Linear dependent types and intensional
expressivity

Ugo Dal Lago and Marco Gaboardi

Dipartimento di Scienze dell’ Informazione - Universita di Bologna

Concerto Final Meeting Torino — 11th June 2010 -1/ 20

Aim of this presentation

| present awork in (very) progress that aims at provide a general framework for
Implicit computational complexity.

What you need to retain:

“Intensional completenessisimportant and we can treat it in non trivial ways’

Concerto Final Meeting Torino — 11th June 2010 -2/ 20

Four yearsago...

Un the Intensional Expressive Power
of Bounded Calcul

Work in Pr gress

Lige Dal Lago

Dipartimnento di Informatica
Universitd di Vercaa

FOLLIA workshop on Implocit Complexaty, January 18th 2005

Concerto Final Meeting Torino — 11th June 2010 -3/ 20

Classical Implicit Computational Complexity

O The usual scenario:
— You pick up acomplexity classC, e.g. PTIME, LOGSPACE, etc.

— Starting from a programming language or logical system P, you isolate a
subclass P* of P.

— Then, you prove:

Soundness: that every program in P* is computable in time (or space)
bounded by afunctioninC.

Completeness. every function computable in time (or space) bounded
by afunction inC isrepresentablein P*

O Herewe have a mismatch!

Soundness is proved intensionally but completenessis proved extensionally.

Concerto Final Meeting Torino — 11th June 2010 -4/ 20

Towards | ntensionality

O We can replace the usual statement:

Completeness: Every function computable in time (or space)
bounded by afunction in C is shown to be representable in P*.

with the following one

Intensional Completeness: the subclass P* contains every P
program computable in time (or space) bounded by a functionin C.

O Intensional completenessis far more interesting from a programming
perspectivel

O Unfortunately, if P* issound and intensionally complete, then P* is not
recursively enumerable, provided P* and C are nontrivial.

0 What should we do?

Concerto Final Meeting Torino — 11th June 2010 -5/ 20

A paradigm shift...

O The proof assistant community has already considered a similar question:
“how to deal with interesting intrinsically non decidable properties?’

O TheInteractive Proof Assistants solution isto consider strong logical systems
(e.g. CiC) where such properties could be described, loosing in thisway full
automatization.

O Wethink that asimilar approach is needed here. By a dogan:

“We need to consider serioudly the development of intensional complete
systems, leaving the decidability to an external task.”

Concerto Final Meeting Torino — 11th June 2010 -6/ 20

A first source of inspiration: Bounded Recursion on Notation

O In hisseminal work, Cobham has introduced Bounded Recursion on Notation
BRN asthe functional counterpart of the class of function computable by a
Deterministic Turing Machine in Polynomial time PTIME.

O Using a Recursion on Notation scheme, we can also define alanguage for the
Primitive Recursive Functions. Let us name this system PRN.

O Clearly, we have:
BRN C PRN

O Infact, we have something more. Bounded Recursion on Notation is
Intensionally hereditary polytime complete with respect to PRN programs, i.e.
If aPRN program P and all its parts P, are polytime, then P € BRN.

Concerto Final Meeting Torino — 11th June 2010 -7/ 20

A second source of inspiration: Bounded Linear Logic

Resource Polynomials:

D= Yiem ik ()

Formulae:

o,7Ti=a(p) | o7 |0 —T1 | Voo |lo

Rules:

o <o (az) TE -+ () [olr:=0]F7

(d)

U0, lycyolz i =p+yl-7 p+yfreeforzine

C
L !x<p+q+w0 =T ()

cqi@)o1ly = vi(@) + 2], e @) Only = vn(x) + 2] T

()

!y<v7;(p)+w1 O1y -y !y<vn(p)+wn0n |_!x<p7_

Concerto Final Meeting Torino — 11th June 2010 -8/ 20

Dependent ML - 1

O In hisphd thesis, Hongwei Xi has proposed alanguage, named Dependent
ML (DML), obtained by extending the ML language and type system by
means of alimited form of dependent types.

O Thegoal wasto achieve a system where “it is possible to specify and infer
precise type information facilitating program error detection and compiler
optimization.”

O Concretely, dependent types appear in DML types and terms in the form of
type index objects, built starting by a constraint index language £, and in the
form of universal and existential quantification over type index variables.

O The constraint index language £ can be choose arbitrarily. E.g. linear
Inequalities over integers, boolean constraints, finite sets, etc.

O Inthisway type checking is reduced to constraint satisfaction in L.

Concerto Final Meeting Torino — 11th June 2010 -9/ 20

Dependent ML - An example

datatype ‘a list = nil | cons of 'a * ’a list
typeref ’a list of nat with (# indexing the datatype ’a list with nat)
nil <| ’a 1list(0)
| cons <| {n:nat} ’a * ’a list(n) -> ’a list(n+1)

fun(’a)
append(nil, ys) = ys
| append(cons(x, xs), ys) = cons(x, append(xs, ys))
where append <| {m:nat}{n:nat} ’a list(m) * ’'a list(n) -> ’a list(m+n)

fix append : IIm : nat.Iln : nat.intlist(m) * intlist(n) = intlist(m + n).
Am : nat.An : nat.lam [: intlist{(m) * intlist(n).
case [of
{nil, ys) => ys
(consla)((z, 24)),ys) = consla + nl((z, appendla][n)((zs, ys)))

fun append[0] [n] (nil, ys) = ys
| append[a+1][n] (cons[a]l(x, xs), ys) = cons[atn](x, append[a][n](xs, ys))
where append <| {m:nat}{n:nat} intlist{m) * intlist(n) -> intlist(m+n)

Concerto Final Meeting Torino — 11th June 2010 -10/ 20

Dependent ML - 2

O Dependent typesin DML appearsin avery weak form, nevertheless they add
an impressive reasoning power.

O Inparticular, the indexing terms can be used to statically capture several run
time information about the program execution.

O The obtained information can be used to check whether the program satisfies
certain properties or not.

O Conversaly, by imposing a priori constraints on the shape of indexing terms
only programs with an intended behaviour can be allowed.

O Unfortunately, DML seems not sufficient to reason about the implicit
complexity of higher order programs.

Concerto Final Meeting Torino — 11th June 2010 —-11/ 20

Our scenario: combining Linearity and Dependent Types

Step 1. Takeasimple (Typed) Turing Complete functional programming
language, e.qg. PCF or better for the moment afixpoint free PCF.

Step 2. Dissect it through the usual linear logic decomposition.

Step 3 Decorate the type derivations by means of index terms, built by a
particular constraint index language, representing information about
program time bound and computed val ues.

Step 4: Check whether the constraints generated at the previous step can be
satisfied or not.

Concerto Final Meeting Torino — 11th June 2010 - 12/ 20

|ndex language

v o= olf{a:y |1} | v+]y Xy Index sort

S = 0]S,CMiy XXy, = index signatures

[= a|0|I4+1|=1L]|£"(I,...,L,) |split(I) index terms

| inl(I) | inr(I) | (Iy, Iz) | w1 (T) | m2(D)

¢ = 0]d,a:v|o,l index contexts

p = e|lpofa—T) Index substitutions
O We need to provide index terms that can be used both in types and terms.
O Index terms are sorted and sorts can depend on index terms.
O Constant and function symbols C are equipped with a signature.
O We aso need to define index contexts and substitutions.

Concerto Final Meeting Torino — 11th June 2010 - 13/ 20

Sorting rulesfor the Index language

#(a) = 5 pFT:0

pFa:y (v.s0r) pF0:o0 (0-s0rt) pFI+1:0 (s.50r)

S(C")=1Tldy x - Xy, =7 dFIg:y (1<k<n)
(c.sort)

SFC'(Th, ... 0,):

¢Fa:{ar:v|I}
oFa:~y

pFL:v ¢,a:vFIi:0 ¢EL{a—TI)
oF1:{a:v|1i}

(v.sub)

(c.sub)

The intended model of our index term language is an Herbrand-Gddel equational
system £ over natural numbers. l.e. ¢ = I whenever £(¢) Epa £(1)

Concerto Final Meeting Torino — 11th June 2010 - 14/ 20

Type and Term Language Syntax

O Typesaregiven by the following grammar:

o,7 = Nat|l]|1|!go|oc—<T|o®@7|lla:vy.o|Xa:v.0 Types

O WeuseaWadler style linear lambda calculus with patterns. The syntax is
given by the following grammar:

p = x|lzx|lzx|!(r) patterns
t = x| x, | O[] |s[I(t) | Ap-t|tu]|!len(t) |t terms
case t of Ola] — u | sla] (n) — v | fix x.t

O Every constructor comes with a particular type signature. In particular:

S(0) = Ila : o.Nat|0] S(s) = lla : o.Nat|a| — Nat|a + 1]

Concerto Final Meeting Torino — 11th June 2010 - 15/ 20

Typingrules- 1

Multiplicative rules:
o;'p:obt:T

¢;I:UI_IE:O(AZE) qﬁ;r,p:UFAp.t:a—oT(_o)
o I'-t:o Q”:UET(_) o;I'-t:o0—T gb;Al—u:O(A)
o; 't o O; I AFtu:T p
o;l'x:oy:7Ht: 1 o I'Ft:o0 ¢o;AFu:T

Pattern matching rules:

0 pFI1:0 ¢;T'Ft:Nat|l]
¢;F 0[0] : Nat|0] (0) ¢; ' = s[I|(t) : Nat |l + 1] (s)

o;I'Ft:Natll] ¢,a:0,0=LAFru:0 ¢,a:0,a+1=1An:Natla|Fv:o
;' AF casetof Olal| — ul|slal(n)—wv:0o

Concerto Final Meeting Torino — 11th June 2010 - 16/ 20

Typing rules- 2

Exponential Rules:

o;DEt:T (w) o; 0 y:ola— I Ht:T gbl—I:y(d)
;0 x g ob-teT ¢; T 1o t[a:@HI)/y] T

O; Ty gy 0,2 o B L T
¢; 1, x gy 1v,0la — split(a)] F t[(a—split(a /y7 2T

(¢)

¢7F7 'y :!ali"ﬂ!agi’yga =t

(9)
IS a’hx’m [al — T (CL), az 772<CL>] = t[x<a1|—>7r1(), a2 (/y]
(b’a'%xl'01,---,$n:0n|—t:7 (p)
¢7 X1 - a"yo-ly . 'ZCn :!a:,yo'n l_!a:fyt :!a:fyT p

Concerto Final Meeting Torino — 11th June 2010 —-17/ 20

Some examples.

Clearly we have natural numbers that are decorated in atrivial way:
;F0[0] : Nat|0] --- ;F s[0+ 1](s[0]0[0]) : Nat|[(0O+ 1)+ 1]
Consider the following sorts:
71 ={a:0|even(a)} 72 =4a:0|a=0Vodd(a)}
Then we have aterm as:

A2 sprit(a)) © Tiamsplit(a))
with type

la:yy ++, (Nat|a] —o Nat[a + 1]) — (Nat|a| — Nat|a + 1])®(Nat|a| — Nat|a + 1])

Such aterm can be applied only to terms acting as successor for zero but we keep
more informations.

Concerto Final Meeting Torino — 11th June 2010 - 18/ 20

What we expect. .. future works

O We areworking to prove that the present framework well behaves, i.e. it
enjoys some standard properties, e.g. substitution properties. Note that they
can turn to be non trivial in such a context.

O We need to develop a general form of soundness property relative to the
Involved constraint language. In particular, we need to extend to this
framework Hofmann's realizability technique.

O Conversely, we expect to obtain a proof of the intensional completenessin
terms of expressivity with respect of the considered language.

O If we succeed in the above points, we would then consider the remaining
constructions, in particular fixpoints. We expect that while in DML they are
treated in a straightforward way, here they involve more difficulties.

O Finaly, we plan to explore complex large examples in this framework.

Concerto Final Meeting Torino — 11th June 2010 -19/ 20

Thanks!

Concerto Final Meeting Torino — 11th June 2010 —-20/ 20

