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Motivations

Interaction nets (Lafont, 1990) are a model of deterministic computation,
born as a generalization of linear logic proof nets (Girard, 1987).

How expressive are they? They are Turing-complete. . . but this means
nothing! What about parallelism?

In addition, there are several non-deterministic variants:

— multiwire (Alexiev 1999, Beffara-Maurel 2006);
— multiport (Alexiev 1999, Khalil 2003, Mazza 2005);
— multirule (Alexiev 1999, Ehrhard-Regnier 2006).

How do these relate to each other? Can they model concurrency?

We are not only interested in what we compute, but also how.



Rewriting systems

Rewriting systems are defined as pairs S = (G, R), where G is a graph

Src

G= Go . Gi

-

trg

and R a residue structure, i.e., a relation R C Qf such that (r,s,t) € R
implies src(r) = src(s) and src(t) = trg(r):
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In other words, a residue structure describes “what happens” to an arrow
(called radical) if we follow a radical which is coinitial to it.



Pre-normal rewriting systems

e The notion of residue can be extended to reductions, i.e., the paths of
G: [f]r is the set of residues of a radical r after the reduction f. We can
then define equivalence of reductions: f = g iff f and g are coinitial,
cofinal, and for all coinitial r, [f]r = [g]r.

e A rewriting system is pre-normal if, for all coinitial radicals r, s:

affinity: f|r]s < 1; in case this set is a singleton, we denote its only
element by s";

symmetry: fi[r|s = f]s]r; in case these sets are singletons, we say that r
and s are independent;

tiling: rs" = sr°.



Homotopy

e Semi-normal rewriting systems allow the definition of homotopy as the
smallest equivalence relation ~ on reductions such that

frs"g ~ fsrig

whenever r, s are independent radicals, and f, g are generic reductions:

e \We then define the preorder f < ¢ iff dh s.t. fh ~ g, which induces a
partial order on homotopy classes: [f| < [g] iff f < g.



The cube property

e A pre-normal rewriting system S is said to have the cube property if S
contains the structure below on the left iff it contains the structure on
the right:
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e The terminology is borrowed from Mimram (2008). Previously studied
also by Nielsen, Plotkin and Winskel (1981) (as Mazurkiewicz traces),
and by Mellies (2004) (as asynchronous graphs).



The cubic pushout property

e A pre-normal rewriting system S is said to have the cubic pushout
property if, whenever § contains the structure below on the left, it
contains the structure on the right:
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e Also considered by Nielsen, Plotkin and Winskel (1981).



Normal rewriting systems

e A pre-normal rewriting system & is normal if it has the cube property,

the cubic pushout property, and the following two additional axioms
hold:

self-conflict: for every radical r, [r]r = 0,
injectivity: for all radicals 7, s,t with 7, ¢ and s,t independent, r* = s!
implies r = s.

e The following configurations are excluded in normal rewriting systems:
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Normal rewriting systems and event structures

We can prove the following:

Theorem 1. Let § be a normal rewriting system, let i be an object of
S, and let HM(S) be the set of all homotopy classes of source (. Then,
(H,.(S), <) is a configuration poset.

These results allow us to associate an event structure with every object
of a normal rewriting system! Namely, we define Ev(u) = WU (H,(S), <)
(the interest of configuration posets is here).

Therefore, as soon as two computational processes admit a description
in terms of normal rewriting systems, we can use bisimilar embeddings
to compare them.



Back to interaction nets

e \We consider a general form of interaction nets which includes multirule,
multiwire, and multiport extensions, all at the same time:

T

e Any interaction net system &, with its reductions, induces a graph Gs: a
radical is uniquely determined by an active pair, and a way to reduce it.

e The residue structure is defined by (r,s,t) € Rs iff the active pairs
associated with r, s belong to the same net, have no cell in common, and
t is, by locality of interaction, “the same” radical as s after reducing r.

Proposition 2. For every interaction nets system S, (Gs,Rs) is a
normal rewriting system.



Confusion-free rewriting systems

Let r, s be two coinitial radicals of a normal rewriting system.

e We say that r and s are separated if every radical t coinitial with r, s is
independent with at least one of 7, s.

e We say that r and s are contemporary if, for all radical ry and reduction
h such that r = rf, there exists a radical sy such that s = sl!. We
say that r and s are in simple conflict if they are contemporary and not
independent.

e A normal rewriting system S is confusion-free if all coinitial radicals are
either separated or in simple conflict.

Proposition 3. A normal rewriting system S is confusion-free iff, for
all object 1 of S, Ev(u) is confusion-free.
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Application to interaction nets

Proposition 4. The rewriting system associated with a multirule
interaction net system is always confusion-free.

Corollary 5. Multirule nets are strictly less expressive than multiwire and
multiport nets. Moreover, there is no embedding of finite CCS in them.

Lemma 6. The rewriting system associated with a finite multirule or
multiport interaction net system has finite degree of non-determinism.

Corollary 7. There is no finite universal system of multirule or multiport
combinators not introducing divergence.

There are also some positive results:

Proposition 8. Lafont (i.e., deterministic) interaction nets are able to
generate all finite posets (i.e., conflict-free event structures), and multirule
interaction nets are able to generate all finite confusion-free event structures.
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Discussion

e How meaningful is all this? In other words:

(i) how many computational models can be rephrased in terms of normal
rewriting systems?
(i) how sensible is our notion of bisimilar embedding?

e For (i), Turing machines, Petri nets, all process calculi can be seen as
normal rewriting systems. However, the natural residue structure of the
A-calculus and proof nets is not pre-normal (affinity fails).

e For (ii), some well known encodings induce bisimilar embeddings (e.g.,
Lafont's translations for interaction nets). However, there are surprises:
apart from the problem with non-deterministic Turing machines seen in
Part |, also the encodings of m-calculus into interaction nets do not work
anymore.
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Encoding the m-calculus in interaction nets

e A simple solution: turn differential interaction nets from multirule (which
will never work, cf. Corollary 5) into multiport:
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e Ehrhard and Laurent's (2007) encoding, if reduced according to the
above rules instead of the usual ones, yields a bisimilar embedding. This
is what goes wrong with the usual reduction rules:
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