Jump from parallel to sequential proof: exponentials

Concerto/Pics Final Meeting 9 giugno 2010

Paolo Di Giamberardino
digiambe@lipn.univ-paris13.fr

LIPN, Paris 13

Introduction

In previous works, by importing ideas from game semantics (notably Faggian-Maurel-Curien's ludics nets), we defined a new class of multiplicative/ additive polarized proof nets, J-proof nets.
J-proof nets are a generalization of usual proof net syntax, where we can represent nets which are partially sequentialized, by using jumps (that is, untyped extra edges) as sequentiality constraints.
In the present work, we extend J-proof nets to the multiplicative/exponential fragment. More precisely, we show how to replace the familiar linear logic notion of exponential box with a less "sequential" one (called cone) defined by means of jumps.
As a consequence, we get a syntax for polarized nets where, instead of a structure of boxes nested one into the other, we have one of cones which can be partially overlapping.

Plan

- Polarities and proof nets;
- J-nets and cones;
- Correctness;
- Normalization;
- Concluding remarks.

Plan

- Polarities and proof nets;
- J-nets and cones;
- Correctness;
- Normalization;
- Concluding remarks.

Polarities in Linear Logic

Polarization: distinction in linear logic between positive and negative formulas.

Polarized formulas:

$$
\begin{array}{c:c|c|c|c|c}
N & ::= & X^{\perp} & \perp & N 8 N & N \& N \\
P & ::= & X & 1 & P \otimes P & P \oplus P \\
!N
\end{array}
$$

Positivity= focalization
Negativity= reversibility
Polarized system: system where all formulas are polarized.

Polarities: what we gain

- HO game models for (polarized) linear logic;
- Correspondance with classical logic and $\lambda \mu$ calculus;
- Canonical proof search (focusing proofs) and linear logic programming;
- Interactive reconstruction of logical notions from a pre-logical framework (ludics);
- Relation with π-calculus.

Polarities: what we lose

- Parallelism: strict alternance of polarities;
- We cannot study uncorrect objects: all polarized cut-free proof structures are correct.

$M E L L_{p o l}$

$$
\begin{array}{cc}
N & ::=8_{i \in \prime}\left(? P_{i}\right) \\
P & ::=\otimes_{i \in \prime}\left(!N_{i}\right) \\
\frac{\vdash \Gamma, ? P_{1}, \ldots, ? P_{n}}{\vdash \Gamma, 8\left(? P_{1}, \ldots, ? P_{n}\right)} 8 & \frac{\vdash \Gamma_{1},!N_{1} \quad \vdash \Gamma_{n},!N_{n}}{\vdash \Gamma_{1}, \ldots, \Gamma_{n}, \otimes\left(!N_{1}, \ldots,!N_{n}\right)} \otimes \\
\frac{\vdash ? \Gamma, N}{\vdash ? \Gamma,!N}! & \frac{\vdash \Gamma, P}{\vdash \Gamma, ? P} d \\
\frac{\vdash \Gamma}{\vdash \Gamma, ? P} w & \frac{\vdash \Gamma, ? P_{1}, \ldots, ? P_{n}}{\vdash \Gamma, ? P} c \\
\frac{\vdash \Gamma, P}{\vdash \Gamma, \Delta}(C u t)
\end{array}
$$

Every sequent has at most one positive formula

Polarized proof net and alternance (1)

Polarized proof net and alternance (2)

Polarized proof net and alternance (3)

Polarized proof net and alternance (4)

Polarization = sequentiality?

Many contributions have been given recently in the direction of freeing polarities from a strong sequential framework (Mellies, Faggian-Maurel-Curien, Mimran et many others)

Our aim: to provide a more parallel notion of polarized proof net, in the setting of multiplicative exponential polarized linear logic.
Our tool: jumps, that is untyped extra edges which express sequentiality constraints.

Plan

- Polarities and proof nets;
- J-nets and cones;
- Correctness;
- Normalization;
- Concluding remarks.

J-nets

$$
P(\longrightarrow \text { cut }) P^{\perp}
$$

An example of J-net

Cones and jumps

Given a cut-free J - net R, we denote by \prec_{R} the strict partial order on the nodes of a J -net R obtained by taking the order associated to R as a d.a.g.
The cone of a negative edge a (denoted by C_{R}^{a}) conclusion of a node w is the set of nodes $\left\{b \in R ; w \prec_{R} b\right\} \cup\{w\}$;
Given a negative edge a of R :

- there is no ambiguity in retrieving C_{R}^{a};
- the conclusions of the links on the border of C_{R}^{a} (made exception for w) are all positive;
- moreover, if the order \prec_{R} associated with R is arborescent, then given any other negative edge b of R, either C_{R}^{b} and C_{R}^{a} are included one into the other, either they are disjoint (nesting condition).

Built-in replacement of boxes!

J-nets and polarized proof nets

J-nets and polarized proof nets

- Exactly one positive link at level 0

J-nets and polarized proof nets

J-nets and polarized proof nets

- exactly one positive link at level 0

Overlapping of cones

Overlapping of cones

Toward parallelism

- J-nets are a generalization of polarized proof nets where superposition of cones (i.e. boxes) is allowed;
- nevertheless, there is not any ambiguity when retrieving the cone of a negative edge;
- As a consequence when we define structural reductions in cut-elimination, we always know what is to duplicate and what is to erase.

Plan

- Polarities and proof nets;
- J-nets and cones;
- Correctness;
- Normalization;
- Concluding remarks.

Cut-free J-nets are not necessarily correct!

Definition

A J -net is acceptable when is switching acyclic

Mix

We discard connectdness from the correctness criterion by accepting the following rule, called Mix

$$
\frac{\vdash \Gamma_{1} \ldots \ldots \vdash \Gamma_{n}}{\vdash \Gamma_{1}, \ldots, \Gamma_{n}} \text { Mix }
$$

The 0-ary case of the Mix rule corresponds to the introduction of the empty sequent.

Plan

- Polarities and proof nets;
- J-nets and cones;
- Correctness;
- Normalization;
- Concluding remarks.

Cut elimination

Definition

A J-net is closed when it has no positive conclusions.
Definition
A J-proof net R is a J -net s.t. is acceptable and closed
Given two J-proof nets R_{1}, R_{2}, we define the relation $R_{1} \xrightarrow{\text { cut }} R_{2}$ (' R reduces to R^{\prime} in one step")
We remark that:

- There is only one big reduction rule composed by a multiplicative and a structural part;
- we can define the structural part of the reduction rule by duplicating and erasing cones;

Reduction rule (redex)

Reduction rule (contractum)

Reduction example: contraction vs contraction

Reduction example: contraction vs contraction

Reduction example: contraction vs contraction

Properties of reduction

Theorem (Preservation of correctness)
Given a J-proof net R, if $R \xrightarrow{\text { cut }} R^{\prime}$, then R^{\prime} is a J-proof net.
Theorem
Reduction is strongly normalizing.
Theorem
Reduction is confluent.
Such results are proved following the work on strong normalization for $L L$ from Pagani-Tortora

Plan

- Polarities and proof nets;
- J-nets and cones;
- Correctness;
- Normalization;
- Concluding remarks.

Mix and confluence

A J-proof net R is s-connected iff :

- There are no maximal negative links;
- choosing a incident edge $s(n)$ for all negative link n of R and erasing all the others yields a connected graph for all choices of s

Theorem
For any arborescent J-proof net R, if R is s-connected and $R \xrightarrow{\text { cut }} R^{\prime}$, then R^{\prime} is s-connected.
Preservation of s-connectdness under reduction doesn't hold in the general case of (not arborescent) J-proof nets: forcing s-connectdness (by modifying the reduction rule) brings to the loss of confluence.

Work in progress

- Interpretation in the relational model, using the notion of thick subtree (joint work with Pierre Boudes, LIPN);
- Including additives (already existing) in the picture;
- Relation with concurrent game semantics (L-nets and exponential ludics, asynchronous games, etc.);
- Relation with the Λ nets of Accatoli-Guerrini;
- Correspondance with linear π-calculus?
- Proof nets for classical logic?
- Generalization to the not-polarized case (LL)?
- ...

Order associated with a J-net (in presence of cut-links)

We extend the definition of \prec_{R} to a J-net R (possibly containing cut-links) in the following way:

- we take the order associated to R as a d.a.g;
- we identify any cut link c with the link whose conclusion is the positive premise of c, as below:

In this way we can tell if a cut-link is inside a given cone.

Special cases of reduction

- "Contraction" step:

Saturation and sequentialization

Definition

An acceptable J-net R is saturated, when for every negative link n and for every positive link p of R adding a jump between n and p creates a switching cycle or doesn't increase the order \prec_{R}.

Lemma (Arborisation)
Given a acceptable J-net R, if R is saturated, then \prec_{R} is arborescent.
For any acceptable J-net R, we can make its associated order arborescent by gradually adding jumps.
Theorem
A J-net R whose associated order is arborescent correspond to a unique proof π of $M E L L_{p o l}(+M i x)$.

Blackbox principle

Special cases of reduction

- "Weakening" step:

Special cases of reduction

- "box" step:

Special cases of reduction

- "Multiplicative" step:

Special cases of reduction

- "Axiom" step:

Reduction example: weakening vs contraction

Reduction example: weakening vs contraction

Reduction example: weakening vs contraction

Local confluence: weakening vs weakening

Local confluence: weakening vs weakening

Local confluence: weakening vs weakening

Not erasing reduction (redex)

Not erasing reduction (contractum)

$\xrightarrow{\neg e}$ is increasing

$\xrightarrow{\neg e}$ is increasing

$\xrightarrow{\urcorner e}$ is increasing

$S N^{-e} \Rightarrow S N^{\text {cut }}$

- Any reduction $R \xrightarrow{\text { cut }} * R^{\prime}$ can be simulated with a sequence of not erasing steps followed by a sequence of "weakening" steps;
- "weakening" steps can always be postponed with respect to not erasing steps;
- from this and strong normalization of $\xrightarrow{\urcorner e}$ follows that there cannot be an infinite reduction composed by alternating sequences of not erasing steps and "weakening steps", so $\xrightarrow{\text { cut }}$ is strongly normalizing.

Adding axioms to the picture: balancedness

A J-net with R with axiom links is balanced if for every - link b of R, such that a premise of b is a conclusion of an ax link a, there exists a positive link $c \prec_{R}$ a which jumps on b in R.

Adding axioms to the picture: balancedness

- "Boxing" of axioms.

Mix and confluence

Mix and confluence

We can try to modify the definition of reduction step, in a natural way, in order to preserve s-connectdness:

Mix and confluence

We can try to modify the definition of reduction step, in a natural way, in order to preserve s-connectdness:

Mix and confluence

But then we lose confluence:

Mix and confluence

For the general case of (not-saturated) J-proof nets, we have to allow Mix in order to gain confluence.

