
Measuring the Expressiveness of Rewriting

Systems through Event Structures

Part I: Event Structures

Damiano Mazza
Laboratoire d’Informatique de Paris Nord

CNRS–Université Paris 13

Concerto final workshop
Torino, 10 June 2010

Motivations

• Interaction nets (Lafont, 1990) are a model of deterministic computation,
born as a generalization of linear logic proof nets (Girard, 1987).

• How expressive are they? They are Turing-complete. . . but this means
nothing! What about parallelism?

• In addition, there are several non-deterministic variants:

– multiwire (Alexiev 1999, Beffara-Maurel 2006);
– multiport (Alexiev 1999, Khalil 2003, Mazza 2005);
– multirule (Alexiev 1999, Ehrhard-Regnier 2006).

• How do these relate to each other? Can they model concurrency?

• We are not only interested in what we compute, but also how.

1

Computational dynamics: what is (discrete) time?

• As Winskel (1980), we consider the structure of time to be given by:

causality: there is time as soon as there is a “before” and and “after”,
which in turn can be defined in terms of causal relationship;

conflict: there must be an idea of parallelism or, dually, of conflict,
telling whether two non-causally related events may happen together.

• Conflict also encompasses the notion of non-determinism.

• The (complexity of the) structure of time may be considered as a measure
of expressiveness: if we describe computational models in terms of their
“dynamic structures”, we may try to use these structures to compare
their intensional expressiveness.

2

Event structures

• An event structure (Winskel, 1980) is a triple E = (|E|,≤,ˇ) such that:

– |E| is a set of events, called web;
– ≤ is a partial order on |E|, called causal order, such that, for all

a ∈ |E|, ↓a = {b ∈ |E| | b ≤ a} is finite;
– ˇ is an anti-reflexive symmetric relation on |E|, called conflict relation,

such that, for all a, b, c ∈ |E|, a ˇ b ≤ c implies a ˇ c.

• Let u ⊆ |E|. We say that u is a configuration iff

causality: a ∈ u and b ≤ a implies b ∈ u.
coherence: a, b ∈ u implies a ¨ b;

The set of finite configurations of E is denoted by C(E).
A configuration u ∈ C(E) enables a ∈ |E| if a 6∈ u and u ∪ {a} ∈ C(E).
The smallest configuration enabling a ∈ |E| is ⌈a⌉ =↓a \ {a}.

3

Configuration posets

Let (X,≤) be a poset, and let x, y ∈ X .

• We write x ↑ y (compatibility) iff ∃z ∈ X s.t. x, y ≤ z. We say that
u ⊆ X is a clique iff x, y ∈ u implies x ↑ y. We say that X is coherent

iff, whenever u is a clique,
∨

u exists.

• We say that y covers x iff x < y and there is no z s.t. x < z < y. We
say that an element of X is prime if it covers exactly one element, and
we set p(x) = {a ∈ X | a ≤ x, a prime}. We say that X is prime

algebraic iff, ∀x ∈ X , we have
∨

p(x) = x.

• X is a configuration poset iff it is coherent, prime algebraic, and, ∀x ∈ X ,
↓x is finite.

• Example: the compact elements of a coherent dI-domain (Berry, 1979).

4

Configuration posets and event structures

• The following is adapted from Nielsen, Plotkin, Winskel (1981):

Theorem 1. [Representation] The groupoids EGrp of event structures

and their isomorphisms and ConfGrp of configuration posets and their

isomorphisms are equivalent.

• More precisely, we have:

– if E is an event structure, then Φ(E) = (C(E),⊆) is a configuration
poset;

– if (X,≤) is a configuration poset, P(X) the set of its prime elements,
then Ψ(X,≤) = (P(X),≤, 6↑) is an event structure;

– Ψ(Φ(E)) is an event structure isomorphic to E;
– Φ(Ψ(X,≤)) is a configuration poset isomorphic to (X,≤).

5

Transitions in event structures

• Let E, E′ be event structures, and let R ⊆ |E| × |E′|. If u ∈ C(E), we
write suppR(u) = u ∩ π1(R).

• Let u, v ∈ C(E) with v = u ∪ {a}, a 6∈ u. We define:

– u
a

−→R v if a ∈ π1(R) (computational transition);
– u −→R v if a 6∈ π1(R) (administrative transition).

• We denote by =⇒R the reflexive-transitive closure of −→R.

• We write u
a

=⇒R v iff ∃u′, v′ s.t. u =⇒R u′
a

−→R v′ =⇒R v.

• We do the same for E′, with π2 instead of π1.

6

Bisimulations

• Let E,E′ be event structures, and let R ⊆ |E| × |E′|. A R-bisimulation

between E and E′ is a relation B ⊆ C(E) × Pfin(R) × C(E′) such that
(∅, ∅, ∅) ∈ B and, whenever (u, φ, u′) ∈ B, we have:

i. φ is a poset isomorphism between (suppR(u),≤) and (suppR(u′),≤′);

ii. u
a

−→R v implies u′
a
′

=⇒R v′ with (v, φ ∪ {(a, a′)}, v′) ∈ B;
iii. u −→R v implies u′ =⇒R v′ with (v, φ, v′) ∈ B;

iv. u′
a
′

−→R v′ implies u
a

=⇒R v with (v, φ ∪ {(a, a′)}, v′) ∈ B;
v. u′ −→R v′ implies u =⇒R v with (v, φ, v′) ∈ B.

• If such a bisimulation exists, we write E ≈R E′.

• This is a generalization of history-preserving bisimulations (Rabinovitch
and Traktenbrot, 1988; van Glabeek and Goltz, 1989).

7

Bisimilar embeddings

• Let E, E′ be event structures. A bisimilar embedding of E into E′ is a
relation ι ⊆ |E| × |E′| such that:

totality: π1(ι) = |E|;
injectivity: for all a, b ∈ |E|, ι(a) ∩ ι(b) 6= ∅ implies a = b;
bisimilarity: E ≈ι E′; a ι-bisimulation proving this is said to be

associated with ι.

• We write E
ι

→֒ E′ to denote the fact that ι is an embedding of E into
E′, or simply E →֒ E′ to state the existence of an embedding.

• Embeddings compose: if E
ι
′

→֒ E′ and E′
ι
′′

→֒ E′′, then E
ι
′′
◦ι

′

→֒ E′′.

• Morally, if computational processes P,P ′ are described by E, E′, E →֒ E′

should mean that “P ′ faithfully simulates/is at least as expressive as P”.

8

Confusion

Let E = (|E|,≤,ˇ) be an event structure.

• Given a, b ∈ |E|, we write a# b (immediate conflict) iff a ˇ b and
∃u ∈ C(E) enabling both a and b.

• Note that every conflict is either immediate or inherited: a ˇ b implies
∃a0, b0 s.t. a0 # b0 and a0 ≤ a, b0 ≤ b.

• An event structure is confusion-free (Varacca et al., 2006), iff:
– the reflexive closure of # is transitive;
– a # b implies ⌈a⌉ = ⌈b⌉.

• Non-deterministic Turing machines are confusion-free. Here are two
non-confusion-free structures:

c

a

b c

a b

9

Two separation results

Theorem 2. Let E, E′ be event structures, with E′ confusion-free. Then,

E →֒ E′ implies E confusion-free.

• We say that an embedding E
ι

→֒ E′ introduces divergence if, ∀ B
associated with ι, ∃ (u, φ, u′) ∈ B and an infinite sequence of
administrative transitions u′ −→ι u′

1 −→ι u′

2 −→ι · · ·

• An anticlique is a finite set of events in pairwise conflict, with a finite
configuration enabling all of them. The degree of non-determinism of E

is the least ordinal α ≤ ω such that, ∀ anticlique A of E, ♯A ≤ α.

Theorem 3. Let E,E′ be event structures of degree of non-determinism

α < α′, and let E
ι

→֒ E′. Then, ι introduces divergence.

10

Discussion

• How meaningful is all this? In other words, how sensible is our notion of
bisimilar embedding?

• Some well known encodings induce bisimilar embeddings (we will see this
in Part II). That’s good :-)

• However, there are surprises: the folklore encoding of non-deterministic
Turing machines into non-deterministic Turing machines of degree of
non-determinism 2 is problematic.

11

Non-deterministic Turing machines

• The degree of non-determinism of Turing machines coincides with the
degree of non-determinism we defined for event structures. Hence,
Theorem 3 applies, in striking contrast with the folklore encoding:
simulate a branching of degree n > 2 with n−1 successive branchings of
degree 2. Such encoding only slows down the machine by a multiplicative
factor, it does not introduce divergence in any reasonable sense.

• The problem is in how bisimulations treat non-determinism: the only

way to say “no” to somebody, is to say “yes” to someone else.

• This is because bisimulations were conceived to deal with “open” systems.
Turing machines are “closed”. How do we deal with non-determinism in
closed systems?

12

