Probabilistic A-calculus,
Types and Polymorphism

Alessandra Di Pierro

University of Verona

Contents

Probabilistic A-Calculus

Contents

Probabilistic A-Calculus

Probabilistic Types

Contents

Probabilistic A-Calculus

Probabilistic Types

Probabilistic Polymorphism

Probabilistic A-Calculus

Probabilistic A-Calculus

The class Ap of probabilistic A-terms is defined as the least class
such that:

Probabilistic A-Calculus

The class Ap of probabilistic A-terms is defined as the least class
such that:

» Each variable x is a term

Probabilistic A-Calculus

The class Ap of probabilistic A-terms is defined as the least class
such that:

» Each variable x is a term
> If M € Ap, then (Ax.M) € Ap

Probabilistic A-Calculus

The class Ap of probabilistic A-terms is defined as the least class
such that:

» Each variable x is a term

> If M € Ap, then (Ax.M) € Ap

» For M, N € Ap, (MN) € Ap

Probabilistic A-Calculus

The class Ap of probabilistic A-terms is defined as the least class
such that:
» Each variable x is a term
> If M € Ap, then (Ax.M) € Ap
» For M, N € Ap, (MN) € Ap
» For M, N € Ap, {g M,(1—q)N} € Ap for a probability
q €1[0,1].

Probabilistic A-Calculus

The class Ap of probabilistic A-terms is defined as the least class
such that:
» Each variable x is a term
> If M € Ap, then (Ax.M) € Ap
» For M, N € Ap, (MN) € Ap
» For M, N € Ap, {g M,(1—q)N} € Ap for a probability
q €1[0,1].

Although a binary choice is sufficient, it is convenient to use an
n-ary probabilistic choice

Probabilistic A-Calculus

The class Ap of probabilistic A-terms is defined as the least class
such that:
» Each variable x is a term
> If M € Ap, then (Ax.M) € Ap
» For M, N € Ap, (MN) € Ap
» For M, N € Ap, {g M,(1—q)N} € Ap for a probability
q €1[0,1].

Although a binary choice is sufficient, it is convenient to use an
n-ary probabilistic choice

n
{piPi}is, with Y pi=1
i=1

Probabilistic A\-Terms

Each P € A, is a probability distribution on A corresponding to a
vector P in the vector space V(A).

Probabilistic A\-Terms
Each P € A, is a probability distribution on A corresponding to a
vector P in the vector space V(A).

Definition
The vector space V(X, W) over a set X and a field W is the space.

Probabilistic A\-Terms

Each P € A, is a probability distribution on A corresponding to a
vector P in the vector space V(A).

Definition
The vector space V(X, W) over a set X and a field W is the space.

V(X, W) = {ZCXX|CXEW xex}

Probabilistic A\-Terms

Each P € A, is a probability distribution on A corresponding to a
vector P in the vector space V(A).

Definition

The vector space V(X, W) over a set X and a field W is the space.

V(X, W) = {ZCXX|CX6W xex}

Classical terms M € A correspond to the basic vectors of the space
V(A) = V(A,R), i.e. vectors M with cpy =1 and ¢y = 0 for all
NeA N#M.

Probabilistic A\-Terms
Each P € A, is a probability distribution on A corresponding to a
vector P in the vector space V(A).
Definition
The vector space V(X, W) over a set X and a field W is the space.
V(X, W) {ZCXX|CX6W xex}

Classical terms M € A correspond to the basic vectors of the space
V(A) = V(A,R), i.e. vectors M with cpy = 1 and ¢y = O for all
NeAN N#M. Anyterm P& A, corresponds to a linear
combination of basic vectors denoted by

P=>"pi-M.
i=1

Reduction System
On Ap we define a probabilistic transition relation

—PC A, x [0,1] x A,

Reduction System
On Ap we define a probabilistic transition relation
—PC A, x [0,1] x A,

We use a parameter r € [0, 1] to represent a probabilistic
scheduler.

Reduction System
On Ap we define a probabilistic transition relation
—PC A, x [0,1] x A,

We use a parameter r € [0, 1] to represent a probabilistic
scheduler.

pP_Pp Q—a1Q P—PP Q—9Q

(app,) PQ —™ P'Q PQ —(1-na pQ’

Reduction System
On Ap we define a probabilistic transition relation
—PC A, x [0,1] x A,

We use a parameter r € [0, 1] to represent a probabilistic
scheduler.

pP_Pp Q—a1Q P—PP Q—9Q

(app,) PQ —™ P'Q PQ —(1-na pQ’

PPP QA9 PAP Q—IQ
(app,) PQ —P P'Q PQ —9 PQ'

Reduction System
On Ap we define a probabilistic transition relation
—PC A, x [0,1] x A,

We use a parameter r € [0, 1] to represent a probabilistic

scheduler.
PPpP Q9Q P—PP Q—9¢Q
(app)) PQ—-PPQ PQ 011 pQ
PPP QAT PAP Q—9Q
(appy) PQ —P P'Q PQ —9 PQ’

(8) (Mx.P)Q —* P[Q/x]

Reduction System
On Ap we define a probabilistic transition relation
—PC A, x [0,1] x A,

We use a parameter r € [0, 1] to represent a probabilistic

scheduler.
PPpP Q9Q P—PP Q—9¢Q
(app) PQ—PPQ PQ—019pQ
PPP QAT PAP Q—9Q
(appy) PQ —P P'Q PQ —9 PQ’
(B) (Ax.P)Q —* P[Q/x]

(9) {qiPi}7_; —9 P;

An Example

Consider P = {%)\X.O, %Ax.x} and

An Example

Consider P = {1)x.0,3Ax.x} and Q= {}1,342}

An Example

Consider P = {1)x.0,3Ax.x} and Q= {}1,342}
Two possible reductions for

PQ = {1Ax.0, axx} {1 L, 242}

An Example

Consider P = {1)x.0,3Ax.x} and Q= {}1,342}
Two possible reductions for

PQ = {1Ax.0, axx} {1 L, 242}

L {3xx.0, Iax.x}{i 1,342} —1 (Ax0){z L, 342} -0

An Example

Consider P = {1)x.0,3Ax.x} and Q= {}1,342}
Two possible reductions for
PQ = {3 x.0, 3ax.x}{3 L, 342}

L {3xx.0, Iax.x}{i 1,342} —1 (Ax.0){3L,342} -0

and

An Example

Consider P = {1)x.0,3Ax.x} and Q= {}1,342}
Two possible reductions for
PQ = {3 x.0, 3ax.x}{3 L, 342}
1 1 1,3 1,3
L {5Ax.0, s Ax.x}{z L, 742} —1 (Ax.0){zL,742} — 0
and

2. {3Ax.0, Iaxx}H{3L, 242} —1 (Axx){3L,3242} —
{31,342}

An Example

Consider P = {1)x.0,3Ax.x} and Q= {}1,342}
Two possible reductions for

PQ = {1Ax.0, axx} {1 L, 242}

1 1 1,3 1,3
L {5Ax.0, s Ax.x}{z L, 742} —1 (Ax.0){zL,742} — 0
and
1 1 1,3 1,3
2. {3Mx.0, 5 x.x}{7L, 742} —1 (Ax.x){z1, 742} —
{31,342}

from which we get

An Example

Consider P = {1)x.0,3Ax.x} and Q= {}1,342}
Two possible reductions for

PQ = {1Ax.0, axx} {1 L, 242}

L {3xx.0, Iax.x}{i 1,342} —1 (Ax0){z L, 342} -0
and
2. {3Mx.0, SAxx}{3 L, 242} =1 (Axx){3L, 342} —
2
1 3
{31,342}
from which we get
1,3 1,3
{4J—7 442} H% 1 or {4J_, 442} —>% 42

The complete Example

3(1-n)
Ta-n
(Az.0)Q ()\z x) P42
1 1
3(1-r) 2a-n 1 2 1 2
La-r) ta-n
(Az.0)42 (Az.x)42

T Az.0)L (Az.0)42 T Az.x)L (Az.x)42 (Az.0)L (Az.z)l

LT

€L 42 0 1 0

N\»—A

0 0 0

Figure: Reductions with two different strategies

Observables
We define the observables of a probabilistic A-term P € A, as

Observables
We define the observables of a probabilistic A-term P € A, as

O(P) = {(Mi, pi) | P ="' Mj A M; #P}.

Observables
We define the observables of a probabilistic A-term P € A, as

O(P) = {(Mi, pi) | P ="' Mj A M; #P}.

For the term P = PQ = {%)\X.O, %)\x.x}{%J_, %42},

Observables
We define the observables of a probabilistic A-term P € A, as

O(P) = {(Mi, pi) | P ="' Mj A M; #P}.

For the term P = PQ = {%)\X.O, %)\x.x}{%J_, %42},
the probability of the value L is:

1 1 1 1 1 1
p:§r2+§(r—r2)+§(1—r):ér—l—g(l—r):g

Observables
We define the observables of a probabilistic A-term P € A, as

O(P) = {(Mi, pi) | P ="' Mj A M; #P}.

For the term P’ = PQ = {%)\X.O, %)\x.x}{%J_, %42},
the probability of the value L is:
1, 1 1 1 1 1

p=gr +§(r—r2)+§(1—r):ér—i-g(l—r):g

O(P") = {(0,1/2),(42,3/8) ,(L1,1/8)}.

Observables
We define the observables of a probabilistic A-term P € A, as

O(P) = {(Mi, pi) | P ="' Mj A M; #P}.

For the term P’ = PQ = {%)\X.O, %)\x.x}{%J_, %42},
the probability of the value L is:
1, 1 1 1 1 1

p=gr +§(r—r2)+§(1—r):ér—i-g(l—r):g

Independence of the scheduling

Theorem
For all parameters ri and r» and all probabilistic A-terms P € A\,
with P —*P(n) N £ and P —*P(2) N /£ we have p(r1) = p(r2).

Adding Types

A straightforward proposal:

Adding Types

A straightforward proposal:
Consider the types of the simply typed A-calculus;

Adding Types

A straightforward proposal:
Consider the types of the simply typed A-calculus;
Add a rule of the form:

Adding Types

A straightforward proposal:
Consider the types of the simply typed A-calculus;
Add a rule of the form:

{FMi -7}, Vie[lnlpi€[0,1] 3ipi=1

|_{le17 .. -anMn} - T

Adding Types

A straightforward proposal:
Consider the types of the simply typed A-calculus;
Add a rule of the form:

{FM; 73, Vie[l,n] pel01] Yi,pi=1
l_{PlMla--anMn} - T

Not completely satisfactory:

Adding Types

A straightforward proposal:
Consider the types of the simply typed A-calculus;
Add a rule of the form:

{FMi -7}, Vie[lnlpi€[0,1] 3ipi=1

|_{le17 .. anMn} - T

Not completely satisfactory:

With terms M; of different types, we could obtain a more
expressive calculus.

Adding Types

A straightforward proposal:
Consider the types of the simply typed A-calculus;
Add a rule of the form:

{FM; 73, Vie[l,n] pel01] Yi,pi=1
l_{PlMla--anMn} - T

Not completely satisfactory:

With terms M; of different types, we could obtain a more
expressive calculus.

The term {p1 M1, ..., pnMp} N, with the M;'s (possibly) differently

typed, expresses a form of ad hoc polymorphism.

Probabilistic Types

Given a set of atomic types J = {t1,...,tn}, we define the set
Types of concrete types

Probabilistic Types

Given a set of atomic types J = {t1,...,tn}, we define the set
Types of concrete types

T u= vl 1IOm

Probabilistic Types

Given a set of atomic types J = {t1,...,tn}, we define the set
Types of concrete types

T u= vl 1IOm

We need to impose a kind of regularity in the structure of types.

Probabilistic Types

Given a set of atomic types J = {t1,...,tn}, we define the set
Types of concrete types

T u= vl 1IOm

We need to impose a kind of regularity in the structure of types.
Two types are compatible if they are in the relation

=~ C Types x Types

where = is the smallest congruence on Types s.t.:

Probabilistic Types

Given a set of atomic types J = {t1,...,tn}, we define the set
Types of concrete types

T u= vl 1IOm

We need to impose a kind of regularity in the structure of types.
Two types are compatible if they are in the relation

=~ C Types x Types

where = is the smallest congruence on Types s.t.:

» if 11,10 € J then 11 = 1p;

Probabilistic Types

Given a set of atomic types J = {t1,...,tn}, we define the set
Types of concrete types

T u= vl 1IOm

We need to impose a kind of regularity in the structure of types.
Two types are compatible if they are in the relation

=~ C Types x Types

where = is the smallest congruence on Types s.t.:
» if 11,10 € J then 11 = 1p;

> 71— 01T — oo iff 1 =7 and 01 = o9

Probabilistic Types

Given a set of atomic types J = {t1,...,tn}, we define the set
Types of concrete types

T u= vl 1IOm

We need to impose a kind of regularity in the structure of types.
Two types are compatible if they are in the relation

=~ C Types x Types

where = is the smallest congruence on Types s.t.:
» if 11,10 € J then 11 = 1p;
> 71— 01T — oo iff 1 =7 and 01 = o9

> TR0 Doy iff rxor, TR oo

Probabilistic Types

Given a set of atomic types J = {t1,...,tn}, we define the set
Types of concrete types

T u= vl 1IOm

We need to impose a kind of regularity in the structure of types.
Two types are compatible if they are in the relation

=~ C Types x Types

where = is the smallest congruence on Types s.t.:
» if 11,10 € J then 11 = 1p;
> 71— 01T — oo iff 1 =7 and 01 = o9
> TR0 Doy iff rxor, TR oo

A type T is regular if for each subexpression Yy @ o in T, v = 0.

Equivalence of Types

The relation = is the smallest congruence on Types such that:

Equivalence of Types

The relation = is the smallest congruence on Types such that:
> O (nEn)=(ndn)dTs

Equivalence of Types

The relation = is the smallest congruence on Types such that:
> B (@) =(ndn)d3
> TIDTH=T0DT]

Equivalence of Types

The relation = is the smallest congruence on Types such that:
> B (@) =(ndn)d3
> TIDTH=T0DT]

>» TET=T

Equivalence of Types

The relation = is the smallest congruence on Types such that:
> B (@) =(ndn)d3
> TIDTH=T0DT]

>» TET=T

Theorem
1. ift =0 then T = o;
2. ift=o0 and o = then T = 7.

Equivalence of Types

The relation = is the smallest congruence on Types such that:
> B (dn)=(en)dTs
> T1IPDTH=T0DT7
>» TOT=T

Theorem

1. ift =0 then T = o;

2. ift=o0 and o = then T = 7.
The set of types is the quotient set

T = Types,—

Subtype Relation

Given a relation R on J, the subtype relation <: on T is the
smallest relation defined by the transitive and reflexive closure of
the rules:

Subtype Relation

Given a relation R on J, the subtype relation <: on T is the
smallest relation defined by the transitive and reflexive closure of
the rules:

LJ'R Li
Lp <t

Subtype Relation

Given a relation R on J, the subtype relation <: on T is the
smallest relation defined by the transitive and reflexive closure of
the rules:

Lj’R, Li
Lp <t

Vie[l,n]3jel,ml <o ={n}l,; ={o}]",

n . m .
D7 <Dl

Subtype Relation

Given a relation R on J, the subtype relation <: on T is the
smallest relation defined by the transitive and reflexive closure of
the rules:

LJ'R Li
Lp <t

Vie[l,n]3jel,ml <o ={n}l,; ={o}]",

n . m]
Dl <D0

1 <:01 02<:T»
o1 — 02 <:T1 — T2

Subtype Relation

Given a relation R on J, the subtype relation <: on T is the
smallest relation defined by the transitive and reflexive closure of
the rules:

LJ'R Li
Lp <t

Vie[l,n]3jel,ml <o ={n}l,; ={o}]",

n . m]
Dl <D0

1 <:01 02<:T»
o1 — 02 <:T1 — T2

It suffices to define <: only for regular types.

Probabilistic Typed A—calculus

The set of raw terms is defined by the following grammar:

Probabilistic Typed A—calculus

The set of raw terms is defined by the following grammar:

X = xo|xi|... variables

Probabilistic Typed A—calculus

The set of raw terms is defined by the following grammar:

X = xo|xi|... variables
M = x7

Probabilistic Typed A—calculus

The set of raw terms is defined by the following grammar:

X = xo|xi|... variables
M = x| MM,

Probabilistic Typed A—calculus

The set of raw terms is defined by the following grammar:

X = xo|xi|... variables
M = X7 ‘Mll\/lz ‘{PlMla--anMn}

Probabilistic Typed A—calculus

The set of raw terms is defined by the following grammar:

X = xo|xi|... variables
M = X7 ‘ M1M2 ‘ {PlMla--anMn} ‘
AxT.M terms

Probabilistic Typed A—calculus

The set of raw terms is defined by the following grammar:

X = xo|xi|... variables
M = X7 ‘ M1M2 ‘ {PlMla--anMn} ‘
AxT.M terms

where n > 1, and p1,..., p, are rational numbers s.t.

Probabilistic Typed A—calculus

The set of raw terms is defined by the following grammar:

X = xo|xi|... variables
M = X7 ‘ M1M2 ‘ {PlMla--anMn} ‘
AxT.M terms
where n > 1, and p1,..., p, are rational numbers s.t.

n
Zpi =1
i=1

Type Assignment

When is a probabilistic A—term is well-typed?

Type Assignment

When is a probabilistic A—term is well-typed?

(ax)

xT T

Type Assignment

When is a probabilistic A—term is well-typed?

(ax) Mo ()

xT T MXM:17—0

Type Assignment

When is a probabilistic A—term is well-typed?

(ax) Mo ()

xT T MXM:17—0

(Miomliy Vieln €0l SLip=1 =7
'_{PIM,'T" i1 @7:1 Ti

@)

Type Assignment

When is a probabilistic A—term is well-typed?

(ax) Mo ()

xT T MXM:17—0

(Miomliy Vieln €0l SLip=1 =7
'_{PIM,'T" i1 @7:1 Ti

M: @iy (ri—0:)) Nip Vie[lnlp<
MN : D0

@)

(©)

Probabilistic Reduction

For the typed A, we define reduction rules encoding the
probabilistic behaviour of a typed A, term.

Probabilistic Reduction

For the typed A, we define reduction rules encoding the
probabilistic behaviour of a typed A, term.

(Ax".M)N —)b M[N/x7], (B)

Probabilistic Reduction

For the typed A, we define reduction rules encoding the
probabilistic behaviour of a typed A, term.

(Ax".M)N —)b M[N/x7], (B)

{piM;}1_; —be My, (pc)

Probabilistic Reduction: contextual closures

P -k N
MXT.P —h AXT.N (in))

Probabilistic Reduction: contextual closures

P —hN
MXT.P —h AXT.N (in))

My —2 Ny
{piMi}1_y =& {. . pke1Mi—1, PNk, Prt1Mict1, - - -} (inP)

Probabilistic Reduction: contextual closures

P —hN
MXT.P —h AXT.N (in))
My —2 Ny
{piMi}1_y =& {. . pke1Mi—1, PNk, Prt1Mict1, - - -} (inP)
PPN

MP —hH MN (ra)

Probabilistic Reduction: contextual closures

P—F N
MXT.P —h AXT.N (in))
My —& Ni
{piMi}1_y =& {. . pke1Mi—1, PNk, Prt1Mict1, - - -} (inP)
PPN
MP —hH MN (ra)
M =P N

MP —F NP (Ia)

Extended Subject Reduction

Computations preserve the type of terms according to the following
theorem:

Extended Subject Reduction

Computations preserve the type of terms according to the following
theorem:

Theorem
IfEM 0 and M —P N,
then there exists T <: o such that =N : 7.

Polymorphism

Important distinction between:

Polymorphism

Important distinction between:

» Parametric Polymorphism

Polymorphism

Important distinction between:

» Parametric Polymorphism
» function’s code can work on different types

Polymorphism

Important distinction between:

» Parametric Polymorphism
» function’s code can work on different types
» Ad-hoc Polymorphism

Polymorphism

Important distinction between:

» Parametric Polymorphism
» function’s code can work on different types
» Ad-hoc Polymorphism
» function executes different codes for each type

Polymorphism

Important distinction between:

» Parametric Polymorphism
» function’s code can work on different types
» Ad-hoc Polymorphism
» function executes different codes for each type

The second type (aka ‘overloading’) has received less attention
regarding its semantics and proof theory.

Probabilistic Polymorphism

We aim in a formal study of the overloading mechanism.

Probabilistic Polymorphism

We aim in a formal study of the overloading mechanism.
This is a powerful tool when combined with subtyping.

Probabilistic Polymorphism

We aim in a formal study of the overloading mechanism.
This is a powerful tool when combined with subtyping.
Idea:

Probabilistic Polymorphism

We aim in a formal study of the overloading mechanism.

This is a powerful tool when combined with subtyping.

Idea:

Overloaded function = probabilistic term M representing a list of
codes with an associated probability each.

Probabilistic Polymorphism

We aim in a formal study of the overloading mechanism.

This is a powerful tool when combined with subtyping.

Idea:

Overloaded function = probabilistic term M representing a list of
codes with an associated probability each.

When an argument is passed to M, the choice of the code to be
executed is guided by the probability distribution of M.

Probabilistic Polymorphism

We aim in a formal study of the overloading mechanism.

This is a powerful tool when combined with subtyping.

Idea:

Overloaded function = probabilistic term M representing a list of
codes with an associated probability each.

When an argument is passed to M, the choice of the code to be
executed is guided by the probability distribution of M.

— Probabilistic Polymorphism

Probabilistic Polymorphism

We aim in a formal study of the overloading mechanism.

This is a powerful tool when combined with subtyping.

Idea:

Overloaded function = probabilistic term M representing a list of
codes with an associated probability each.

When an argument is passed to M, the choice of the code to be
executed is guided by the probability distribution of M.

— Probabilistic Polymorphism

Note: Subtyping is essential to guarantee the well-typedness of the
application term.

An Example

A2 A2z (@ = 8) 5 a— 8

M = {320M Ny, 32092 Na} o (71 — 61) (72 — 62)

V:ia

(m—0)@ (12 —d)<ta—d J

A2 Az 2x) M i — §

(A2 Az 22) M)V : 6

Wednesday, June 2, 2010

An Example

(A0 Ax22) M)V 1 6§

1o

(Az*.Mz)V : 61 & 0y

01 @02 <: 0

Wednesday, June 2, 2010

An Example

M:(n—d1)& (2 —d)
Vi
(A0 Ax22) M)V 1 6§ @n <8 @

1lﬁ a<:m
(Az*.Mz)V : 61 & 0y a <:vy
1lﬁ
MV : 6, @5y

Wednesday, June 2, 2010

An Example

(Az270 X2 2m) M)V : 6
1lﬁ
(A2 Mz)V : 61 @ 6,
1lﬁ

{i)\v”’l.Nl, %/\UW.NQ}V 10 B 6y

Wednesday, June 2, 2010

An Example

(Az270 X2 2m) M)V : 6
1lﬁ
(A2 Mz)V : 61 @ 6,
1lﬁ

(AN, 3A002.N,}V 2 61 @ 6

Wednesday, June 2, 2010

An Example

1
K3
(A’U’YI.Nl)V 101
1|8

Ni[V/v] 0) <: 63

(Az270 X2 2m) M)V : 6
1lﬁ
(A2 Mz)V : 61 @ 6,
1lﬁ

(AN, 3A002.N,}V 2 61 @ 6

pc

Wednesday, June 2, 2010

An Example

(Az270 X2 2m) M)V : 6
1lﬁ
(A2 Mz)V : 61 @ 6,
1lﬁ

(A0 Ny, 3A02. N5}V 61 @ 6

Wednesday, June 2, 2010

An Example

(A0 Ax22) M)V 1 6§
1lﬁ
(Az*.Mz)V : 61 & 0y
1lﬁ
{i)\vﬂ“.Nl, %)\U'Y”.NZ}V 101 DIy

3

1
pc

(A2 No)V 2 6y
1i6

No[V/v) : 65 <: 6

Wednesday, June 2, 2010

An Example

Ble

pc

(A.Np)V 2 6y
1lﬂ

Ni[V/v]: 8] <: 61

(A0 Ax22) M)V 1 6§
1lﬁ
(Az*.Mz)V : 61 & 0y

1l@

{i)\v”’l.Nl, %/\UW.NQ}V 10 B 6y

pc
(Av72.N3)V 2 6
1l/3

No[V/v] : 65 <: 82

Wednesday, June 2, 2010

Call by Value

Call by Value

(AXT.M)V —>;-3 M[V /x™], (B)

{piM;}1_; —be My, (pc)

My —& Ny
{opec1Vi1, peMi, -} —=a {1 Vi1, PN, - ..} (inP)

P—F N
VP —F VN (ra)

M —P N
MP —P NP (1a)

Call by Name

Call by Name

(AT MN =L M[N/x7], (8)

{PiMi}1_y —pe My, (pc)

My —& Nk
{' -+ Pk—1 Vk_]_, pkMk7 e } _734 { -+ Pk—1 Vk—17 pkaJ e } (InP)

M =P N
MP —F NP (1a)

The failure of confluence

Let Ocpv(P) and Ocpn(P) be the set of observables of P by
means of CbV and CbN.
It is possible to find a term M s.t.

Ocbv(M) # Ocon(M)

Let M = (Ax.(SUM x x)){31,32}
(1,2 are the usual Church numerals, and SUM is the standard

term for the sum of Church numerals)

We have that:

Ocev(M) ={(2,3),(4,3)}

and that

OCbN(M) = {<27 %>7 <37 %)7 <47 %>}

	Probabilistic -Calculus
	Probabilistic Types
	Probabilistic Polymorphism

