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n
{piPi}is,  with Y pi=1
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Each P € A, is a probability distribution on A corresponding to a
vector P in the vector space V(A).
Definition
The vector space V(X, W) over a set X and a field W is the space.
V(X, W) {ZCXX|CX6W xex}

Classical terms M € A correspond to the basic vectors of the space
V(A) = V(A,R), i.e. vectors M with cpy = 1 and ¢y = O for all
NeAN N#M. Anyterm P& A, corresponds to a linear
combination of basic vectors denoted by

P=>"pi-M.
i=1
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—PC A, x [0,1] x A,

We use a parameter r € [0, 1] to represent a probabilistic

scheduler.
PPpP Q9Q P—PP Q—9¢Q
(app)  PQ—PPQ  PQ—019pQ
PPP QAT PAP Q—9Q
(appy) PQ —P P'Q PQ —9 PQ’
(B) (Ax.P)Q —* P[Q/x]

(9) {qiPi}7_; —9 P;
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Consider P = {1)x.0,3Ax.x} and Q= {}1,342}
Two possible reductions for

PQ = {1Ax.0, axx} {1 L, 242}

L {3xx.0, Iax.x}{i 1,342} —1 (Ax0){z L, 342} -0
and
2. {3Mx.0, SAxx}{3 L, 242} =1 (Axx){3L, 342} —
2
1 3
{31,342}
from which we get
1,3 1,3
{4J—7 442} H% 1 or {4J_, 442} —>% 42



The complete Example

3(1-n)
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Figure: Reductions with two different strategies
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Observables
We define the observables of a probabilistic A-term P € A, as

O(P) = {(Mi, pi) | P ="' Mj A M; #P}.

For the term P’ = PQ = {%)\X.O, %)\x.x}{%J_, %42},
the probability of the value L is:
1, 1 1 1 1 1

p=gr +§(r—r2)+§(1—r):ér—i-g(l—r):g

Independence of the scheduling

Theorem
For all parameters ri and r» and all probabilistic A-terms P € A\,
with P —*P(n) N £ and P —*P(2) N /£ we have p(r1) = p(r2).
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Adding Types

A straightforward proposal:
Consider the types of the simply typed A-calculus;
Add a rule of the form:

{FM; 73, Vie[l,n] pel01] Yi,pi=1
l_{PlMla--anMn} - T

Not completely satisfactory:

With terms M; of different types, we could obtain a more
expressive calculus.

The term {p1 M1, ..., pnMp} N, with the M;'s (possibly) differently

typed, expresses a form of ad hoc polymorphism.
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Probabilistic Types

Given a set of atomic types J = {t1,...,tn}, we define the set
Types of concrete types

T u= vl 1IOm

We need to impose a kind of regularity in the structure of types.
Two types are compatible if they are in the relation

=~ C Types x Types

where = is the smallest congruence on Types s.t.:
» if 11,10 € J then 11 = 1p;
> 71— 01T — oo iff 1 =7 and 01 = o9
> TR0 Doy iff rxor, TR oo

A type T is regular if for each subexpression Yy @ o in T, v = 0.
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Equivalence of Types

The relation = is the smallest congruence on Types such that:
> B (dn)=(en)dTs
> T1IPDTH=T0DT7
>» TOT=T

Theorem

1. ift =0 then T = o;

2. ift=o0 and o = then T = 7.
The set of types is the quotient set

T = Types,—



Subtype Relation

Given a relation R on J, the subtype relation <: on T is the
smallest relation defined by the transitive and reflexive closure of
the rules:



Subtype Relation

Given a relation R on J, the subtype relation <: on T is the
smallest relation defined by the transitive and reflexive closure of
the rules:

LJ'R Li
Lp <t




Subtype Relation

Given a relation R on J, the subtype relation <: on T is the
smallest relation defined by the transitive and reflexive closure of
the rules:

Lj’R, Li
Lp <t

Vie[l,n]3jel,ml <o ={n}l,; ={o}]",

n . m .
D7 <Dl




Subtype Relation

Given a relation R on J, the subtype relation <: on T is the
smallest relation defined by the transitive and reflexive closure of
the rules:

LJ'R Li
Lp <t

Vie[l,n]3jel,ml <o ={n}l,; ={o}]",

n . m ]
Dl <D0

1 <:01 02<:T»
o1 — 02 <:T1 — T2




Subtype Relation

Given a relation R on J, the subtype relation <: on T is the
smallest relation defined by the transitive and reflexive closure of
the rules:

LJ'R Li
Lp <t

Vie[l,n]3jel,ml <o ={n}l,; ={o}]",

n . m ]
Dl <D0

1 <:01 02<:T»
o1 — 02 <:T1 — T2

It suffices to define <: only for regular types.
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Probabilistic Typed A—calculus

The set of raw terms is defined by the following grammar:

X = xo|xi|... variables
M = X7 ‘ M1M2 ‘ {PlMla--anMn} ‘
AxT.M terms
where n > 1, and p1,..., p, are rational numbers s.t.

n
Zpi =1
i=1



Type Assignment

When is a probabilistic A—term is well-typed?



Type Assignment

When is a probabilistic A—term is well-typed?

(ax)

xT T



Type Assignment

When is a probabilistic A—term is well-typed?

(ax) Mo ()

xT T MXM:17—0



Type Assignment

When is a probabilistic A—term is well-typed?

(ax) Mo ()

xT T MXM:17—0

(Miomliy Vieln €0l SLip=1 =7
'_{PIM,'T" i1 @7:1 Ti

@)



Type Assignment

When is a probabilistic A—term is well-typed?

(ax) Mo ()

xT T MXM:17—0

(Miomliy Vieln €0l SLip=1 =7
'_{PIM,'T" i1 @7:1 Ti

M: @iy (ri—0:)) Nip Vie[lnlp<
MN : D0

@)

(©)



Probabilistic Reduction

For the typed A, we define reduction rules encoding the
probabilistic behaviour of a typed A, term.



Probabilistic Reduction

For the typed A, we define reduction rules encoding the
probabilistic behaviour of a typed A, term.

(Ax".M)N —)b M[N/x7], (B)



Probabilistic Reduction

For the typed A, we define reduction rules encoding the
probabilistic behaviour of a typed A, term.

(Ax".M)N —)b M[N/x7], (B)

{piM;}1_; —be My, (pc)
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P—F N
MXT.P —h AXT.N (in))
My —& Ni
{piMi}1_y =& {. . pke1Mi—1, PNk, Prt1Mict1, - - -} (inP)
PPN
MP —hH MN (ra)
M =P N

MP —F NP (Ia)
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Extended Subject Reduction

Computations preserve the type of terms according to the following
theorem:

Theorem
IfEM 0 and M —P N,
then there exists T <: o such that =N : 7.
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Important distinction between:

» Parametric Polymorphism
» function’s code can work on different types
» Ad-hoc Polymorphism
» function executes different codes for each type

The second type (aka ‘overloading’) has received less attention
regarding its semantics and proof theory.
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Probabilistic Polymorphism

We aim in a formal study of the overloading mechanism.

This is a powerful tool when combined with subtyping.

Idea:

Overloaded function = probabilistic term M representing a list of
codes with an associated probability each.

When an argument is passed to M, the choice of the code to be
executed is guided by the probability distribution of M.

— Probabilistic Polymorphism

Note: Subtyping is essential to guarantee the well-typedness of the
application term.
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(AXT.M)V —>;-3 M[V /x™], (B)

{piM;}1_; —be My, (pc)

My —& Ny
{opec1Vi1, peMi, -} —=a {1 Vi1, PN, - ..} (inP)

P—F N
VP —F VN (ra)

M —P N
MP —P NP (1a)
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(AT MN =L M[N/x7], (8)

{PiMi}1_y —pe My, (pc)

My —& Nk
{' -+ Pk—1 Vk_]_, pkMk7 e } _734 { -+ Pk—1 Vk—17 pkaJ e } (InP)

M =P N
MP —F NP (1a)



The failure of confluence

Let Ocpv(P) and Ocpn(P) be the set of observables of P by
means of CbV and CbN.
It is possible to find a term M s.t.

Ocbv(M) # Ocon(M)

Let M = (Ax.(SUM x x)){31,32}
(1,2 are the usual Church numerals, and SUM is the standard

term for the sum of Church numerals)

We have that:

Ocev(M) ={(2,3),(4,3)}

and that

OCbN(M) = {<27 %>7 <37 %)7 <47 %>}
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