Linearizing Higher-Order Processes

Ugo Dal Lago
(Joint Work with Simone Martini and Davide Sangiorgi)

Università di Bologna

CONCERTO Final Meeting, June 10th 2010

Motivation

- Processes should be reactive:
- Between any pair of visible actions, there should be only a finite number of invisible, internal actions.
- There are type systems which guarantees this property on π-terms.
- Sometimes you want more than that, namely bounded reactivity:
- A bounded number of invisible actions between any pair of visible actions.
- Bounded by what?
- Constant bounds? [Kobayashi03]
- Parametric bounds, in a synchronous scenario [AmadioDabrowski07]

The Sequential, Functional Setting

- Reactivity is termination.
- Or productivity.
- What is reactivity with parametric bounds?
- Termination with bounded complexity.
- Examples: polytime functions, linear time functions, exponential time functions, etc.
- Many different techniques for enforcing bounded termination in functional programming languages:
- Type Systems [KraryWeirich00,Hofmann].
- Static Analysis [MarionMoyen00,].
- ICC [BellantoniCook92,Leivant93,Girard97,Terui01].

From Intuitionistic Logic to Soft Linear Logic

Logic	Axioms
Intuitionistic	$\mathcal{C C C}$
Logic	$\mathcal{S M C C}$
(Intuitionistic)	$!A \multimap!A \otimes!A$
Multiplicative and	$!A \multimap 1$
Exponential	$!A \multimap!!A$
Linear Logic	$!A \multimap A$
(Intuitionistic)	$\mathcal{S M C C}$
Soft Linear Logic	$!A \multimap A \otimes \ldots \otimes A$
	$!A \multimap 1$

Soft Linear Logic

- It is polynomial time sound [Lafont02]:
- $\mathbb{B}(\pi)$ is the box depth of any proof π;

Theorem

There is a family of polynomials $\left\{p_{n}\right\}_{n}$ such that the normal form of any proof π can be computed in time $p_{\mathbb{B}(\pi)}(|\pi|)$

- This holds for many notions of proofs: proof-nets, sequent-calculus, lambda-terms, etc.
- It is also polynomial time complete [Lafont02, MairsonTerui03]:
- A function $f: \mathbb{N} \rightarrow \mathbb{N}$ can be represented in soft linear logic if a proof π_{f} rewrites to an encoding of $f(n)$ when cut against an encoding of n.

Theorem

Every polynomial time function can be represented in soft linear logic.

From Lambda Calculus to Soft Lambda Calculus

- Lambda calculus Λ :

$$
M::=x|\lambda x . M| M M
$$

- Linear Lambda Calculus $\Lambda_{!}$

$$
M::=x|\lambda x \cdot M| \lambda!x \cdot M|M M|!M
$$

where $\operatorname{NFO}(x, M)=1$ and $\operatorname{LFO}(x, M)=\{0\}$ in $\lambda x . M$.

- Soft Lambda Calculus Λ_{S}

$$
M::=x|\lambda x \cdot M| \lambda!x \cdot M|M M|!M
$$

where

- $\operatorname{NFO}(x, M)=1$ and $\operatorname{LFO}(x, M)=0$ in $\lambda \times . M$.
- either $\operatorname{NFO}(x, M)=1$ and $\operatorname{LFO}(x, M)=\{1\}$ or $\operatorname{LFO}(x, M)=\{0\}$ in $\lambda!x . M$.

From Lambda Calculus to Soft Lambda Calculus

- Lambda calculus Λ :

$$
M::=x|\lambda x \cdot M| M M
$$

- Linear Lambda Calculus $\Lambda_{!}$

$$
M::=x|\lambda x \cdot M| \lambda!x \cdot M|M M|!M
$$

where $\operatorname{NFO}(x, M)=1$ and $\operatorname{LFO}(x, M)=\{0\}$ in $\lambda x \cdot M$.

- Soft Lambda Calculus \wedge_{S}

$$
M::=x|\lambda x \cdot M| \lambda!x \cdot M|M M|!M
$$

where
$-\operatorname{MFO}(x, M)=1$ and $\operatorname{LFO}(x, M)=0$ in $\lambda \times \cdot M$.

- either $\operatorname{NFO}(x, M)=1$ and $\operatorname{LFO}(x, M)=\{1\}$ or $\operatorname{LFO}(x, M)=\{0\}$ in $\lambda!x . M$.

From Lambda Calculus to Soft Lambda Calculus

- Lambda calculus Λ :

$$
M::=x|\lambda x \cdot M| M M
$$

- Linear Lambda Calculus Λ_{1}

$$
M::=x|\lambda x \cdot M| \lambda!x \cdot M|M M|!M
$$

where $\operatorname{NFO}(x, M)=1$ and $\operatorname{LFO}(x, M)=\{0\}$ in $\lambda x \cdot M$.

- Soft Lambda Calculus Λ_{S}

$$
M::=x|\lambda x \cdot M| \lambda!x \cdot M|M M|!M
$$

where

- $\operatorname{NFO}(x, M)=1$ and $\operatorname{LFO}(x, M)=0$ in $\lambda x . M$.
- either NFO $(x, M)=1$ and $\operatorname{LFO}(x, M)=\{1\}$ or $\operatorname{LFO}(x, M)=\{0\}$ in $\lambda!x . M$.

From Lambda Calculus to Soft Lambda Calculus

$-\Lambda \Longrightarrow \Lambda_{!}$is a Refinement.

- Whenever a term can be copied, it must be marked as such, with!.
- Some results continue to hold
- Λ can be embedded into $\Lambda_{\text {! }}$

$$
\begin{aligned}
\{x\} & =x \\
\{\lambda x \cdot M\} & =\lambda!x \cdot\{M\} \\
\{M N\} & =\{M\}!\{N\}
\end{aligned}
$$

- $\Lambda_{!} \Longrightarrow \Lambda_{S}$ is a Restriction.
- Whenever you copy, you lose the possibility of copying.
- Examples:

$$
\begin{array}{cc}
\lambda!x \cdot y x x & \checkmark \\
\lambda!x \cdot y!x & \checkmark \\
\lambda!x \cdot y(!x) x & \swarrow
\end{array}
$$

- Some results about SLL continue to hold:
- Polytime soundness
- Polytime completeness

What About Processes?

- It has been showed that [EhrhardLaurent07]:
- A linear name-passing π-calculus can be interpreted into...
- ...differential interaction nets.
- Interesting Questions:
- What is the expressive power of the encoded π-calculus?
- Can we restrict differential interaction nets and capture interesting classes of processes?
- We here adopt a different strategy:
- Forget about logic.
- But keeping in mind the decomposition copying-dispatching.
- Apply the decomposition to $\mathrm{HO} \pi$ (higher-order π-calculus).

Higher-Order π-Calculus

- Processes:

$$
\begin{aligned}
& V::=\star \mid \lambda x . P \\
& P::=\mathbf{0}|x| P| | P|a\langle x\rangle . P| \overline{\mathrm{a}}\langle V\rangle . P|(\nu a) P| V V
\end{aligned}
$$

- Reduction:

$$
\begin{gathered}
\overline{\bar{a}\langle V\rangle . P\left\|a\langle x\rangle . Q \rightarrow_{\mathrm{p}} P\right\| Q[x / V]} \overline{(\lambda x . P) V \rightarrow_{\mathrm{p}} P[x / V]} \\
\frac{P \rightarrow_{\mathrm{p}} Q}{P\left\|R \rightarrow_{\mathrm{p}} Q\right\| R} \quad \frac{P \rightarrow_{\mathrm{p}} Q}{(\nu a) P \rightarrow_{\mathrm{p}}(\nu a) Q} \\
\frac{P \equiv Q \quad Q \rightarrow_{\mathrm{p}} R \quad R \equiv S}{P \rightarrow_{\mathrm{p}} S}
\end{gathered}
$$

Higher-Order π-Calculus

- Nontermination:

$$
\begin{aligned}
& P=\lambda y \cdot a\langle x\rangle \cdot(x \star \| \bar{a}\langle x\rangle) \\
& Q=P \star \| \bar{a}\langle P\rangle
\end{aligned}
$$

Indeed:

$$
Q \rightarrow Q \rightarrow \ldots
$$

- More interesting example:

$$
\begin{aligned}
& P=\lambda z \cdot a\langle x\rangle \cdot(b\langle y\rangle \cdot \bar{c}\langle y\rangle \cdot x \star \| \bar{a}\langle x\rangle) \\
& Q=P \star \| \bar{a}\langle P\rangle
\end{aligned}
$$

Linear Higher-Order π-Calculus: $\mathrm{LHO} \pi$

- Values and Processes:

$$
\begin{aligned}
& V::=\star|x| \lambda x . P|\lambda!x . P|!V \\
& P::=0|P||P| a\langle x\rangle . P|a\langle!x\rangle . P| \bar{a}\langle V\rangle . P|(\nu a) P| V V
\end{aligned}
$$

where $\operatorname{NFO}(x, P)=1$ and $\operatorname{LFO}(x, P)=\{0\}$ in $a\langle x\rangle . P$ and $\lambda x . P$.

- Examples:

$$
\begin{array}{cc}
a\langle x\rangle \cdot x \star & \checkmark \\
a\langle!x\rangle \cdot(x \star \mid \|!x \star) & \checkmark \\
a\langle!x\rangle \cdot \bar{a}\langle x\rangle \cdot \bar{b}\langle x\rangle \cdot 0 & \checkmark \\
a\langle!x\rangle \cdot(b\langle y\rangle \cdot \bar{c}\langle y\rangle \cdot x \star|\mid \bar{a}\langle!x\rangle \cdot 0) & \checkmark \\
a\langle x\rangle \cdot(!x) \star &
\end{array}
$$

Linear Higher-Order π-Calculus: LHO π

- Reduction:

$$
\begin{gathered}
\overline{\bar{a}\langle V\rangle . P\left\|a\langle x\rangle \cdot Q \rightarrow_{\mathrm{L}} P\right\| Q[x / V]} \\
\overline{\bar{a}\langle!V\rangle . P\left\|a\langle!x\rangle \cdot Q \rightarrow_{\mathrm{L}} P\right\| Q[x / V]} \\
\frac{(\lambda x . P) V \rightarrow_{\mathrm{L}} P[x / V]}{\overline{(\lambda!x . P)!V \rightarrow_{\mathrm{L}} P[x / V]}} \\
\frac{P \rightarrow_{\mathrm{L}} Q}{P\left\|R \rightarrow_{\mathrm{L}} Q\right\| R} \quad \frac{P \rightarrow_{\mathrm{L}} Q}{(\nu a) P \rightarrow_{\mathrm{L}}(\nu a) Q} \\
\frac{P \equiv Q \quad Q \rightarrow_{\mathrm{L}} R \quad R \equiv S}{P \rightarrow_{\mathrm{L}} S}
\end{gathered}
$$

Embedding $\mathrm{LHO} \pi$ Into $\mathrm{HO} \pi$

$$
\begin{aligned}
{[\star]_{\mathrm{V}} } & =\star \\
{[\lambda x \cdot P]_{\mathrm{V}} } & =\lambda!x \cdot[P]_{\mathrm{P}} \\
{[0]_{\mathrm{P}} } & =0 \\
{[x]_{\mathrm{P}} } & =x \\
{[P \| Q]_{\mathrm{P}} } & =[P]_{\mathrm{P}} \|[Q]_{\mathrm{P}} \\
{[a\langle x\rangle .]_{\mathrm{P}} } & =a\langle!x\rangle \cdot[P]_{\mathrm{P}} \\
{[\bar{a}\langle V\rangle \cdot P]_{\mathrm{P}} } & =\bar{a}\left(![V]_{\mathrm{V}}\right\rangle \cdot[P]_{\mathrm{P}} \\
{[(\nu a) P]_{\mathrm{P}} } & =(\nu a)[P]_{\mathrm{P}} \\
{[V V]_{\mathrm{P}} } & =[V]_{\mathrm{V}}![V]_{\mathrm{V}}
\end{aligned}
$$

Proposition (Simulation)
If $P \rightarrow_{\mathrm{P}} Q$, then $[P]_{\mathrm{P}} \rightarrow_{\mathrm{L}}[Q]_{\mathrm{P}}$

Soft Processes: $\mathrm{SHO} \pi$

Processes:

$$
\begin{aligned}
& V::=\star|x| \lambda x . P|\lambda!x . P|!V \\
& P::=0|P||P| a\langle x\rangle . P|a\langle!x\rangle . P| \bar{a}\langle V\rangle . P|(\nu a) P| V V
\end{aligned}
$$

where

- $\operatorname{NFO}(x, P)=1$ and $\operatorname{LFO}(x, P)=\{0\}$ in $a\langle x\rangle . P$ and $\lambda x . P$.
- Either

$$
\operatorname{NFO}(x, P)=1 \wedge \operatorname{LFO}(x, P)=\{1\}
$$

or

$$
\operatorname{LFO}(x, P)=\{0\}
$$

in $x\langle!P\rangle$. and $\lambda!x . P$.

Soft Processes: Examples

$$
a\langle x\rangle \cdot x \star \quad \checkmark
$$

$$
a\langle!x\rangle \cdot(x \star \|(!x) \star)
$$

$$
a\langle!x\rangle . \bar{a}\langle x\rangle . \bar{b}\langle x\rangle .0
$$

Soft Processes: Examples

$$
\begin{gathered}
a\langle x\rangle \cdot x \star \\
a\langle!x\rangle \cdot(x \star \|(!x) \star)
\end{gathered}
$$

Soft Processes: Examples

$$
\begin{gathered}
a\langle x\rangle \cdot x \star \\
a\langle!x\rangle \cdot(x \star \|(!x) \star) \\
a\langle!x\rangle \cdot \bar{a}\langle x\rangle \cdot \bar{b}\langle x\rangle \cdot 0
\end{gathered}
$$

Soft Processes: Examples

$$
\begin{gathered}
a\langle x\rangle \cdot x \star \\
a\langle!x\rangle \cdot(x \star \|(!x) \star) \\
a\langle!x\rangle \cdot \bar{a}\langle x\rangle \cdot \bar{b}\langle x\rangle \cdot 0 \\
a\langle!x\rangle \cdot(b\langle y\rangle \cdot \bar{c}\langle y\rangle \cdot x \| \bar{a}\langle!x\rangle)
\end{gathered}
$$

Polytime Soundness

Definition

Given a process P, define:

- $\mathbb{B}(P)$: the maximum !-nesting depth of P;
- $\mathbb{D}(P)=\max \{\operatorname{NFO}(x, Q) \mid Q$ is a subprocess of $P\}$;
- $\mathbb{W}_{n}(P)$: like $|P|$, but processes inside a ! counts for n;
- $\mathbb{W}(P)=\mathbb{W}_{\mathbb{D}(P)}(P)$.

Similarly for values.

Polytime Soundness

Definition

Given a process P, define:

- $\mathbb{B}(P)$: the maximum !-nesting depth of P;
- $\mathbb{D}(P)=\max \{\operatorname{NFO}(x, Q) \mid Q$ is a subprocess of $P\}$;
- $\mathbb{W}_{n}(P)$: like $|P|$, but processes inside a! counts for n;
- $\mathbb{W}(P)=\mathbb{W}_{\mathbb{D}(P)}(P)$.

Similarly for values.

Examples:

$$
\begin{aligned}
\mathbb{B}(!!x) & =2 \\
\mathbb{D}(P)=\mathbb{D}(a\langle!x\rangle \cdot((x \star)\|(x \star)\|(x \star))) & =3 \\
\mathbb{W}(!(\lambda y \cdot P))=1+3 \cdot 5 & =16
\end{aligned}
$$

Polytime Soundness

Lemma

For every $P, \mathbb{W}(P) \geq|P|$.

Proposition

If $\emptyset \vdash_{\mathrm{P}} Q$ and $Q \rightarrow_{\mathrm{L}} P$, then $\mathbb{W}(Q)>\mathbb{W}(P), \mathbb{D}(Q) \geq \mathbb{D}(P)$ and $\mathbb{B}(Q) \geq \mathbb{B}(P)$.

Proposition

For every process $P, \mathbb{W}(P) \leq|P|^{\mathbb{B}(P)+1}$. Similarly, for every value $V, \mathbb{W}(V) \leq|V|^{\mathbb{B}(V)+1}$.

Theorem

There is a family of polynomials $\left\{p_{n}\right\}_{n}$ such that for every process P and for every m, if $P \rightarrow_{\mathrm{L}}^{m} Q$, then $m,|Q| \leq p_{\mathbb{B}(P)}(|P|)$.

Capturing Interesting Examples?

- Can we relax the well-formedness discipline to capture examples like the following?

$$
\lambda!z . a\langle!x\rangle .(b\langle y\rangle . \bar{c}\langle y\rangle . x \star \| \bar{a}\langle!x\rangle)
$$

- The answer is yes, but we need another operator \square, similar to !:

$$
\lambda!z . a\langle\square x\rangle .(b\langle y\rangle . \bar{c}\langle y\rangle . x \star \| \bar{a}\langle\square x\rangle)
$$

- Notice that
- x appears twice in the body P;
- $\operatorname{LFO}(x, P)=\{0,1\}$;
- The occurrence of x at level 0 is in the "scope" on an input on b, on which we never do outputs.
- Polynomial soundness still holds.

Ongoing and Future Works

- Turn $\mathrm{SHO} \pi$ into a type system for ordinary $\mathrm{HO} \pi$.
- Completeness?
- Find the "modal discipline" corresponding to existing type systems guarateeing termination of $\mathrm{HO} \pi$ (e.g.
[DemangeonHirshkoffSangiorgi09]).

Questions?

