
Concerto Final Meeting Torino – 11th June 2010 – 1 / 20

Linear dependent types and intensional
expressivity

Ugo Dal Lago and Marco Gaboardi

Dipartimento di Scienze dell’Informazione - Università di Bologna

Aim of this presentation

Concerto Final Meeting Torino – 11th June 2010 – 2 / 20

I present a work in (very) progress that aims at provide a general framework for
implicit computational complexity.

What you need to retain:

“Intensional completeness is important and we can treat it in non trivial ways”

Four years ago...

Concerto Final Meeting Torino – 11th June 2010 – 3 / 20

Classical Implicit Computational Complexity

Concerto Final Meeting Torino – 11th June 2010 – 4 / 20

� The usual scenario:

– You pick up a complexity class C, e.g. PTIME, LOGSPACE, etc.

– Starting from a programming language or logical system P , you isolate a
subclass P∗ of P .

– Then, you prove:

Soundness: that every program in P∗ is computable in time (or space)
bounded by a function in C.

Completeness: every function computable in time (or space) bounded
by a function in C is representable in P ∗

� Here we have a mismatch!

Soundness is proved intensionally but completeness is proved extensionally.

Towards Intensionality

Concerto Final Meeting Torino – 11th June 2010 – 5 / 20

� We can replace the usual statement:

Completeness: Every function computable in time (or space)
bounded by a function in C is shown to be representable in P ∗.

with the following one

Intensional Completeness: the subclass P ∗ contains every P
program computable in time (or space) bounded by a function in C.

� Intensional completeness is far more interesting from a programming
perspective!

� Unfortunately, if P∗ is sound and intensionally complete, then P ∗ is not
recursively enumerable, provided P∗ and C are nontrivial.

� What should we do?

A paradigm shift...

Concerto Final Meeting Torino – 11th June 2010 – 6 / 20

� The proof assistant community has already considered a similar question:

“how to deal with interesting intrinsically non decidable properties?”

� The Interactive Proof Assistants solution is to consider strong logical systems
(e.g. CiC) where such properties could be described, loosing in this way full
automatization.

� We think that a similar approach is needed here. By a slogan:

“We need to consider seriously the development of intensional complete
systems, leaving the decidability to an external task.”

A first source of inspiration: Bounded Recursion on Notation

Concerto Final Meeting Torino – 11th June 2010 – 7 / 20

� In his seminal work, Cobham has introduced Bounded Recursion on Notation
BRN as the functional counterpart of the class of function computable by a
Deterministic Turing Machine in Polynomial time PTIME.

� Using a Recursion on Notation scheme, we can also define a language for the
Primitive Recursive Functions. Let us name this system PRN.

� Clearly, we have:
BRN ⊆ PRN

� In fact, we have something more. Bounded Recursion on Notation is
intensionally hereditary polytime complete with respect to PRN programs, i.e.
if a PRN program P and all its parts Pi are polytime, then P ∈ BRN.

A second source of inspiration: Bounded Linear Logic

Concerto Final Meeting Torino – 11th June 2010 – 8 / 20

Resource Polynomials:

p ::= ∑
j≤m

∏
i≤k

(xi,j
ni,j

)

Formulae:
σ, τ ::= α(�p) | σ ⊗ τ | σ � τ | ∀α.σ | !x<pσ

Rules:

σ ≤ σ′

σ � σ′ (ax) Γ � τ
Γ, !x<wσ � τ

(w)
Γ, σ[x := 0] � τ

Γ, !x<1+wσ � τ
(d)

Γ, !x<pσ, !y<qσ[x := p + y] � τ p + y free for x in σ

Γ, !x<p+q+wσ � τ
(c)

!z<q1(x)σ1[y := v1(x) + z], . . . , !z<qn(x)σn[y := vn(x) + z] � τ

!y<vi(p)+w1
σ1, . . . , !y<vn(p)+wn

σn �!x<pτ
(p)

Dependent ML - 1

Concerto Final Meeting Torino – 11th June 2010 – 9 / 20

� In his phd thesis, Hongwei Xi has proposed a language, named Dependent
ML (DML), obtained by extending the ML language and type system by
means of a limited form of dependent types.

� The goal was to achieve a system where “it is possible to specify and infer
precise type information facilitating program error detection and compiler
optimization.”

� Concretely, dependent types appear in DML types and terms in the form of
type index objects, built starting by a constraint index language L, and in the
form of universal and existential quantification over type index variables.

� The constraint index language L can be choose arbitrarily. E.g. linear
inequalities over integers, boolean constraints, finite sets, etc.

� In this way type checking is reduced to constraint satisfaction in L.

Dependent ML - An example

Concerto Final Meeting Torino – 11th June 2010 – 10 / 20

Dependent ML - 2

Concerto Final Meeting Torino – 11th June 2010 – 11 / 20

� Dependent types in DML appears in a very weak form, nevertheless they add
an impressive reasoning power.

� In particular, the indexing terms can be used to statically capture several run
time information about the program execution.

� The obtained information can be used to check whether the program satisfies
certain properties or not.

� Conversely, by imposing a priori constraints on the shape of indexing terms
only programs with an intended behaviour can be allowed.

� Unfortunately, DML seems not sufficient to reason about the implicit
complexity of higher order programs.

Our scenario: combining Linearity and Dependent Types

Concerto Final Meeting Torino – 11th June 2010 – 12 / 20

Step 1: Take a simple (Typed) Turing Complete functional programming
language, e.g. PCF or better for the moment a fixpoint free PCF.

Step 2: Dissect it through the usual linear logic decomposition.

Step 3: Decorate the type derivations by means of index terms, built by a
particular constraint index language, representing information about
program time bound and computed values.

Step 4: Check whether the constraints generated at the previous step can be
satisfied or not.

Index language

Concerto Final Meeting Torino – 11th June 2010 – 13 / 20

γ ::= o | {a : γ | I} | γ + γ | γ × γ index sort

S ::= ∅ | S, Cn : γ1 × · · · × γn → γ index signatures

I ::= a | 0 | I + 1 | I1 .= I2 | fn(I1, . . . , In) | split(I) index terms

| inl(I) | inr(I) | 〈I1, I2〉 | π1(I) | π2(I)
φ ::= ∅ | φ, a : γ | φ, I index contexts

ρ ::= ε | ρ ◦ 〈a �→ I〉 index substitutions

� We need to provide index terms that can be used both in types and terms.

� Index terms are sorted and sorts can depend on index terms.

� Constant and function symbols C are equipped with a signature.

� We also need to define index contexts and substitutions.

Sorting rules for the Index language

Concerto Final Meeting Torino – 11th June 2010 – 14 / 20

φ(a) = γ

φ � a : γ
(v.sort)

φ � 0 : o
(0.sort)

φ � I : o

φ � I + 1 : o
(s.sort)

S(Cn) = Π�a.γ1 × · · · × γn → γ φ � Ik : γk (1 ≤ k ≤ n)
φ � Cn(I1, . . . , In) : γ

(c.sort)

φ � a : {a1 : γ | I}
φ � a : γ

(v.sub)

φ � I : γ φ, a : γ � I1 : o φ |= I1〈a �→ I〉
φ � I : {a : γ | I1} (c.sub)

The intended model of our index term language is an Herbrand-Gödel equational
system E over natural numbers. I.e. φ |= I whenever E(φ) |=HG E(I)

Type and Term Language Syntax

Concerto Final Meeting Torino – 11th June 2010 – 15 / 20

� Types are given by the following grammar:

σ, τ ::= Nat[I] | 1 | !a:γσ | σ � τ | σ ⊗ τ | Πa : γ.σ | Σa : γ.σ Types

� We use a Wadler style linear lambda calculus with patterns. The syntax is
given by the following grammar:

p ::= ∗ | x | x ⊗ x | !(x) patterns

t ::= ∗ | xρ | 0[I] | s[I](t) | λp.t | tu | !a:γ(t) | t ⊗ t terms

| case t of 0[a] �→ u | s[a] (n) �→ v | fix x.t

� Every constructor comes with a particular type signature. In particular:

S(0) = Πa : o.Nat[0] S(s) = Πa : o.Nat[a] → Nat[a + 1]

Typing rules - 1

Concerto Final Meeting Torino – 11th June 2010 – 16 / 20

Multiplicative rules:

φ; x : σ � xε : σ
(Ax)

φ; Γ, p : σ � t : τ

φ; Γ, p : σ � λp.t : σ � τ
(�)

φ; Γ � t : σ φ |= σ ≡ τ

φ; Γ � t : τ
(≡)

φ; Γ � t : σ � τ φ; ∆ � u : σ

φ; Γ, ∆ � tu : τ
(Ap)

φ; Γ, x : σ, y : τ � t : µ

φ; Γ, x ⊗ y : σ ⊗ τ � t : µ
(⊗L)

φ; Γ � t : σ φ; ∆ � u : τ

φ; Γ, ∆ � t ⊗ u : σ ⊗ τ
(⊗R)

Pattern matching rules:

φ;� 0[0] : Nat[0]
(0)

φ � I : o φ; Γ � t : Nat[I]
φ; Γ � s[I](t) : Nat[I + 1]

(s)

φ; Γ � t : Nat[I] φ, a : o, 0 .= I; ∆ � u : σ φ, a : o, a + 1 .= I; ∆, n : Nat[a] � v : σ

φ; Γ, ∆ � case t of 0[a] �→ u | s[a] (n) �→ v : σ

Typing rules - 2

Concerto Final Meeting Torino – 11th June 2010 – 17 / 20

Exponential Rules:

φ; Γ � t : τ

φ; Γ, x :!a:γσ � t : τ
(w)

φ; Γ, y : σ[a �→ I] � t : τ φ � I : γ

φ; Γ, !x :!a:γσ � t[x〈a�→I〉/y] : τ
(d)

φ; Γ, y :!a:γ1σ, z :!a:γ2σ � t : τ

φ; Γ, x :!a:γ1+γ2σ[a �→ split(a)] � t[x〈a�→split(a)〉/y, z] : τ
(c)

φ; Γ, !y :!a1:γ1 !a2:γ2σ � t : τ

φ; Γ, !x :!a:γ1×γ2σ[a1 �→ π1(a), a2 �→ π2(a)] � t[x〈a1 �→π1(a),a2 �→π2(a)〉/y] : τ
(g)

φ, a : γ; x1 : σ1, . . . , xn : σn � t : τ

φ; !x1 :!a:γσ1, . . . , !xn :!a:γσn �!a:γt :!a:γτ
(p)

Some examples.

Concerto Final Meeting Torino – 11th June 2010 – 18 / 20

Clearly we have natural numbers that are decorated in a trivial way:

;� 0[0] : Nat[0] · · · ;� s[0 + 1](s[0]0[0]) : Nat[(0 + 1) + 1]

Consider the following sorts:

γ1 = {a : o | even(a)} γ2 = {a : o | a .= 0 ∨ odd(a)}

Then we have a term as:

λ!x.x〈a �→split(a)〉 ⊗ x〈a�→split(a)〉
with type

!a:γ1+γ2(Nat[a] � Nat[a + 1]) � (Nat[a] � Nat[a + 1])⊗(Nat[a] � Nat[a + 1])

Such a term can be applied only to terms acting as successor for zero but we keep
more informations.

What we expect. . . future works

Concerto Final Meeting Torino – 11th June 2010 – 19 / 20

� We are working to prove that the present framework well behaves, i.e. it
enjoys some standard properties, e.g. substitution properties. Note that they
can turn to be non trivial in such a context.

� We need to develop a general form of soundness property relative to the
involved constraint language. In particular, we need to extend to this
framework Hofmann’s realizability technique.

� Conversely, we expect to obtain a proof of the intensional completeness in
terms of expressivity with respect of the considered language.

� If we succeed in the above points, we would then consider the remaining
constructions, in particular fixpoints. We expect that while in DML they are
treated in a straightforward way, here they involve more difficulties.

� Finally, we plan to explore complex large examples in this framework.

Concerto Final Meeting Torino – 11th June 2010 – 20 / 20

Thanks!

