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Expansions and positional number systems

Fix a base q > 1 and a finite alphabet A ⊂ R.

An expansion for the value x is a sequence (xi) with digits in A s.t.

x =
∞

∑

i=1

xi

qi

The value x is representable if there exists an expansion of x/qN for
some N ∈ N, namely

x = x1q
N−1 + x2q

N−2 + · · · + xN +
xN+1

q
+

xN+2

q2
+ · · ·

If any number in the set Λ is representable, then the couple (q,A) is a
positional number system for Λ.
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Examples

Set Λ = R
+ ∪ {0}:

decimal number system (10, {0, . . . , 9});
binary number system (2, {0, 1});
usual number system in base b: b ∈ N, b > 1, (b, {0, . . . , b − 1});
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decimal number system (10, {0, . . . , 9});
binary number system (2, {0, 1});
usual number system in base b: b ∈ N, b > 1, (b, {0, . . . , b − 1});

If b ∈ N, b > 1 then (−b, {0, . . . , b − 1}) is a positional numeration
system for R.
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A non-integer based number system

Theorem (A. Rényi, 1957)

Every non-negative real number can be represented in base q > 1 and

with alphabet {0, . . . , ⌊q⌋}.
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If G2 = G + 1, namely G = (1 +

√
5)/2 and ⌊G⌋ = 1, every

non-negative real number x satisfies:

x = x1G
N−1 + · · · + xN +

xN+1

G
+

xN+2

G2
+ · · ·

for some N ∈ N and some (xi) ∈ {0, 1}ω .

Example: expansions of 1 in base G

1 =
1

G
+

1

G2
=

1

G
+

1

G3
+ · · · + 1

G2n+1
+ · · ·
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Greedy expansions

Greedy expansions

The greedy expansion of x is the lexicographically greatest expansion of
x.

Example
The sequence 11(0)∞ is the greedy expansion of 1 in base G and with
alphabet {0, 1}

1 =
1

G
+

1

G2
.
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Digit distribution of greedy expansions

Set q > 1 and consider the alphabet Aq = {0, . . . , ⌊q⌋}:
the greedy expansion (xi) of x is generated by the iteration of the
map Tq(x) = qx − ⌊qx⌋, in particular xi = ⌊qT i−1

q (x)⌋ [Rényi,
1957];
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Set q > 1 and consider the alphabet Aq = {0, . . . , ⌊q⌋}:
the greedy expansion (xi) of x is generated by the iteration of the
map Tq(x) = qx − ⌊qx⌋, in particular xi = ⌊qT i−1

q (x)⌋ [Rényi,
1957];

there exists a Tq-invariant measure µq, i.e. µq(T
−1(E)) = µq(E)

for every Lebesgue measurable set E [Rényi, 1957];

the ergodic properties of the system (Tq, µq) allow to find an
explicit distribution for the digits [Rényi, 1957; Parry, 1960].

The measure µq induces an invariant measure on the closure of the
greedy expansions endowed with the shift operation.
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Redundancy

An expansion is finite if it is definitively equal to the lowest digit of the
alphabet.

If b ∈ N, b > 1 and A = {0, . . . , b − 1}
every infinite expansion is unique;

for every finite expansion there exists exactly one different
expansion representing the same number:

x1

b
+ · · · + xn

bn
=

x1

b
+ · · · + xn − 1

bn
+

b − 1

bn+1
+

b − 1

bn+2
+ · · ·
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every infinite expansion is unique;

for every finite expansion there exists exactly one different
expansion representing the same number:

x1

b
+ · · · + xn

bn
=

x1

b
+ · · · + xn − 1

bn
+

b − 1

bn+1
+

b − 1

bn+2
+ · · ·

If q ∈ R \ N, q > 1 and A = {0, . . . , ⌊q⌋}
almost every number in [0, ⌊q⌋/(q − 1)] has a continuum of
different expansions [Sidorov, 2001].
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Expansions in non-integer base with general alphabets

Let q > 1 and A = {a1, · · · , aJ} such that

max
j=1,...,J−1

aj+1 − aj ≤
aJ − a1

q − 1
;

define I := [a1/(q − 1), aJ/(q − 1)].
Then:

every number in I has at a least an expansion [Pedicini, 2005];
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q − 1
;

define I := [a1/(q − 1), aJ/(q − 1)].
Then:

every number in I has at a least an expansion [Pedicini, 2005];

if

min
j=1,...,J−1

aj+1 − aj <
aJ − a1

q − 1
,

then almost every number in I has a continuum of different
expansions [L. and Pedicini, 2010].
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Redundancy with general alphabets: the critical base

Theorem (Komornik, L. and Pedicini, 2009)

For every alphabet A there exists a critical base GA such that

if 1 < q < GA then every number in the interior of I has at least

two different expansions;

if q > GA then there exists some value in I with a unique

expansion.

Example. If A = {0, 1} then GA equals to the Golden Mean.
[Daròczy and Katai, 1993].
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The ternary case

Due to a normalization we may consider only alphabets of the form

Am = {0, 1,m}

with m ≥ 2.

Theorem

Let GAm
be the critical base of the alphabet Am = {0, 1,m} with m ≥ 2.

Then the greedy expansion of either of m − 1 or of m
GAm

−1 − 1 in base

GAm
is a sturmian sequence.
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Further properties of the critical base

2.5 3 3.5 4

2.1
2.2
2.3
2.4
2.5

GAm
∈ [2, 1 +

√

m
m−1 ];

GAm
= 2 if and only if m = 2k for some k ∈ N;

GAm
= 1 +

√

m
m−1 if and only if m belongs to a Cantor set C;

GAm
is continuous w.r.t. m in [2,∞);

in every connected component of [2,∞) \ C the critical base GAm

is a convex function of m.
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Minimal unique expansions

Let Uq,A be the set of unique expansions in base q and alphabet A.

if 1 < q < GA then Uq,A = {(a1)
ω, (aJ )ω}:

if q < q′ then Uq,A ⊆ Uq′,A
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Minimal unique expansions

Let Uq,A be the set of unique expansions in base q and alphabet A.

if 1 < q < GA then Uq,A = {(a1)
ω, (aJ )ω}:

if q < q′ then Uq,A ⊆ Uq′,A

An expansion is minimal if it belongs to Uq,A for every q > GA.

We denote UA the set of minimal expansions.
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Characterization of minimal expansions

If GAm
< 1 +

√

m/(m − 1) then the greedy expansion in base GAm
either of

m− 1 or of GAm

(

m

GAm
−1

− 1
)

− 1 belongs to {1, m}ω and it is a periodic

characteristic sturmian sequence, which we denote (sn). [Komornik, L. and

Pedicini, 2009]
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− 1
)

− 1 belongs to {1, m}ω and it is a periodic

characteristic sturmian sequence, which we denote (sn). [Komornik, L. and

Pedicini, 2009]

Theorem

If qAm
< 1 +

√

m/(m − 1) then

UA = Uq,A

for every q ∈ (qAm
, 1 +

√

m/(m − 1)]. Moreover

UA = {(0)∞, (m)∞} ∪ {m∗sn+1sn+2 · · · ;n ∈ N}
∪ {0∗sn+1sn+2 · · · ; sn = 1,

∑

k≥1

sn+k/q
k < 1;n ∈ N}.
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Example: critical base for A3 = {0, 1, 3}
The characteristic sturmian sequence associated to A3 is

s
(3) = (31)∞
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Example: critical base for A3 = {0, 1, 3}
The characteristic sturmian sequence associated to A3 is

s
(3) = (31)∞

The critical base is the solution of

∞
∑

i=1

s
(3)
i

qi
= 2

namely
∞

∑

i=1

3

q2i−1
+

∞
∑

i=1

1

q2i
= 2

and

GA3
∼ 2.18614
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Example: minimal unique expansions for A3 = {0, 1, 3}
If q ∈ (1, GA3

] then Uq,A3
= {(0)ω , (3)ω}.

If q ∈ (GA3
, 1 +

√

3
2 ] then

Uq,A3
= {(0)ω , (3)ω , 3t(13)ω | t = 0, 1, . . . }

and it is recognized by

0

1

3

1
31

0 3
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Conclusions

If q ∈ [1, 1 +
√

m
m−1 ) the set UAm

is explicitely known, in fact

if qAm
< 1 +

√

m/(m − 1) the previous theorem applies;

if qAm
= 1 +

√

m/(m − 1) then Uq,Am
= {(0)ω , (m)ω}.
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Conclusions

If q ∈ [1, 1 +
√

m
m−1 ) the set UAm

is explicitely known, in fact

if qAm
< 1 +

√

m/(m − 1) the previous theorem applies;

if qAm
= 1 +

√

m/(m − 1) then Uq,Am
= {(0)ω , (m)ω}.

Since uniqueness is preserved by some digit-set operations, the
restriction to the normal alphabets does not imply a loss of generality.
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