. Paris 13) LPL PICS/CONCERTO 12 / 19

The syntactic criterion

The syntactic termination criterion checks for every definition:

F t1 . . . tn = M
that

each recursive call F ti1 . . . t
i
n in the term M

is done on a distinct strict sub-pattern of t1 . . . tn.

Div (s (s X)) = s (Div X)
Div (s 0) = 0
Div 0 = 0

Min (s X) (s Y) = s (Min X Y)
Min (s X) 0 = 0
Min 0 (s Y) = 0

V. Mogbil (Univ. Paris 13) LPL PICS/CONCERTO 13 / 19

The syntactic criterion

The syntactic termination criterion checks for every definition:

F t1 . . . tn = M
that

each recursive call F ti1 . . . t
i
n in the term M

is done on a distinct strict sub-pattern of t1 . . . tn.

But also as:

Foldr F Z (X : XS) = F X (Foldr F Z XS) , X : XS is a recurrence arg.
Foldr F Z nil = Z

Tadd (node X L R) (node X′ L′ R′) = node (X + X′) (Tadd L L′) (Tadd R R′) ,
Tadd ε X = X
Tadd X ε = X

V. Mogbil (Univ. Paris 13) LPL PICS/CONCERTO 13 / 19

Typing condition
The LPL types are:

A ::= D | A (B | !A (B | §A
D ::= N | W | L | . . . (base data types)

Typing rules for constructors and function symbols:

` c : T (c) ` F : T (F)

constructors: T (c) = D1 (· · ·(Dn (Dn+1

functions: where !i§j is denoted by †i+j ,

T (F) = †i1A1 (· · ·(†inAn (§jA
I j ≥ 1
I for every recurrence argument k we have ik = 0
I for every other argument r we have ir ≥ 1

V. Mogbil (Univ. Paris 13) LPL PICS/CONCERTO 14 / 19

Typing rules

λ-calculus part: DLAL (extended to pattern variables)
Recursive definitions and programs:

Θ1; Θ2 ` F
−→
t : C Θ1; Θ2 ` N : C

B (F
−→
t = N) : C

(?)(D)

Γ; ∆ ` p : C B dF : C · · · B dF : C
LetRec dF, ..., dF in p

(R)

in (D): Θ1,Θ2 only contain pattern variables

(?): condition on the recurrence arguments should be satisfied

V. Mogbil (Univ. Paris 13) LPL PICS/CONCERTO 15 / 19

Examples of types

some function types:

Add (x + 1) y = (Add x y)+1 ,
Add 0 y = y
` Add : N (§N (§N

Map f (x : xs) = (fx) : (Map f xs) ,
Map f nil = nil
` Map : !(N (N) (L (§L

Foldr f z (x : xs) = f (coer x) (Foldr f z xs) ,
Foldr f z nil = z

` Foldr : !(N (§N (§N) (§§N (L (§§N

example of program type:

LetRec dAdd, dFoldr in Foldr (λx.λy.Add x y) 0 (0 : 1 : · · · : n) : §§N

V. Mogbil (Univ. Paris 13) LPL PICS/CONCERTO 16 / 19

From typed programs to executable terms

Source language intermediate language

typed program −→ executable term

depth structure is made explicit
analogous to proof-nets

λx.f(fx) : §(α (α) let f be !f′ in §(λx.f′(f′x)) : §(α (α)

The normalization proof idea: Adapting the proof for LLL:

replace proof-net depth by a new invariant: potential depth d

reduction strategy: stratified reduction, i.e. depth 0, 1, . . . , d

at each depth i , we use 2 measures:

|s|i to bound β steps and SAF
i (M) to bound LetRecF steps

V. Mogbil (Univ. Paris 13) LPL PICS/CONCERTO 17 / 19

Results

Theorem (Soundness)

Consider a program p = LetRec dF1 , . . . dFn in M satisfying:

the syntactic criterion

the typing condition, with potential depth d,

then there exists a polynomial P such that p can be reduced in a number
of steps bounded by P(|p|).The polynomial P only depends on the
potential depth d.

In particular, if p : W (§kW then p represents a PTIME function.

Theorem (Completeness)

For any PTIME function f : {0, 1}? → {0, 1}?, there exists an integer k
and an LPL program of type W (§kW, representing f .

V. Mogbil (Univ. Paris 13) LPL PICS/CONCERTO 18 / 19

Conclusion and perspectives

We have defined a higher-order functional language with recursively
defined functions and with a criterion for Ptime.

This is a setting in which the techniques coming from different
approaches (quasi-interpretations, non-size-increasing, linear logic)
could be combined.

The bound induced by typing is rough, but it could be efficiently
inferred.

Some improvements:
I both the syntactic and typing criterion can be relaxed
I integer and symbolic constraints can be added to achieve finer bounds

Perspectives for functional languages:
I space resource analysis
I resource control techniques

V. Mogbil (Univ. Paris 13) LPL PICS/CONCERTO 19 / 19

