A PolyTime Functional Language
from Light Linear Logic*

Patrick Baillot', Marco Gaboardi and Virgile Mogbil®

'Ecole Normale Supérieure de Lyon
fUniversita di Bologna
8Université Paris 13

PICS "Logique linaire et applications”
CONCERTO Controllo e certificazione dell’'uso delle risorse

June 9, 2010, Torino
(presented at ESOP10, March 2010, Paphos, Cyprus)

*Partially supported by project ANR-08-BLANC-0211-01 “ComplICE"

V. Mogbil (Univ. Paris 13) LPL PICS/CONCERTO 1/19

A PolyTime Functional Language
from Light Linear Logic”

Aim

inspired by a linear logic based characterization (LLL) of the PTIME class.

PTIME

ﬁ proof
as
programs

LLL
Light Linear Logic

V. Mogbil (Univ. Paris 13) LPL PICS/CONCERTO 2 /19

A PolyTime Functional Language
from Light Linear Logic”
Aim

Design a concrete functional language for polynomial time computations
inspired by a linear logic based characterization (LLL) of the PTIME class.

PTIME
:H: proof
as
programs
LLL s LPL - Light linear
Light Linear Logic Programming Language

V. Mogbil (Univ. Paris 13) LPL PICS/CONCERTO 2 /19

A PolyTime Functional Language
from Light Linear Logic”

Aim
Design a concrete functional language for polynomial time computations
inspired by a linear logic based characterization (LLL) of the PTIME class.

Outline
@ Introduction and background: Light Linear Logic

e Light linear Programming Language (LPL) and its Type System

@ Main results and proof ideas

V. Mogbil (Univ. Paris 13) LPL PICS/CONCERTO 2 /19

The general setting

@ Implicit Computational Complexity (ICC) aims at characterizing
complexity properties by restrictions on programming languages

constructions.

General goals:
» characterize complexity classes of functions, e.g. PTIME, PSPACE

» design methods to statically guarantee complexity properties of

programs

V. Mogbil (Univ. Paris 13) LPL PICS/CONCERTO 3/19

The general setting

@ Implicit Computational Complexity (ICC) aims at characterizing
complexity properties by restrictions on programming languages
constructions.

General goals:
» characterize complexity classes of functions, e.g. PTIME, PSPACE
» design methods to statically guarantee complexity properties of
programs

@ It generally borrows techniques from Mathematical Logic :

» Recursion Theory
» Structural Proof Theory
» Model Theory

V. Mogbil (Univ. Paris 13) LPL PICS/CONCERTO

3/19

Functional characterization of the class PTIME
Higher-Order Calculi:
@ light linear logic approach (LLL [Girard 98], SLL [Lafont 04]): provide
term languages (A-light [Terui 01], A-soft [Baillot-Mogbil 04]) or type

systems as criteria (DLAL [Baillot-Terui 09], STA [Gaboardi-Ronchi
della Rocha 07]),

V. Mogbil (Univ. Paris 13) LPL PICS/CONCERTO 4/19

Functional characterization of the class PTIME
Higher-Order Calculi:

@ light linear logic approach (LLL [Girard 98], SLL [Lafont 04]): provide
term languages (A-light [Terui 01], A-soft [Baillot-Mogbil 04]) or type
systems as criteria (DLAL [Baillot-Terui 09], STA [Gaboardi-Ronchi
della Rocha 07]),

PROS: Proof-as-program paradigm = higher-order and
polymorphism. CONS: Algorithms represented are limited: not so
user-friendly.

V. Mogbil (Univ. Paris 13) LPL PICS/CONCERTO 4/19

Functional characterization of the class PTIME
Higher-Order Calculi:

@ light linear logic approach (LLL [Girard 98], SLL [Lafont 04]): provide
term languages (A-light [Terui 01], A-soft [Baillot-Mogpbil 04]) or type
systems as criteria (DLAL [Baillot-Terui 09], STA [Gaboardi-Ronchi
della Rocha 07]),

@ ramification [Bellantoni-Cook 92, Leivant 91] approach and/or
inspired from system T (safe recursion with higher-order types SLR
[Hofmann 00, Bellantoni-Niggl-Schwichtenberg 00], linear HO [Dal

Lago-Martini-Roversi 03, Dal Lago 09]), non-size-increasing LFPL
[Hofmann 99]).

V. Mogbil (Univ. Paris 13) LPL PICS/CONCERTO 4/19

Functional characterization of the class PTIME

Higher-Order Calculi:

@ light linear logic approach (LLL [Girard 98], SLL [Lafont 04]): provide
term languages (A-light [Terui 01], A-soft [Baillot-Mogpbil 04]) or type
systems as criteria (DLAL [Baillot-Terui 09], STA [Gaboardi-Ronchi
della Rocha 07]),

@ ramification [Bellantoni-Cook 92, Leivant 91] approach and/or
inspired from system T (safe recursion with higher-order types SLR
[Hofmann 00, Bellantoni-Niggl-Schwichtenberg 00], linear HO [Dal
Lago-Martini-Roversi 03, Dal Lago 09]), non-size-increasing LFPL
[Hofmann 99]).

CONS: higher-order is quite constrained (linearity), AND/OR: from
system T =- not easy to program, far from ordinary functional
languages.

V. Mogbil (Univ. Paris 13) LPL PICS/CONCERTO 4/19

Functional characterization of the class PTIME

1st Order Calculi:

@ Quasi-interpretations [Marion-Moyen 00, Bonfante-Marion-Moyen 01,
Amadio 05] and sup-interpretations [Marion-Péchoux 08,09] provide
functional languages with recursion and pattern matching.

V. Mogbil (Univ. Paris 13) LPL PICS/CONCERTO 5/19

Functional characterization of the class PTIME

1st Order Calculi:

@ Quasi-interpretations [Marion-Moyen 00, Bonfante-Marion-Moyen 01,
Amadio 05] and sup-interpretations [Marion-Péchoux 08,09] provide
functional languages with recursion and pattern matching.

PROS: expressivity on the considered programs, thanks to a combined
criterion: termination condition + size bound.

CONS: no higher-order, type checking easier than checking of
quasi/sup-interpretations.

V. Mogbil (Univ. Paris 13) LPL PICS/CONCERTO 5/19

Bring together the PROS 7

Refined goals:

@ using LLL to bring together higher-order and recursion style
programming, with pattern-matching, in a functional language with
guaranteed PTIME bounds

V. Mogbil (Univ. Paris 13) LPL PICS/CONCERTO 6 /19

Bring together the PROS 7

Refined goals:

@ using LLL to bring together higher-order and recursion style
programming, with pattern-matching, in a functional language with
guaranteed PTIME bounds

LLL: light logic DLAL: type systems LPL: Light Linear
(proof-nets) | — for A-calculus — | programming language
[Girard97] [Baillot Terui04] [BGM-Esop10]
Approach:

@ we are not aiming at an encoding of a language into LLL or DLAL
@ we would follow LLL architecture and principles

@ we would combine syntactic and typing conditions

V. Mogbil (Univ. Paris 13) LPL PICS/CONCERTO 6 /19

A difficulty in dealing with A-calculus and recursion

We can easily combine apparently harmless terms to obtain exponential
blow up.

Example 1
Take the recursive definition of mul on numerals n and consider:

Ax.x(Ay. mul 2 y)1

It is apparently harmless!
But for each Church numeral ¢, = As.A\z.s"z it returns the numeral 2°.

A tight control on both recursive calls and (-reduction steps is needed.

V. Mogbil (Univ. Paris 13) LPL PICS/CONCERTO 7 /19

A difficulty in dealing with A-calculus and recursion

We can easily combine apparently harmless terms to obtain exponential
blow up.

Example 2

Take List0f2 that given numeral n returns a list of 2 of length n and
foldr defined as usual. The following term is exponential in its argument.

Ax.foldr mul 1 (List0£f2 x)

Types can be used to prevent this.

V. Mogbil (Univ. Paris 13) LPL PICS/CONCERTO 7 /19

Light Linear Logic (LLL)

Types we use here:

A = D|A—-B|A—-B|SA
D N|W|L|T (base data types)

The logical rules (for modalities ! and §) imply that:

@ a non-linear argument (of a !A —o B) has at most one free variable

@ iteration:
step: A— A base : A

N — §A

an iteration cannot be used as the step of another iteration

type time bound | size bound on result
N-—oN 0(n?) O(n)

N — §N | O(n*) Oo(n*)

N —o §dN O(n2d+1) O(n2d+1)

V. Mogbil (Univ. Paris 13) LPL PICS/CONCERTO 8 /19

LLL proof nets

@ Every proof-net 1 has a maximal level d (depth) and is stratified into
levels 0,1,...,d

> level / does not depend from levels j > i
> potential complexity: contraction nodes, i.e. a contraction node at
level i can duplicate objects at levels j > i

@ The evaluation can be done level-by-level, in successive rounds:
0,1,...,d.
@ After the round at each level, the size increases quadratically.

o We get an overall bound O(|M[2") both for size and computation
time.

Note: in LLL, data types have a fixed depth. This means that the
exponent d depends just on the program part, hence we can work in
polynomial time.

V. Mogbil (Univ. Paris 13) LPL PICS/CONCERTO 9 /19

LPL: a small functional programming language

The Language:

MN = x|cty--ty [X|Fty---ty | AxM|MM terms
V = CVqy---Vp values
t o= X|cty...ty patterns
dF = Fty...tp, =N function def.
p = M \ LetRec df,...,dr in p programs

@ There is no mutually defined functions
@ the scope of LetRec is static and global.
@ Patterns are linear: X occurs at most oncein c ty ... t,

@ We consider a reduction mechanism consisting in the usual
(-reduction and a LetRecg matching reduction.

V. Mogbil (Univ. Paris 13) LPL PICS/CONCERTO 10 / 19

Examples

e Addition:
LetRec Add (x+1) y=(Addxy)+1,
AddOy=y
in Add (Add 3 2) 4
e Map:

LetRec Map f (x:xs) = (fx) : (Map £ xs),
Map f nil =nil
inMap (+1) (1:1:0:1)

@ Append on lists:
LetRec Append (x : xs) ys = x : (Append xs ys) ,

Append nil ys = ys
in Append (Append (1:nil) (0:1:nil)) (1:nil)

V. Mogbil (Univ. Paris 13) LPL PICS/CONCERTO 1 /19

The combined criterion

The difficulty:

A reduction mixing of (-reduction and rewriting (LetRecr).

The solution:

Combined Criterion

Syntactic Termination
Condition

Controlling the number
of recursive steps for
individual recursive calls

V. Mogbil (Univ. Paris 13)

LPL

Light Linear Typing
Condition

Controlling [3-steps
and the nesting
of recursions

PICS/CONCERTO 12 /19

The syntactic criterion

The syntactic termination criterion checks for every definition:

Fti...t, =M
that

each recursive call F t1...tl in the term M

is done on a distinct strict sub-pattern of ty...t,.

Div (s (s X)) = s (Div X)
Div (s 0) =0

Div0=0

Min (s X) (s Y) =s (Min X Y)
Min (s X)0=0

Min 0 (s Y) =0

V. Mogbil (Univ. Paris 13) LPL PICS/CONCERTO

13 /19

The syntactic criterion

The syntactic termination criterion checks for every definition:

Ftl...tn:M
that

each recursive call F ti...tl in the term M
is done on a distinct strict sub-pattern of ty...ty.

But also as:

Foldr F Z (X:XS) =F X (Foldr F ZXS), X:XS isa recurrence arg.
Foldr FZnil =7

Tadd (node X L R) (node X' L' R") = node (X + X') (Tadd L L’) (Tadd R R"
Tadd e X =X
Tadd X e =X

V. Mogbil (Univ. Paris 13) LPL PICS/CONCERTO 13 /19

Typing condition

The LPL types are:
A = D|A—-B|A—-B|jA
D == NW|L| ... (base data types)

Typing rules for constructors and function symbols:

Fc:7(c) FF:7(F)

@ constructors: T(c) =D —o -+ — Dy —o Dpyq

o functions: where 1'§/ is denoted by 11/,

T(F) = A1 — - — 1A, — A
» j>1
» for every recurrence argument k we have i, =0
» for every other argument r we have i, > 1

V. Mogbil (Univ. Paris 13) LPL PICS/CONCERTO 14 /19

Typing rules

A-calculus part: DLAL (extended to pattern variables)
Recursive definitions and programs:

010, FFt:C ©1:0,Fn:C
L2 — L (*)(D)
>(F t =N):C

NAFEFDP:C >dp:C -+ >dp: C
LetRec df,...,dr in p

@ in (D): ©1,0; only contain pattern variables

@ (x): condition on the recurrence arguments should be satisfied

V. Mogbil (Univ. Paris 13) LPL PICS/CONCERTO 15 /19

Examples of types
@ some function types:

Add (x+1)y
Add Oy
F Add

Map f (x: xs)
Map f nil
F Map

Foldr f z (x : xs)
Foldr f z nil
F Foldr

@ example of program type:

(Add x y)+1 ,

y

N — §N — §N
(fx) : (Map £ xs) ,
nil

I(N—o N) - L —o §L

f (coer x) (Foldr f z xs) ,
z

/(N — §N —o §N) —o §§N — L. —o §§N

LetRec dpgq, dro1dr in Foldr (Ax.Ay.Add xy) 0 (0:1:---:mn):§N

V. Mogbil (Univ. Paris 13)

LPL PICS/CONCERTO 16 / 19

From typed programs to executable terms

Source language intermediate language
typed program — executable term

depth structure is made explicit
analogous to proof-nets

Ax.£(£x) : §(a —o «) let f be !’ in §(Ax.f'(f'x)) : §(a —o)
The normalization proof idea: Adapting the proof for LLL:
@ replace proof-net depth by a new invariant: potential depth d

o reduction strategy: stratified reduction, i.e. depth 0, 1, ..., d

@ at each depth /, we use 2 measures:

|s|; to bound 3 steps and SAF(M) to bound LetRecy steps

V. Mogbil (Univ. Paris 13) LPL PICS/CONCERTO 17 /19

Results

Theorem (Soundness)

Consider a program p = LetRec dp,,...dr, in M satisfying:
@ the syntactic criterion
@ the typing condition, with potential depth d,

then there exists a polynomial P such that p can be reduced in a number
of steps bounded by P(|p|). The polynomial P only depends on the
potential depth d.

In particular, if p : W —o §W then p represents a PTIME function.

Theorem (Completeness)

For any PTIME function f : {0,1}* — {0, 1}*, there exists an integer k
and an LPL program of type W —o §“W, representing f.

V. Mogbil (Univ. Paris 13) LPL PICS/CONCERTO 18 /19

Conclusion and perspectives

@ We have defined a higher-order functional language with recursively
defined functions and with a criterion for Ptime.

@ This is a setting in which the techniques coming from different
approaches (quasi-interpretations, non-size-increasing, linear logic)
could be combined.

@ The bound induced by typing is rough, but it could be efficiently
inferred.

@ Some improvements:

» both the syntactic and typing criterion can be relaxed
> integer and symbolic constraints can be added to achieve finer bounds

@ Perspectives for functional languages:

> space resource analysis
» resource control techniques

V. Mogbil (Univ. Paris 13) LPL PICS/CONCERTO 19 /19

