
Linearizing Higher-Order Processes

Ugo Dal Lago
(Joint Work with Simone Martini and Davide Sangiorgi)

Università di Bologna

CONCERTO Final Meeting, June 10th 2010

Motivation

I Processes should be reactive:
I Between any pair of visible actions, there should be only a
finite number of invisible, internal actions.

I There are type systems which guarantees this property on
π-terms.

I Sometimes you want more than that, namely bounded
reactivity:

I A bounded number of invisible actions between any pair of
visible actions.

I Bounded by what?
I Constant bounds? [Kobayashi03]
I Parametric bounds, in a synchronous

scenario [AmadioDabrowski07]

The Sequential, Functional Setting

I Reactivity is termination.
I Or productivity.

I What is reactivity with parametric bounds?
I Termination with bounded complexity.
I Examples: polytime functions, linear time functions,

exponential time functions, etc.
I Many different techniques for enforcing bounded termination

in functional programming languages:
I Type Systems [KraryWeirich00,Hofmann].
I Static Analysis [MarionMoyen00,].
I ICC [BellantoniCook92,Leivant93,Girard97,Terui01].

From Intuitionistic Logic to Soft Linear Logic

Logic Axioms
Intuitionistic

Logic CCC

(Intuitionistic)
Multiplicative and

Exponential
Linear Logic

SMCC
!A (!A⊗!A

!A (1
!A (!!A
!A (A

(Intuitionistic)
Soft Linear Logic

SMCC
!A (A⊗ . . .⊗ A

!A (1

Soft Linear Logic

I It is polynomial time sound [Lafont02]:
I B(π) is the box depth of any proof π;

Theorem
There is a family of polynomials {pn}n such that the normal form of any
proof π can be computed in time pB(π)(|π|)

I This holds for many notions of proofs: proof-nets,
sequent-calculus, lambda-terms, etc.

I It is also polynomial time complete [Lafont02,
MairsonTerui03]:

I A function f : N→ N can be represented in soft linear logic if
a proof πf rewrites to an encoding of f (n) when cut against an
encoding of n.

Theorem
Every polynomial time function can be represented in soft linear logic.

From Lambda Calculus to Soft Lambda Calculus
I Lambda calculus Λ:

M ::= x | λx .M | MM

I Linear Lambda Calculus Λ!

M ::= x | λx .M | λ!x .M | MM |!M

where NFO(x ,M) = 1 and LFO(x ,M) = {0} in λx .M.
I Soft Lambda Calculus ΛS

M ::= x | λx .M | λ!x .M | MM |!M

where
I NFO(x ,M) = 1 and LFO(x ,M) = 0 in λx .M.
I either NFO(x ,M) = 1 and LFO(x ,M) = {1} or
LFO(x ,M) = {0} in λ!x .M.

From Lambda Calculus to Soft Lambda Calculus
I Lambda calculus Λ:

M ::= x | λx .M | MM

I Linear Lambda Calculus Λ!

M ::= x | λx .M | λ!x .M | MM |!M

where NFO(x ,M) = 1 and LFO(x ,M) = {0} in λx .M.
I Soft Lambda Calculus ΛS

M ::= x | λx .M | λ!x .M | MM |!M

where
I NFO(x ,M) = 1 and LFO(x ,M) = 0 in λx .M.
I either NFO(x ,M) = 1 and LFO(x ,M) = {1} or
LFO(x ,M) = {0} in λ!x .M.

From Lambda Calculus to Soft Lambda Calculus
I Lambda calculus Λ:

M ::= x | λx .M | MM

I Linear Lambda Calculus Λ!

M ::= x | λx .M | λ!x .M | MM |!M

where NFO(x ,M) = 1 and LFO(x ,M) = {0} in λx .M.
I Soft Lambda Calculus ΛS

M ::= x | λx .M | λ!x .M | MM |!M

where
I NFO(x ,M) = 1 and LFO(x ,M) = 0 in λx .M.
I either NFO(x ,M) = 1 and LFO(x ,M) = {1} or
LFO(x ,M) = {0} in λ!x .M.

From Lambda Calculus to Soft Lambda Calculus
I Λ =⇒ Λ! is a Refinement.

I Whenever a term can be copied, it must be marked as such,
with !.

I Some results continue to hold
I Λ can be embedded into Λ!

{x} = x
{λx .M} = λ!x .{M}
{MN} = {M}!{N}

I Λ! =⇒ ΛS is a Restriction.
I Whenever you copy, you lose the possibility of copying.
I Examples:

λ!x .yxx X
λ!x .y !x X

λ!x .y(!x)x
I Some results about SLL continue to hold:

I Polytime soundness
I Polytime completeness

What About Processes?

I It has been showed that [EhrhardLaurent07]:
I A linear name-passing π-calculus can be interpreted into...
I ...differential interaction nets.

I Interesting Questions:
I What is the expressive power of the encoded π-calculus?
I Can we restrict differential interaction nets and capture

interesting classes of processes?
I We here adopt a different strategy:

I Forget about logic.
I But keeping in mind the decomposition copying-dispatching.
I Apply the decomposition to HOπ (higher-order π-calculus).

Higher-Order π-Calculus

I Processes:

V ::= ? | λx .P
P ::= 0 | x | P || P | a〈x〉.P | a〈V 〉.P | (νa)P | VV

I Reduction:

a〈V 〉.P || a〈x〉.Q →P P || Q[x/V] (λx .P)V →P P[x/V]

P →P Q
P || R →P Q || R

P →P Q
(νa)P →P (νa)Q

P ≡ Q Q →P R R ≡ S
P →P S

Higher-Order π-Calculus

I Nontermination:

P = λy .a〈x〉.(x ? || a〈x〉)
Q = P ? || a〈P〉

Indeed:
Q → Q → . . .

I More interesting example:

P = λz .a〈x〉.(b〈y〉.c〈y〉.x ? || a〈x〉)
Q = P ? || a〈P〉

Linear Higher-Order π-Calculus: LHOπ

I Values and Processes:

V ::= ? | x | λx .P | λ!x .P | !V
P ::= 0 | P || P | a〈x〉.P | a〈!x〉.P | a〈V 〉.P | (νa)P | VV

where NFO(x ,P) = 1 and LFO(x ,P) = {0} in a〈x〉.P and
λx .P .

I Examples:

a〈x〉.x? X
a〈!x〉.(x ? || !x?) X
a〈!x〉.a〈x〉.b〈x〉.0 X

a〈!x〉.(b〈y〉.c〈y〉.x ? || a〈!x〉.0) X
a〈x〉.(!x)?

Linear Higher-Order π-Calculus : LHOπ

I Reduction:

a〈V 〉.P || a〈x〉.Q →L P || Q[x/V]

a〈!V 〉.P || a〈!x〉.Q →L P || Q[x/V]

(λx .P)V →L P[x/V] (λ!x .P)!V →L P[x/V]

P →L Q
P || R →L Q || R

P →L Q
(νa)P →L (νa)Q

P ≡ Q Q →L R R ≡ S
P →L S

Embedding LHOπ Into HOπ

[?]V = ?

[λx .P]V = λ!x .[P]P

[0]P = 0
[x]P = x

[P || Q]P = [P]P || [Q]P

[a〈x〉.P]P = a〈!x〉.[P]P

[a〈V 〉.P]P = a〈![V]V〉.[P]P

[(νa)P]P = (νa)[P]P

[VV]P = [V]V![V]V

Proposition (Simulation)
If P →P Q, then [P]P →L [Q]P

Soft Processes: SHOπ

Processes:

V ::= ? | x | λx .P | λ!x .P |!V
P ::= 0 | P || P | a〈x〉.P | a〈!x〉.P | a〈V 〉.P | (νa)P | VV

where
I NFO(x ,P) = 1 and LFO(x ,P) = {0} in a〈x〉.P and λx .P .
I Either

NFO(x ,P) = 1 ∧ LFO(x ,P) = {1}

or
LFO(x ,P) = {0}

in x〈!P〉. and λ!x .P .

Soft Processes: Examples

a〈x〉.x ? X

a〈!x〉.(x ? || (!x)?)

a〈!x〉.a〈x〉.b〈x〉.0 X

a〈!x〉.(b〈y〉.c〈y〉.x || a〈!x〉)

Soft Processes: Examples

a〈x〉.x ? X

a〈!x〉.(x ? || (!x)?)

a〈!x〉.a〈x〉.b〈x〉.0 X

a〈!x〉.(b〈y〉.c〈y〉.x || a〈!x〉)

Soft Processes: Examples

a〈x〉.x ? X

a〈!x〉.(x ? || (!x)?)

a〈!x〉.a〈x〉.b〈x〉.0 X

a〈!x〉.(b〈y〉.c〈y〉.x || a〈!x〉)

Soft Processes: Examples

a〈x〉.x ? X

a〈!x〉.(x ? || (!x)?)

a〈!x〉.a〈x〉.b〈x〉.0 X

a〈!x〉.(b〈y〉.c〈y〉.x || a〈!x〉)

Polytime Soundness
Definition
Given a process P , define:

I B(P): the maximum !-nesting depth of P ;
I D(P) = max{NFO(x ,Q) | Q is a subprocess of P};
I Wn(P): like |P|, but processes inside a ! counts for n;
I W(P) = WD(P)(P).

Similarly for values.

Examples:

B(!!x) = 2
D(P) = D(a〈!x〉. ((x?) || (x?) || (x?))) = 3

W(!(λy .P)) = 1 + 3 · 5 = 16

Polytime Soundness
Definition
Given a process P , define:

I B(P): the maximum !-nesting depth of P ;
I D(P) = max{NFO(x ,Q) | Q is a subprocess of P};
I Wn(P): like |P|, but processes inside a ! counts for n;
I W(P) = WD(P)(P).

Similarly for values.

Examples:

B(!!x) = 2
D(P) = D(a〈!x〉. ((x?) || (x?) || (x?))) = 3

W(!(λy .P)) = 1 + 3 · 5 = 16

Polytime Soundness

Lemma
For every P, W(P) ≥ |P|.

Proposition
If ∅ `P Q and Q →L P, then W(Q) >W(P), D(Q) ≥ D(P) and
B(Q) ≥ B(P).

Proposition

For every process P, W(P) ≤ |P|B(P)+1. Similarly, for every value
V , W(V) ≤ |V |B(V)+1.

Theorem
There is a family of polynomials {pn}n such that for every process
P and for every m, if P →m

L Q, then m, |Q| ≤ pB(P)(|P|).

Capturing Interesting Examples?

I Can we relax the well-formedness discipline to capture
examples like the following?

λ!z .a〈!x〉.(b〈y〉.c〈y〉.x ? || a〈!x〉)

I The answer is yes, but we need another operator 2, similar to
!:

λ!z .a〈2x〉.(b〈y〉.c〈y〉.x ? || a〈2x〉)
I Notice that

I x appears twice in the body P;
I LFO(x ,P) = {0, 1};
I The occurrence of x at level 0 is in the “scope” on an input on

b, on which we never do outputs.

I Polynomial soundness still holds.

Ongoing and Future Works

I Turn SHOπ into a type system for ordinary HOπ.
I Completeness?
I Find the “modal discipline” corresponding to existing type

systems guarateeing termination of HOπ (e.g.
[DemangeonHirshkoffSangiorgi09]).

Questions?

