Elliptic Curve Cryptography	Automatic Generation of Cryptographic Code	Experimental Results	Conclusion

Automatic Generation of Cryptographic Code Chapter Binary Elliptic Curves

Daniele Canavese, **Emanuele Cesena** (ongoing work with Roberto M. Avanzi, Marco Pedicini)

> Computer and Network Security Group Dip. di Automatica e Informatica Politecnico di Torino

CONCERTO (Torino) - 09-11/06/2010

Elliptic Curve Cryptography	Automatic Generation of Cryptographic Code	Experimental Results O	Conclusion
Motivation (Cr	yptography)		

"Who wants his (crypto) code to live forever" - Queen ;-)

Implementation is a crucial task in applied cryptography

- Good: rich mathematical structure, elegant description
- Bad: often difficult to achieve elegant code
 - E.g. optimizations (sometimes just for minimum functionality)

向下 イヨト イヨト

Elliptic Curve Cryptography	Automatic Generation of Cryptographic Code	Experimental Results O	Conclusion
Motivation (Cry	/ptography)		

"Who wants his (crypto) code to live forever" - Queen ;-)

Implementation is a crucial task in applied cryptography

- Good: rich mathematical structure, elegant description
- Bad: often difficult to achieve elegant code
 - E.g. optimizations (sometimes just for minimum functionality)

Need for a new approach (a new programming language?)...

This talk stops here!

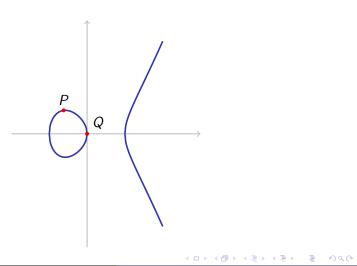
"After geometry and algebra there is logic, of course"

- ...can we embed properties directly into such a language?
- e.g. only poly-time (crypto) algorithms can be written?
- e.g. our optimizations do not "conflicts" with programs?

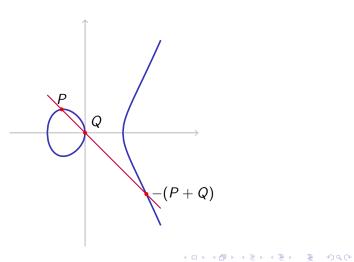
< 注→ < 注→

Elliptic Curve Cryptography	Automatic Generation of Cryptographic Code	Experimental Results O	Conclusion
Outline			

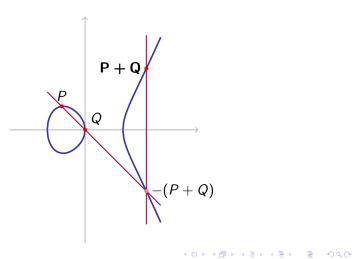
2 Automatic Generation of Cryptographic Code



3 × 4 3 ×


Elliptic Curve Cryptography •00	Automatic Generation of Cryptographic Code	Experimental Results	Conclusion
Elliptic Curve			

$$y^2 = x^3 + ax + b$$
, $a, b \in \mathbb{F}$


Elliptic Curve Cryptography •00	Automatic Generation of Cryptographic Code	Experimental Results	Conclusion
Elliptic Curve			

$$y^2 = x^3 + ax + b$$
, $a, b \in \mathbb{F}$

Elliptic Curve Cryptography	Automatic Generation of Cryptographic Code	Experimental Results O	Conclusion
Elliptic Curve			

$$y^2 = x^3 + ax + b$$
, $a, b \in \mathbb{F}$

Elliptic Curve Cryptography ○●○	Automatic Generation of Cryptographic Code	Experimental Results	Conclusion
Elliptic Curve C	Cryptography		

Discrete Logarithm Problem

Compute *n*, given points $P, nP \in E(\mathbb{F}_q)$

Elliptic curve in cryptography

- Miller and Koblitz (independently) in 1985
- Smaller key size w.r.t. finite fields for comparable security

Cryptographic Primitives based on DLP

- Diffie-Hellman Key Agreement
- ElGamal Encryption
- Digital Signature Algorithm

• ...

Elliptic Curve Cryptography ○○●	Automatic Generation of Cryptographic Code	Experimental Results O	Conclusion
Issues impleme	nting ECC		

Choice of the best algorithm

- Coordinate system (Affine, Projective, López-Dahab)
- Scalar representation (NAF, w-NAF)
- Effect: many versions for the same function

Optimizations

- Routine specific
- Cross-layer
- Platform specific
- Effect: code unreadable

Evolution

- New hardware
- New ideas

Elliptic Curve Cryptography	Automatic Generation of Cryptographic Code	Experimental Results O	Conclusion
Requirements			

Main objective

Automatic generation of a greatly optimized crypto library

Requirements for the framework

- Focus on binary ECC
- Extensibility, code writing close to mathematical language

Requirements for the code generated

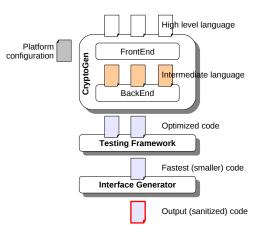
• Efficiency (time & space), Security, Portability...

Elliptic Curve Cryptography	Automatic Generation of Cryptographic Code	Experimental Results O	Conclusion
Requirements			

Main objective

Automatic generation of a greatly optimized crypto library

Requirements for the framework


- Focus on binary ECC
- Extensibility, code writing close to mathematical language

Requirements for the code generated

• Efficiency (time & space), Security, Portability...

Elliptic Curve Cryptography	Automatic Generation of Cryptographic Code ○●○○○	Experimental Results O	Conclusion
Architecture			

NURSORA SERVER E

Elliptic Curve Cryptography	Automatic Generation of Cryptographic Code	Experimental Results	Conclusion
CryptoGen (Fro	ontEnd)		

FrontEnd

Translates from high-level language to intermediate language

Plug-in mechanism to implement new algorithms

- Plug-ins are dynamic libraries (currently written in C++)
- Plug-in programmer may interact with FE/BE to improve results

Currently implemented algorithms

- Arithmetic in binary fields
 - Add, Mul (Comb, Karatsuba), Sqr, ...
- Arithmentic over binary elliptic curves
 - Add, Neg, Dbl (Affine, Projective, López-Dahab)
 - Scalar multiplication (Binary, NAF, w-NAF)

Elliptic Curve Cryptography	Automatic Generation of Cryptographic Code	Experimental Results	Conclusion
CryptoGen (Ba	ckEnd)		

BackEnd

Performs optimizations and translates in C/C++

Optimizations

- Hardware-independent
- Hardware-dependent
 - Preliminary choice of better algorithms
 - Actual instantiation of BitVector (loop unrolling, scheduling...)

Current intermediate language

- Three-address code
- Inner/Outer types, RoutineCall, ControlStructure (if, while)
- Knowledge of BitVector, FieldElement, ECPoint types, operators and properties

Elliptic Curve Cryptography	Automatic Generation of Cryptographic Code ○○○○●	Experimental Results O	Conclusion
Testing Frances	and and here of a company	. .	

Testing Framework and Interface Generator

Testing Framework

Times alternative versions of a function, selecting the fastest one

- Support for external code, i.e. not generated by CryptoGen
- Compatible with the ECRYPT Benchmarking of Cryptographic Systems

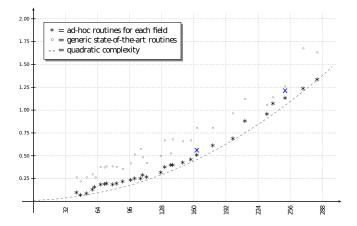
高 とう ヨン うまと

Testing Framework and Interface Generator

Testing Framework

Times alternative versions of a function, selecting the fastest one

- Support for external code, i.e. not generated by CryptoGen
- Compatible with the ECRYPT Benchmarking of Cryptographic Systems


Interface Generator

Enrich the interface of a function, enhancing security

- Sanitization
- Information hiding

- 4 回 ト 4 ヨ ト 4 ヨ ト

Elliptic Curve Cryptography	Automatic Generation of Cryptographic Code	Experimental Results ●	Conclusion
Finite Fields			

Data from R. M. Avanzi, N. Thériault, Effects of Optimizations for Software Implementations of Small Binary Field Arithmetic, WAIFI 2007

イロト イヨト イヨト イヨト

æ

Elliptic Curve Cryptography	Automatic Generation of Cryptographic Code	Experimental Results	Conclusion ●○
Future Works			

Enhancement to CryptoGen

- Design of a specific language for ECC (DLP-based? asymmetric? cryptography)
- Support for multiple high-level languages
- Provide code annotation
- Improve optimization techniques

Add new cryptographic primitives

- Pairing-based cryptography
- ECC over prime fields
- Symmetric cryptography

Elliptic Curve Cryptography	Automatic Generation of Cryptographic Code	Experimental Results O	Conclusion ○●
Conclusion			

Automatic generation of a greatly optimized crypto library

- CryptoGen
- Testing Framework
- Interface Generator

Implementation of binary ECC

- Binary fields
- Elliptic curves
- Scalar multiplication

Performance close to hand-written hand-optimized code

- Higher maintainability
- Some "tricks" still to be added

3 ×

Elliptic Curve Cryptography	Automatic Generation of Cryptographic Code	Experimental Results	Conclusion

Thank you for your attention! Any questions?

