Unique expansions with digits in ternary alphabets

Anna Chiara Lai

Istituto per le Applicazioni del Calcolo "Mauro Picone", CNR

June 9, 2010

Outline

- Introduction: positional numeration systems and expansions;

Outline

- Introduction: positional numeration systems and expansions;
- Positional numeration systems in non-integer bases: Rényi systems;

Outline

- Introduction: positional numeration systems and expansions;
- Positional numeration systems in non-integer bases: Rényi systems;
- Redundancy in usual systems in integer base and in Rényi systems;

Outline

- Introduction: positional numeration systems and expansions;
- Positional numeration systems in non-integer bases: Rényi systems;
- Redundancy in usual systems in integer base and in Rényi systems;
- Generalized non-integer based numeration systems;

Outline

- Introduction: positional numeration systems and expansions;
- Positional numeration systems in non-integer bases: Rényi systems;
- Redundancy in usual systems in integer base and in Rényi systems;
- Generalized non-integer based numeration systems;
- Existence of unique expansions and critical base;

Outline

- Introduction: positional numeration systems and expansions;
- Positional numeration systems in non-integer bases: Rényi systems;
- Redundancy in usual systems in integer base and in Rényi systems;
- Generalized non-integer based numeration systems;
- Existence of unique expansions and critical base;
- Minimal unique expansions.

Expansions and positional number systems

Fix a base $q>1$ and a finite alphabet $A \subset \mathbb{R}$.
An expansion for the value x is a sequence $\left(x_{i}\right)$ with digits in A s.t.

$$
x=\sum_{i=1}^{\infty} \frac{x_{i}}{q^{i}}
$$

The value x is representable if there exists an expansion of x / q^{N} for some $N \in \mathbb{N}$, namely

$$
x=x_{1} q^{N-1}+x_{2} q^{N-2}+\cdots+x_{N}+\frac{x_{N+1}}{q}+\frac{x_{N+2}}{q^{2}}+\cdots
$$

If any number in the set Λ is representable, then the couple (q, A) is a positional number system for Λ.

Examples

Set $\Lambda=\mathbb{R}^{+} \cup\{0\}$:

- decimal number system $(10,\{0, \ldots, 9\})$;
- binary number system $(2,\{0,1\})$;
- usual number system in base $b: b \in \mathbb{N}, b>1,(b,\{0, \ldots, b-1\})$;

Examples

Set $\Lambda=\mathbb{R}^{+} \cup\{0\}$:

- decimal number system $(10,\{0, \ldots, 9\})$;
- binary number system $(2,\{0,1\})$;
- usual number system in base $b: b \in \mathbb{N}, b>1,(b,\{0, \ldots, b-1\})$;

If $b \in \mathbb{N}, b>1$ then $(-b,\{0, \ldots, b-1\})$ is a positional numeration system for \mathbb{R}.

A non-integer based number system

Theorem (A. Rényi, 1957)

Every non-negative real number can be represented in base $q>1$ and with alphabet $\{0, \ldots,\lfloor q\rfloor\}$.

A non-integer based number system

Theorem (A. Rényi, 1957)

Every non-negative real number can be represented in base $q>1$ and with alphabet $\{0, \ldots,\lfloor q\rfloor\}$.

Example: Golden Mean numeration system.
If $G^{2}=G+1$, namely $G=(1+\sqrt{5}) / 2$ and $\lfloor G\rfloor=1$, every non-negative real number x satisfies:

$$
x=x_{1} G^{N-1}+\cdots+x_{N}+\frac{x_{N+1}}{G}+\frac{x_{N+2}}{G^{2}}+\cdots
$$

for some $N \in \mathbb{N}$ and some $\left(x_{i}\right) \in\{0,1\}^{\omega}$.

A non-integer based number system

Theorem (A. Rényi, 1957)

Every non-negative real number can be represented in base $q>1$ and with alphabet $\{0, \ldots,\lfloor q\rfloor\}$.

Example: Golden Mean numeration system.
If $G^{2}=G+1$, namely $G=(1+\sqrt{5}) / 2$ and $\lfloor G\rfloor=1$, every non-negative real number x satisfies:

$$
x=x_{1} G^{N-1}+\cdots+x_{N}+\frac{x_{N+1}}{G}+\frac{x_{N+2}}{G^{2}}+\cdots
$$

for some $N \in \mathbb{N}$ and some $\left(x_{i}\right) \in\{0,1\}^{\omega}$.
Example: expansions of 1 in base G

$$
1=\frac{1}{G}+\frac{1}{G^{2}}=\frac{1}{G}+\frac{1}{G^{3}}+\cdots+\frac{1}{G^{2 n+1}}+\cdots
$$

Greedy expansions

Greedy expansions

The greedy expansion of x is the lexicographically greatest expansion of x.

Example

The sequence $11(0)^{\infty}$ is the greedy expansion of 1 in base G and with alphabet $\{0,1\}$

$$
1=\frac{1}{G}+\frac{1}{G^{2}}
$$

Digit distribution of greedy expansions

Set $q>1$ and consider the alphabet $A_{q}=\{0, \ldots,\lfloor q\rfloor\}$:

- the greedy expansion $\left(x_{i}\right)$ of x is generated by the iteration of the $\operatorname{map} T_{q}(x)=q x-\lfloor q x\rfloor$, in particular $x_{i}=\left\lfloor q T_{q}^{i-1}(x)\right\rfloor$ [Rényi, 1957];

Digit distribution of greedy expansions

Set $q>1$ and consider the alphabet $A_{q}=\{0, \ldots,\lfloor q\rfloor\}$:

- the greedy expansion $\left(x_{i}\right)$ of x is generated by the iteration of the $\operatorname{map} T_{q}(x)=q x-\lfloor q x\rfloor$, in particular $x_{i}=\left\lfloor q T_{q}^{i-1}(x)\right\rfloor$ [Rényi, 1957];
- there exists a T_{q}-invariant measure μ_{q}, i.e. $\mu_{q}\left(T^{-1}(E)\right)=\mu_{q}(E)$ for every Lebesgue measurable set E [Rényi, 1957];

Digit distribution of greedy expansions

Set $q>1$ and consider the alphabet $A_{q}=\{0, \ldots,\lfloor q\rfloor\}$:

- the greedy expansion $\left(x_{i}\right)$ of x is generated by the iteration of the $\operatorname{map} T_{q}(x)=q x-\lfloor q x\rfloor$, in particular $x_{i}=\left\lfloor q T_{q}^{i-1}(x)\right\rfloor$ [Rényi, 1957];
- there exists a T_{q}-invariant measure μ_{q}, i.e. $\mu_{q}\left(T^{-1}(E)\right)=\mu_{q}(E)$ for every Lebesgue measurable set E [Rényi, 1957];
- the ergodic properties of the system $\left(T_{q}, \mu_{q}\right)$ allow to find an explicit distribution for the digits [Rényi, 1957; Parry, 1960].

Digit distribution of greedy expansions

Set $q>1$ and consider the alphabet $A_{q}=\{0, \ldots,\lfloor q\rfloor\}$:

- the greedy expansion $\left(x_{i}\right)$ of x is generated by the iteration of the $\operatorname{map} T_{q}(x)=q x-\lfloor q x\rfloor$, in particular $x_{i}=\left\lfloor q T_{q}^{i-1}(x)\right\rfloor$ [Rényi, 1957];
- there exists a T_{q}-invariant measure μ_{q}, i.e. $\mu_{q}\left(T^{-1}(E)\right)=\mu_{q}(E)$ for every Lebesgue measurable set E [Rényi, 1957];
- the ergodic properties of the system $\left(T_{q}, \mu_{q}\right)$ allow to find an explicit distribution for the digits [Rényi, 1957; Parry, 1960].

The measure μ_{q} induces an invariant measure on the closure of the greedy expansions endowed with the shift operation.

Redundancy

An expansion is finite if it is definitively equal to the lowest digit of the alphabet.

If $b \in \mathbb{N}, b>1$ and $A=\{0, \ldots, b-1\}$

- every infinite expansion is unique;
- for every finite expansion there exists exactly one different expansion representing the same number:

$$
\frac{x_{1}}{b}+\cdots+\frac{x_{n}}{b^{n}}=\frac{x_{1}}{b}+\cdots+\frac{x_{n}-1}{b^{n}}+\frac{b-1}{b^{n+1}}+\frac{b-1}{b^{n+2}}+\cdots
$$

Redundancy

An expansion is finite if it is definitively equal to the lowest digit of the alphabet.

If $b \in \mathbb{N}, b>1$ and $A=\{0, \ldots, b-1\}$

- every infinite expansion is unique;
- for every finite expansion there exists exactly one different expansion representing the same number:

$$
\frac{x_{1}}{b}+\cdots+\frac{x_{n}}{b^{n}}=\frac{x_{1}}{b}+\cdots+\frac{x_{n}-1}{b^{n}}+\frac{b-1}{b^{n+1}}+\frac{b-1}{b^{n+2}}+\cdots
$$

If $q \in \mathbb{R} \backslash \mathbb{N}, q>1$ and $A=\{0, \ldots,\lfloor q\rfloor\}$

- almost every number in $[0,\lfloor q\rfloor /(q-1)]$ has a continuum of different expansions [Sidorov, 2001].

Expansions in non-integer base with general alphabets

Let $q>1$ and $A=\left\{a_{1}, \cdots, a_{J}\right\}$ such that

$$
\max _{j=1, \ldots, J-1} a_{j+1}-a_{j} \leq \frac{a_{J}-a_{1}}{q-1}
$$

define $I:=\left[a_{1} /(q-1), a_{J} /(q-1)\right]$.
Then:

- every number in I has at a least an expansion [Pedicini, 2005];

Expansions in non-integer base with general alphabets

Let $q>1$ and $A=\left\{a_{1}, \cdots, a_{J}\right\}$ such that

$$
\max _{j=1, \ldots, J-1} a_{j+1}-a_{j} \leq \frac{a_{J}-a_{1}}{q-1}
$$

define $I:=\left[a_{1} /(q-1), a_{J} /(q-1)\right]$.
Then:

- every number in I has at a least an expansion [Pedicini, 2005];
- if

$$
\min _{j=1, \ldots, J-1} a_{j+1}-a_{j}<\frac{a_{J}-a_{1}}{q-1}
$$

then almost every number in I has a continuum of different expansions [L. and Pedicini, 2010].

Redundancy with general alphabets: the critical base

Theorem (Komornik, L. and Pedicini, 2009)
For every alphabet A there exists a critical base G_{A} such that

- if $1<q<G_{A}$ then every number in the interior of I has at least two different expansions;
- if $q>G_{A}$ then there exists some value in I with a unique expansion.

Example. If $A=\{0,1\}$ then G_{A} equals to the Golden Mean. [Daròczy and Katai, 1993].

The ternary case

Due to a normalization we may consider only alphabets of the form

$$
A_{m}=\{0,1, m\}
$$

with $m \geq 2$.

Theorem

Let $G_{A_{m}}$ be the critical base of the alphabet $A_{m}=\{0,1, m\}$ with $m \geq 2$. Then the greedy expansion of either of $m-1$ or of $\frac{m}{G_{A_{m}}-1}-1$ in base $G_{A_{m}}$ is a sturmian sequence.

Further properties of the critical base

- $G_{A_{m}} \in\left[2,1+\sqrt{\frac{m}{m-1}}\right]$;
- $G_{A_{m}}=2$ if and only if $m=2^{k}$ for some $k \in \mathbb{N}$;
- $G_{A_{m}}=1+\sqrt{\frac{m}{m-1}}$ if and only if m belongs to a Cantor set C;
- $G_{A_{m}}$ is continuous w.r.t. m in $[2, \infty)$;
- in every connected component of $[2, \infty) \backslash C$ the critical base $G_{A_{m}}$ is a convex function of m.

Minimal unique expansions

Let $U_{q, A}$ be the set of unique expansions in base q and alphabet A.

- if $1<q<G_{A}$ then $U_{q, A}=\left\{\left(a_{1}\right)^{\omega},\left(a_{J}\right)^{\omega}\right\}$:
- if $q<q^{\prime}$ then $U_{q, A} \subseteq U_{q^{\prime}, A}$

Minimal unique expansions

Let $U_{q, A}$ be the set of unique expansions in base q and alphabet A.

- if $1<q<G_{A}$ then $U_{q, A}=\left\{\left(a_{1}\right)^{\omega},\left(a_{J}\right)^{\omega}\right\}$:
- if $q<q^{\prime}$ then $U_{q, A} \subseteq U_{q^{\prime}, A}$

An expansion is minimal if it belongs to $U_{q, A}$ for every $q>G_{A}$.

We denote U_{A} the set of minimal expansions.

Characterization of minimal expansions

If $G_{A_{m}}<1+\sqrt{m /(m-1)}$ then the greedy expansion in base $G_{A_{m}}$ either of $m-1$ or of $G_{A_{m}}\left(\frac{m}{G_{A_{m}}-1}-1\right)-1$ belongs to $\{1, m\}^{\omega}$ and it is a periodic characteristic sturmian sequence, which we denote $\left(s_{n}\right)$. [Komornik, L. and Pedicini, 2009]

Characterization of minimal expansions

If $G_{A_{m}}<1+\sqrt{m /(m-1)}$ then the greedy expansion in base $G_{A_{m}}$ either of $m-1$ or of $G_{A_{m}}\left(\frac{m}{G_{A_{m}}-1}-1\right)-1$ belongs to $\{1, m\}^{\omega}$ and it is a periodic characteristic sturmian sequence, which we denote $\left(s_{n}\right)$. [Komornik, L. and Pedicini, 2009]

Theorem

If $q_{A_{m}}<1+\sqrt{m /(m-1)}$ then

$$
U_{A}=U_{q, A}
$$

for every $q \in\left(q_{A_{m}}, 1+\sqrt{m /(m-1)}\right]$. Moreover

$$
U_{A}=\left\{(0)^{\infty},(m)^{\infty}\right\} \cup
$$

Characterization of minimal expansions

If $G_{A_{m}}<1+\sqrt{m /(m-1)}$ then the greedy expansion in base $G_{A_{m}}$ either of $m-1 \quad$ or of $\quad G_{A_{m}}\left(\frac{m}{G_{A_{m}}-1}-1\right)-1$ belongs to $\{1, m\}^{\omega}$ and it is a periodic characteristic sturmian sequence, which we denote $\left(s_{n}\right)$. [Komornik, L. and Pedicini, 2009]

Theorem

If $q_{A_{m}}<1+\sqrt{m /(m-1)}$ then

$$
U_{A}=U_{q, A}
$$

for every $q \in\left(q_{A_{m}}, 1+\sqrt{m /(m-1)}\right]$. Moreover

$$
\begin{aligned}
U_{A} & =\left\{(0)^{\infty},(m)^{\infty}\right\} \cup\left\{m^{*} s_{n+1} s_{n+2} \cdots ; n \in \mathbb{N}\right\} \\
& \cup\left\{0^{*} s_{n+1} s_{n+2} \cdots ; s_{n}=1, \sum_{k \geq 1} s_{n+k} / q^{k}<1 ; n \in \mathbb{N}\right\} .
\end{aligned}
$$

Example: critical base for $A_{3}=\{0,1,3\}$

The characteristic sturmian sequence associated to A_{3} is

$$
\mathbf{s}^{(3)}=(31)^{\infty}
$$

Example: critical base for $A_{3}=\{0,1,3\}$

The characteristic sturmian sequence associated to A_{3} is

$$
\mathbf{s}^{(3)}=(31)^{\infty}
$$

The critical base is the solution of

$$
\sum_{i=1}^{\infty} \frac{s_{i}^{(3)}}{q^{i}}=2
$$

namely

$$
\sum_{i=1}^{\infty} \frac{3}{q^{2 i-1}}+\sum_{i=1}^{\infty} \frac{1}{q^{2 i}}=2
$$

and

$$
G_{A_{3}} \sim 2.18614
$$

Example: minimal unique expansions for $A_{3}=\{0,1,3\}$

- If $q \in\left(1, G_{A_{3}}\right]$ then $U_{q, A_{3}}=\left\{(0)^{\omega},(3)^{\omega}\right\}$.
- If $q \in\left(G_{A_{3}}, 1+\sqrt{\frac{3}{2}}\right]$ then

$$
U_{q, A_{3}}=\left\{(0)^{\omega},(3)^{\omega}, 3^{t}(13)^{\omega} \mid t=0,1, \ldots\right\}
$$

and it is recognized by

Conclusions

If $q \in\left[1,1+\sqrt{\frac{m}{m-1}}\right)$ the set $U_{A_{m}}$ is explicitely known, in fact

- if $q_{A_{m}}<1+\sqrt{m /(m-1)}$ the previous theorem applies;
- if $q_{A_{m}}=1+\sqrt{m /(m-1)}$ then $U_{q, A_{m}}=\left\{(0)^{\omega},(m)^{\omega}\right\}$.

Conclusions

If $q \in\left[1,1+\sqrt{\frac{m}{m-1}}\right)$ the set $U_{A_{m}}$ is explicitely known, in fact

- if $q_{A_{m}}<1+\sqrt{m /(m-1)}$ the previous theorem applies;
- if $q_{A_{m}}=1+\sqrt{m /(m-1)}$ then $U_{q, A_{m}}=\left\{(0)^{\omega},(m)^{\omega}\right\}$.

Since uniqueness is preserved by some digit-set operations, the restriction to the normal alphabets does not imply a loss of generality.

Unique expansions with digits in ternary alphabets

Anna Chiara Lai
Istituto per le Applicazioni del Calcolo "Mauro Picone", CNR
June 9, 2010

... thank you for your attention...

