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Motivations

• Interaction nets (Lafont, 1990) are a model of deterministic computation,
born as a generalization of linear logic proof nets (Girard, 1987).

• How expressive are they? They are Turing-complete. . . but this means
nothing! What about parallelism?

• In addition, there are several non-deterministic variants:

– multiwire (Alexiev 1999, Beffara-Maurel 2006);
– multiport (Alexiev 1999, Khalil 2003, Mazza 2005);
– multirule (Alexiev 1999, Ehrhard-Regnier 2006).

• How do these relate to each other? Can they model concurrency?

• We are not only interested in what we compute, but also how.
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Rewriting systems

Rewriting systems are defined as pairs S = (G, R), where G is a graph

G = G0 G1

trg

src

and R a residue structure, i.e., a relation R ⊆ G3
1 such that (r, s, t) ∈ R

implies src(r) = src(s) and src(t) = trg(r):

rs

t

In other words, a residue structure describes “what happens” to an arrow
(called radical) if we follow a radical which is coinitial to it.
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Pre-normal rewriting systems

• The notion of residue can be extended to reductions, i.e., the paths of
G: [f ]r is the set of residues of a radical r after the reduction f . We can
then define equivalence of reductions: f ⇋ g iff f and g are coinitial,
cofinal, and for all coinitial r, [f ]r = [g]r.

• A rewriting system is pre-normal if, for all coinitial radicals r, s:

affinity: ♯[r]s ≤ 1; in case this set is a singleton, we denote its only
element by sr;

symmetry: ♯[r]s = ♯[s]r; in case these sets are singletons, we say that r

and s are independent;
tiling: rsr ⇋ srs.
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Homotopy

• Semi-normal rewriting systems allow the definition of homotopy as the
smallest equivalence relation ∼ on reductions such that

frsrg ∼ fsrsg

whenever r, s are independent radicals, and f, g are generic reductions:

∼

r s

sr sr

r s

f

g g

f

rs rs

• We then define the preorder f . g iff ∃h s.t. fh ∼ g, which induces a
partial order on homotopy classes: [f ] ≤ [g] iff f . g.
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The cube property

• A pre-normal rewriting system S is said to have the cube property if S
contains the structure below on the left iff it contains the structure on
the right:

∼

∼

∼

⇐⇒ ∼

∼

∼

• The terminology is borrowed from Mimram (2008). Previously studied
also by Nielsen, Plotkin and Winskel (1981) (as Mazurkiewicz traces),
and by Melliès (2004) (as asynchronous graphs).
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The cubic pushout property

• A pre-normal rewriting system S is said to have the cubic pushout
property if, whenever S contains the structure below on the left, it
contains the structure on the right:

∼

∼

∼

=⇒

∼

∼

∼

• Also considered by Nielsen, Plotkin and Winskel (1981).
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Normal rewriting systems

• A pre-normal rewriting system S is normal if it has the cube property,
the cubic pushout property, and the following two additional axioms
hold:

self-conflict: for every radical r, [r]r = ∅;
injectivity: for all radicals r, s, t with r, t and s, t independent, rt = st

implies r = s.

• The following configurations are excluded in normal rewriting systems:

∼

∼

∼
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Normal rewriting systems and event structures

• We can prove the following:

Theorem 1. Let S be a normal rewriting system, let µ be an object of
S, and let Hµ(S) be the set of all homotopy classes of source µ. Then,
(Hµ(S),≤) is a configuration poset.

• These results allow us to associate an event structure with every object
of a normal rewriting system! Namely, we define Ev(µ) = Ψ(Hµ(S),≤)
(the interest of configuration posets is here).

• Therefore, as soon as two computational processes admit a description
in terms of normal rewriting systems, we can use bisimilar embeddings
to compare them.
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Back to interaction nets

• We consider a general form of interaction nets which includes multirule,
multiwire, and multiport extensions, all at the same time:

νk

. . . . . . . . .

→ + . . . +
ν1

• Any interaction net system S, with its reductions, induces a graph GS: a
radical is uniquely determined by an active pair, and a way to reduce it.

• The residue structure is defined by (r, s, t) ∈ RS iff the active pairs
associated with r, s belong to the same net, have no cell in common, and
t is, by locality of interaction, “the same” radical as s after reducing r.

Proposition 2. For every interaction nets system S, (GS, RS) is a
normal rewriting system.

9



Confusion-free rewriting systems

Let r, s be two coinitial radicals of a normal rewriting system.

• We say that r and s are separated if every radical t coinitial with r, s is
independent with at least one of r, s.

• We say that r and s are contemporary if, for all radical r0 and reduction
h such that r = rh

0 , there exists a radical s0 such that s = sh
0 . We

say that r and s are in simple conflict if they are contemporary and not
independent.

• A normal rewriting system S is confusion-free if all coinitial radicals are
either separated or in simple conflict.

Proposition 3. A normal rewriting system S is confusion-free iff, for
all object µ of S, Ev(µ) is confusion-free.
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Application to interaction nets

Proposition 4. The rewriting system associated with a multirule
interaction net system is always confusion-free.

Corollary 5. Multirule nets are strictly less expressive than multiwire and
multiport nets. Moreover, there is no embedding of finite CCS in them.

Lemma 6. The rewriting system associated with a finite multirule or
multiport interaction net system has finite degree of non-determinism.

Corollary 7. There is no finite universal system of multirule or multiport
combinators not introducing divergence.

There are also some positive results:

Proposition 8. Lafont (i.e., deterministic) interaction nets are able to
generate all finite posets (i.e., conflict-free event structures), and multirule
interaction nets are able to generate all finite confusion-free event structures.
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Discussion

• How meaningful is all this? In other words:

(i) how many computational models can be rephrased in terms of normal
rewriting systems?

(ii) how sensible is our notion of bisimilar embedding?

• For (i), Turing machines, Petri nets, all process calculi can be seen as
normal rewriting systems. However, the natural residue structure of the
λ-calculus and proof nets is not pre-normal (affinity fails).

• For (ii), some well known encodings induce bisimilar embeddings (e.g.,
Lafont’s translations for interaction nets). However, there are surprises:
apart from the problem with non-deterministic Turing machines seen in
Part I, also the encodings of π-calculus into interaction nets do not work
anymore.
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Encoding the π-calculus in interaction nets

• A simple solution: turn differential interaction nets from multirule (which
will never work, cf. Corollary 5) into multiport:

→

!

. . . . . .

!

. . . . . .

. . . . . .

?

→

. . . . . .

. . . . . .

! !

? ?
?

. . .

!
→

!

. . . . . .

?

. . . . . .

!

• Ehrhard and Laurent’s (2007) encoding, if reduced according to the
above rules instead of the usual ones, yields a bisimilar embedding. This
is what goes wrong with the usual reduction rules:

+

!

. . . . . .

. . . . . .

?

!

?

. . .

. . .

→

. . . . . .

. . . . . .

! !

? ?
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