# Unique expansions with digits in ternary alphabets

#### Anna Chiara Lai

#### Istituto per le Applicazioni del Calcolo "Mauro Picone", CNR

June 9, 2010

Anna Chiara Lai (IAC)

June 9, 2010 1 / 18

3

• Introduction: positional numeration systems and expansions;

・ロト ・ 日 ト ・ 日 ト ・ 日 ト ・

- Introduction: positional numeration systems and expansions;
- Positional numeration systems in non-integer bases: Rényi systems;

3

- Introduction: positional numeration systems and expansions;
- Positional numeration systems in non-integer bases: Rényi systems;
- Redundancy in usual systems in integer base and in Rényi systems;

3

- Introduction: positional numeration systems and expansions;
- Positional numeration systems in non-integer bases: Rényi systems;
- Redundancy in usual systems in integer base and in Rényi systems;
- Generalized non-integer based numeration systems;

3

- Introduction: positional numeration systems and expansions;
- Positional numeration systems in non-integer bases: Rényi systems;
- Redundancy in usual systems in integer base and in Rényi systems;
- Generalized non-integer based numeration systems;
- Existence of unique expansions and critical base;

- Introduction: positional numeration systems and expansions;
- Positional numeration systems in non-integer bases: Rényi systems;
- Redundancy in usual systems in integer base and in Rényi systems;
- Generalized non-integer based numeration systems;
- Existence of unique expansions and critical base;
- Minimal unique expansions.

《曰》 《圖》 《圖》 《圖》

#### Expansions and positional number systems

Fix a base q > 1 and a finite alphabet  $A \subset \mathbb{R}$ .

An expansion for the value x is a sequence  $(x_i)$  with digits in A s.t.

$$x = \sum_{i=1}^{\infty} \frac{x_i}{q^i}$$

The value x is representable if there exists an expansion of  $x/q^N$  for some  $N \in \mathbb{N}$ , namely

$$x = x_1 q^{N-1} + x_2 q^{N-2} + \dots + x_N + \frac{x_{N+1}}{q} + \frac{x_{N+2}}{q^2} + \dots$$

If any number in the set  $\Lambda$  is representable, then the couple (q, A) is a positional number system for  $\Lambda$ .

Anna Chiara Lai (IAC)

June 9, 2010 3 / 18

(日) (四) (日) (日) (日)

### Examples

Set  $\Lambda = \mathbb{R}^+ \cup \{0\}$ :

- decimal number system  $(10, \{0, \ldots, 9\});$
- binary number system  $(2, \{0, 1\});$
- usual number system in base  $b: b \in \mathbb{N}, b > 1, (b, \{0, \dots, b-1\});$

▲ロト ▲圖ト ▲画ト ▲画ト 三回 - のへで

### Examples

Set  $\Lambda = \mathbb{R}^+ \cup \{0\}$ :

- decimal number system  $(10, \{0, \ldots, 9\});$
- binary number system  $(2, \{0, 1\});$
- usual number system in base  $b: b \in \mathbb{N}, b > 1, (b, \{0, \dots, b-1\});$

If  $b \in \mathbb{N}, b > 1$  then  $(-b, \{0, \dots, b-1\})$  is a positional numeration system for  $\mathbb{R}$ .

▲ロト ▲圖ト ▲画ト ▲画ト 三回 - のへで

# A non-integer based number system

#### Theorem (A. Rényi, 1957)

Every non-negative real number can be represented in base q > 1 and with alphabet  $\{0, \ldots, \lfloor q \rfloor\}$ .

▲ロト ▲圖ト ▲画ト ▲画ト 三回 - のへで

### A non-integer based number system

#### Theorem (A. Rényi, 1957)

Every non-negative real number can be represented in base q > 1 and with alphabet  $\{0, \ldots, \lfloor q \rfloor\}$ .

Example: Golden Mean numeration system. If  $G^2 = G + 1$ , namely  $G = (1 + \sqrt{5})/2$  and  $\lfloor G \rfloor = 1$ , every non-negative real number x satisfies:

$$x = x_1 G^{N-1} + \dots + x_N + \frac{x_{N+1}}{G} + \frac{x_{N+2}}{G^2} + \dots$$

for some  $N \in \mathbb{N}$  and some  $(x_i) \in \{0, 1\}^{\omega}$ .

(日) (문) (문) (문) (문)

### A non-integer based number system

#### Theorem (A. Rényi, 1957)

Every non-negative real number can be represented in base q > 1 and with alphabet  $\{0, \ldots, \lfloor q \rfloor\}$ .

Example: Golden Mean numeration system. If  $G^2 = G + 1$ , namely  $G = (1 + \sqrt{5})/2$  and  $\lfloor G \rfloor = 1$ , every non-negative real number x satisfies:

$$x = x_1 G^{N-1} + \dots + x_N + \frac{x_{N+1}}{G} + \frac{x_{N+2}}{G^2} + \dots$$

for some  $N \in \mathbb{N}$  and some  $(x_i) \in \{0, 1\}^{\omega}$ .

Example: expansions of 1 in base G

$$1 = \frac{1}{G} + \frac{1}{G^2} = \frac{1}{G} + \frac{1}{G^3} + \dots + \frac{1}{G^{2n+1}} + \dotsb$$

Anna Chiara Lai (IAC)

(日) (周) (王) (王) (王)

# Greedy expansions

#### Greedy expansions

The greedy expansion of x is the lexicographically greatest expansion of x.

#### Example

The sequence  $11(0)^{\infty}$  is the greedy expansion of 1 in base G and with alphabet  $\{0, 1\}$ 

$$1 = \frac{1}{G} + \frac{1}{G^2}.$$

Anna Chiara Lai (IAC)

June 9, 2010 6 / 18

3

Set q > 1 and consider the alphabet  $A_q = \{0, \ldots, \lfloor q \rfloor\}$ :

• the greedy expansion  $(x_i)$  of x is generated by the iteration of the map  $T_q(x) = qx - \lfloor qx \rfloor$ , in particular  $x_i = \lfloor qT_q^{i-1}(x) \rfloor$  [Rényi, 1957];

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

Set q > 1 and consider the alphabet  $A_q = \{0, \ldots, \lfloor q \rfloor\}$ :

- the greedy expansion  $(x_i)$  of x is generated by the iteration of the map  $T_q(x) = qx \lfloor qx \rfloor$ , in particular  $x_i = \lfloor qT_q^{i-1}(x) \rfloor$  [Rényi, 1957];
- there exists a  $T_q$ -invariant measure  $\mu_q$ , i.e.  $\mu_q(T^{-1}(E)) = \mu_q(E)$ for every Lebesgue measurable set E [Rényi, 1957];

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Set q > 1 and consider the alphabet  $A_q = \{0, \ldots, \lfloor q \rfloor\}$ :

- the greedy expansion  $(x_i)$  of x is generated by the iteration of the map  $T_q(x) = qx \lfloor qx \rfloor$ , in particular  $x_i = \lfloor qT_q^{i-1}(x) \rfloor$  [Rényi, 1957];
- there exists a  $T_q$ -invariant measure  $\mu_q$ , i.e.  $\mu_q(T^{-1}(E)) = \mu_q(E)$ for every Lebesgue measurable set E [Rényi, 1957];
- the ergodic properties of the system  $(T_q, \mu_q)$  allow to find an explicit distribution for the digits [Rényi, 1957; Parry, 1960].

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

Set q > 1 and consider the alphabet  $A_q = \{0, \ldots, \lfloor q \rfloor\}$ :

- the greedy expansion  $(x_i)$  of x is generated by the iteration of the map  $T_q(x) = qx \lfloor qx \rfloor$ , in particular  $x_i = \lfloor qT_q^{i-1}(x) \rfloor$  [Rényi, 1957];
- there exists a  $T_q$ -invariant measure  $\mu_q$ , i.e.  $\mu_q(T^{-1}(E)) = \mu_q(E)$ for every Lebesgue measurable set E [Rényi, 1957];
- the ergodic properties of the system  $(T_q, \mu_q)$  allow to find an explicit distribution for the digits [Rényi, 1957; Parry, 1960].

The measure  $\mu_q$  induces an invariant measure on the closure of the greedy expansions endowed with the shift operation.

| Anna | Chiara | Lai ( | (IAC) | ) |
|------|--------|-------|-------|---|
|------|--------|-------|-------|---|

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

#### Redundancy

An expansion is *finite* if it is definitively equal to the lowest digit of the alphabet.

If 
$$b \in \mathbb{N}$$
,  $b > 1$  and  $A = \{0, ..., b - 1\}$ 

- every infinite expansion is unique;
- for every finite expansion there exists exactly one different expansion representing the same number:

$$\frac{x_1}{b} + \dots + \frac{x_n}{b^n} = \frac{x_1}{b} + \dots + \frac{x_n - 1}{b^n} + \frac{b - 1}{b^{n+1}} + \frac{b - 1}{b^{n+2}} + \dots$$

June 9, 2010

8 / 18

Anna Chiara Lai (IAC)

### Redundancy

An expansion is *finite* if it is definitively equal to the lowest digit of the alphabet.

If 
$$b \in \mathbb{N}$$
,  $b > 1$  and  $A = \{0, ..., b - 1\}$ 

- every infinite expansion is unique;
- for every finite expansion there exists exactly one different expansion representing the same number:

$$\frac{x_1}{b} + \dots + \frac{x_n}{b^n} = \frac{x_1}{b} + \dots + \frac{x_n - 1}{b^n} + \frac{b - 1}{b^{n+1}} + \frac{b - 1}{b^{n+2}} + \dots$$

If  $q \in \mathbb{R} \setminus \mathbb{N}$ , q > 1 and  $A = \{0, \dots, \lfloor q \rfloor\}$ 

• almost every number in  $[0, \lfloor q \rfloor/(q-1)]$  has a continuum of different expansions [Sidorov, 2001].

#### Anna Chiara Lai (IAC)

#### Expansions in non-integer base with general alphabets

Let q > 1 and  $A = \{a_1, \cdots, a_J\}$  such that

$$\max_{j=1,\dots,J-1} a_{j+1} - a_j \le \frac{a_J - a_1}{q - 1};$$

define  $I := [a_1/(q-1), a_J/(q-1)].$ Then:

• every number in *I* has at a least an expansion [Pedicini, 2005];

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

#### Expansions in non-integer base with general alphabets

Let q > 1 and  $A = \{a_1, \cdots, a_J\}$  such that

$$\max_{j=1,\dots,J-1} a_{j+1} - a_j \le \frac{a_J - a_1}{q-1};$$

define  $I := [a_1/(q-1), a_J/(q-1)].$ Then:

every number in I has at a least an expansion [Pedicini, 2005];
if

$$\min_{j=1,\dots,J-1} a_{j+1} - a_j < \frac{a_J - a_1}{q - 1},$$

then almost every number in I has a continuum of different expansions [L. and Pedicini, 2010].

Anna Chiara Lai (IAC)

June 9, 2010 9 / 18

# Redundancy with general alphabets: the critical base

#### Theorem (Komornik, L. and Pedicini, 2009)

For every alphabet A there exists a critical base  $G_A$  such that

• if  $1 < q < G_A$  then every number in the interior of I has at least two different expansions;

10 / 18

June 9, 2010

• if  $q > G_A$  then there exists some value in I with a unique expansion.

Example. If  $A = \{0, 1\}$  then  $G_A$  equals to the Golden Mean. [Daròczy and Katai, 1993].

Anna Chiara Lai (IAC)

#### The ternary case

#### Due to a normalization we may consider only alphabets of the form

$$A_m = \{0, 1, m\}$$

with  $m \geq 2$ .

#### Theorem

Let  $G_{A_m}$  be the critical base of the alphabet  $A_m = \{0, 1, m\}$  with  $m \ge 2$ . Then the greedy expansion of either of m - 1 or of  $\frac{m}{G_{A_m} - 1} - 1$  in base  $G_{A_m}$  is a sturmian sequence.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

#### Further properties of the critical base



• 
$$G_{A_m} \in [2, 1 + \sqrt{\frac{m}{m-1}}];$$

- $G_{A_m} = 2$  if and only if  $m = 2^k$  for some  $k \in \mathbb{N}$ ;
- $G_{A_m} = 1 + \sqrt{\frac{m}{m-1}}$  if and only if m belongs to a Cantor set C;
- $G_{A_m}$  is continuous w.r.t. m in  $[2, \infty)$ ;
- in every connected component of  $[2,\infty) \setminus C$  the critical base  $G_{A_m}$  is a convex function of m.

Anna Chiara Lai (IAC)

### Minimal unique expansions

Let  $U_{q,A}$  be the set of unique expansions in base q and alphabet A.

- if  $1 < q < G_A$  then  $U_{q,A} = \{(a_1)^{\omega}, (a_J)^{\omega}\}$ :
- if q < q' then  $U_{q,A} \subseteq U_{q',A}$

◆□▶ ◆圖▶ ◆画▶ ◆画▶ 三回 - のへで

### Minimal unique expansions

Let  $U_{q,A}$  be the set of unique expansions in base q and alphabet A.

• if 
$$1 < q < G_A$$
 then  $U_{q,A} = \{(a_1)^{\omega}, (a_J)^{\omega}\}$ :

• if 
$$q < q'$$
 then  $U_{q,A} \subseteq U_{q',A}$ 

An expansion is *minimal* if it belongs to  $U_{q,A}$  for every  $q > G_A$ .

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

13 / 18

June 9, 2010

We denote  $U_A$  the set of minimal expansions.

Anna Chiara Lai (IAC)

### Characterization of minimal expansions

If  $G_{A_m} < 1 + \sqrt{m/(m-1)}$  then the greedy expansion in base  $G_{A_m}$  either of m-1 or of  $G_{A_m}\left(\frac{m}{G_{A_m}-1}-1\right)-1$  belongs to  $\{1,m\}^{\omega}$  and it is a periodic characteristic sturmian sequence, which we denote  $(s_n)$ . [Komornik, L. and Pedicini, 2009]

▲□▶ ▲御▶ ▲臣▶ ▲臣▶ ―臣 \_ のへ⊙

### Characterization of minimal expansions

If  $G_{A_m} < 1 + \sqrt{m/(m-1)}$  then the greedy expansion in base  $G_{A_m}$  either of m-1 or of  $G_{A_m}\left(\frac{m}{G_{A_m}-1}-1\right)-1$  belongs to  $\{1,m\}^{\omega}$  and it is a periodic characteristic sturmian sequence, which we denote  $(s_n)$ . [Komornik, L. and Pedicini, 2009]

#### Theorem

If 
$$q_{A_m} < 1 + \sqrt{m/(m-1)}$$
 then  

$$U_A = U_{q,A}$$
for every  $q \in (q_{A_m}, 1 + \sqrt{m/(m-1)}]$ . Moreover  

$$U_A = \{(0)^{\infty}, (m)^{\infty}\} \cup$$

### Characterization of minimal expansions

If  $G_{A_m} < 1 + \sqrt{m/(m-1)}$  then the greedy expansion in base  $G_{A_m}$  either of m-1 or of  $G_{A_m}\left(\frac{m}{G_{A_m}-1}-1\right)-1$  belongs to  $\{1,m\}^{\omega}$  and it is a periodic characteristic sturmian sequence, which we denote  $(s_n)$ . [Komornik, L. and Pedicini, 2009]

#### Theorem

If 
$$q_{A_m} < 1 + \sqrt{m/(m-1)}$$
 then  
 $U_A = U_{q,A}$   
for every  $q \in (q_{A_m}, 1 + \sqrt{m/(m-1)}]$ . Moreover  
 $U_A = \{(0)^{\infty}, (m)^{\infty}\} \cup \{m^* s_{n+1} s_{n+2} \cdots; n \in \mathbb{N}\}$   
 $\cup \{0^* s_{n+1} s_{n+2} \cdots; s_n = 1, \sum_{k \ge 1} s_{n+k}/q^k < 1; n \in \mathbb{N}\}.$ 

Anna Chiara Lai (IAC)

Example: critical base for  $A_3 = \{0, 1, 3\}$ 

The characteristic sturmian sequence associated to  $A_3$  is

 $\mathbf{s}^{(3)} = (31)^{\infty}$ 

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q ()

Example: critical base for  $A_3 = \{0, 1, 3\}$ 

The characteristic sturmian sequence associated to  $A_3$  is

 $\mathbf{s}^{(3)} = (31)^{\infty}$ 

The critical base is the solution of

$$\sum_{i=1}^{\infty} \frac{s_i^{(3)}}{q^i} = 2$$

namely

$$\sum_{i=1}^{\infty} \frac{3}{q^{2i-1}} + \sum_{i=1}^{\infty} \frac{1}{q^{2i}} = 2$$

and

 $G_{A_3} \sim 2.18614$ 

Anna Chiara Lai (IAC)

June 9, 2010 15 / 18

Example: minimal unique expansions for  $A_3 = \{0, 1, 3\}$ 

$$U_{q,A_3} = \{(0)^{\omega}, (3)^{\omega}, 3^t(13)^{\omega} \mid t = 0, 1, \dots\}$$

and it is recognized by



Anna Chiara Lai (IAC)

June 9, 2010 16 / 18

# Conclusions

If 
$$q \in [1, 1 + \sqrt{\frac{m}{m-1}})$$
 the set  $U_{A_m}$  is explicitely known, in fact  
• if  $q_{A_m} < 1 + \sqrt{m/(m-1)}$  the previous theorem applies;  
• if  $q_{A_m} = 1 + \sqrt{m/(m-1)}$  then  $U_{q,A_m} = \{(0)^{\omega}, (m)^{\omega}\}.$ 

Anna Chiara Lai (IAC)

June 9, 2010 17 / 18

### Conclusions

If 
$$q \in [1, 1 + \sqrt{\frac{m}{m-1}})$$
 the set  $U_{A_m}$  is explicitely known, in fact  
• if  $q_{A_m} < 1 + \sqrt{m/(m-1)}$  the previous theorem applies;  
• if  $q_{A_m} = 1 + \sqrt{m/(m-1)}$  then  $U_{q,A_m} = \{(0)^{\omega}, (m)^{\omega}\}$ .

Since uniqueness is preserved by some digit-set operations, the restriction to the normal alphabets does not imply a loss of generality.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ のへで

# Unique expansions with digits in ternary alphabets

#### Anna Chiara Lai

#### Istituto per le Applicazioni del Calcolo "Mauro Picone", CNR

June 9, 2010

... thank you for your attention...

Anna Chiara Lai (IAC)

June 9, 2010 18 / 18

= 900