The algebra and geometry of commitment

Felice Cardone Università di Torino

Lorenzen dialogues

Lorenzen dialogues

Justification of procedural rules:

- 1. the Proponent may only assert an atomic formula after the Opponent has asserted it
- 2. if one responds to an attack, this has to be the latest open attack
- 3. an attack may be answered at most once
- 4. an assertion made by P may be attacked at most once.

Lorenzen dialogues

Justification of procedural rules:

- 1. the Proponent may only assert an atomic formula after the Opponent has asserted it
- 2. if one responds to an attack, this has to be the latest open attack
- 3. an attack may be answered at most once
- 4. an assertion made by P may be attacked at most once.

why?

Lorenzen dialogues

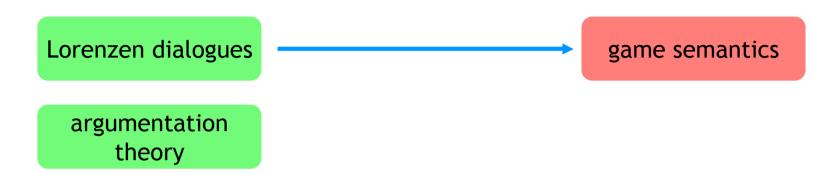
The Dummett-Brandom theory of assertion:

The speech act of asserting arises in a particular, socially instituted, autonomous structure of responsibility and authority. In asserting a sentence one both commits oneself to it and endorses it.

(Brandom, Asserting, 1983)

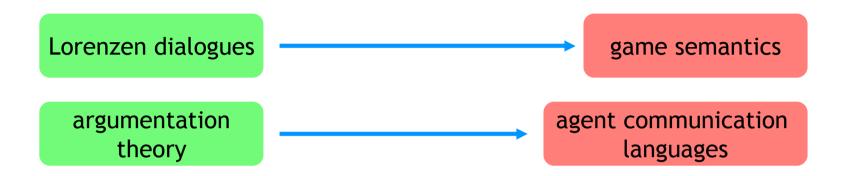
Lorenzen dialogues

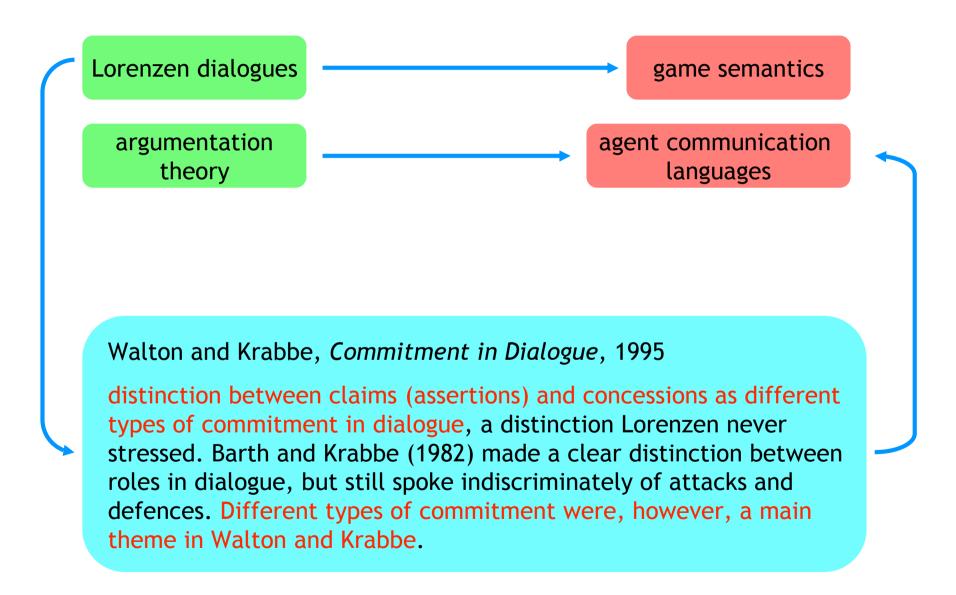
game semantics

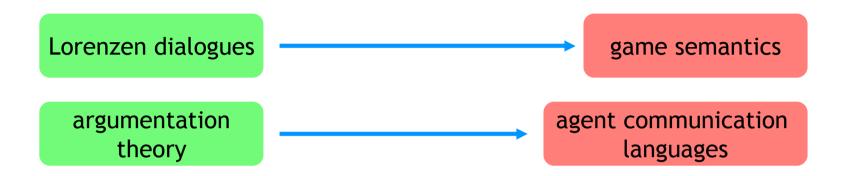


Hamblin, Fallacies, 1970: the idea of a commitment store

A speaker who is obliged to maintain consistency needs to keep a store of statements representing his previous commitments, and require of each new statement he makes that it may be added without inconsistency to this store.







Singh (~1998): commitment as a key notion in the social semantics for agent communication languages, following ideas of Habermas

Question:

What are the formal structures underlying the complex networks of commitments that bind together interacting (logical, computational) agents?

Question:

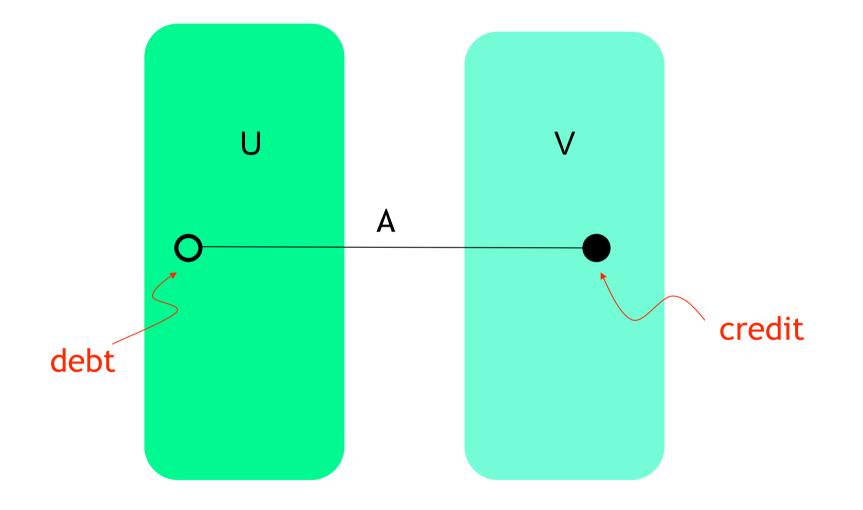
What are the formal structures underlying the complex networks of commitments that bind together interacting (logical, computational) agents?

I look for geometric and algebraic accounts of these structures

I. Accounting from first principles

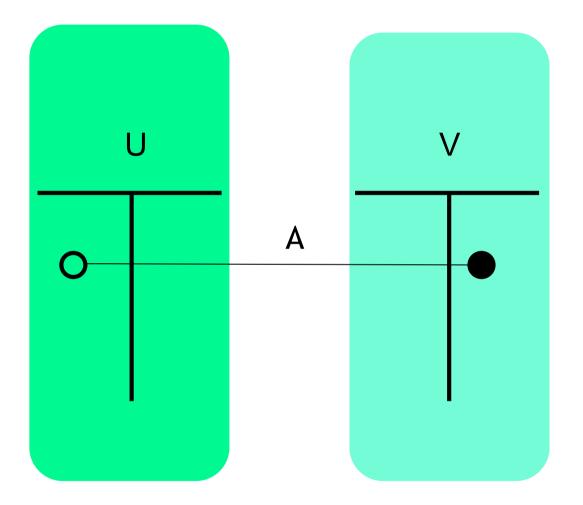
The forms of a commitment

The forms of a commitment



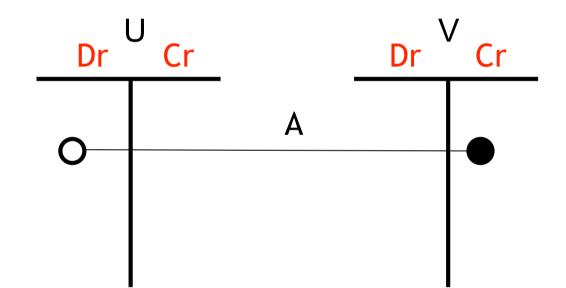
The forms of a commitment: accounts

The forms of a commitment: accounts



a pair of accounts...

The forms of a commitment: accounts



...with double-entry accounting

The forms of a commitment: one-liners

The forms of a commitment: one-liners

$[A^*U,AV]$

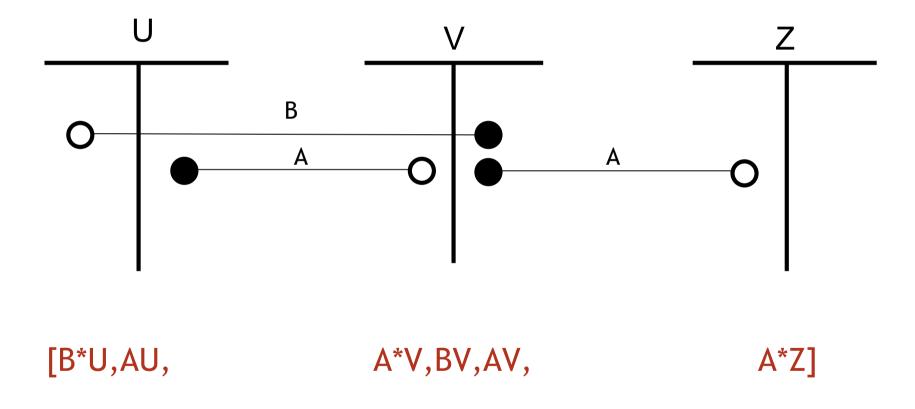
where

- → A,B,C,... are (positive) commitment types,
- \rightarrow U,V,W,... are places,
- → ()* is a fixed-point free involution of types
 (positive \(\Sigma\) negative)

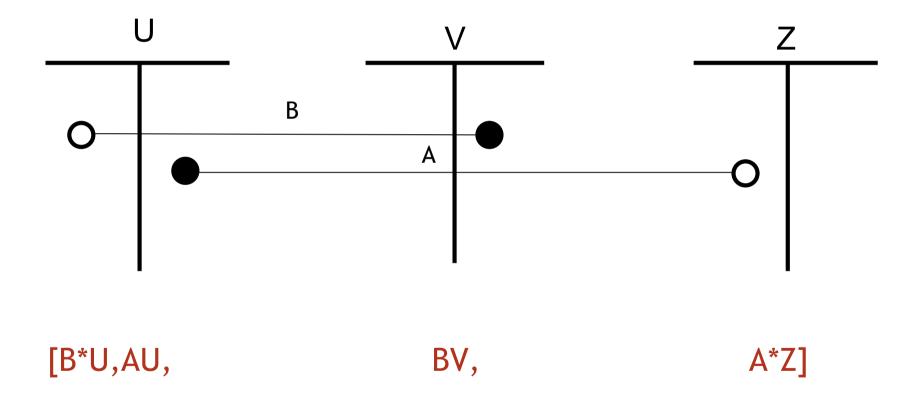
A system of accounts is a string of (type, place) pairs

The social life of commitments

The social life of commitments



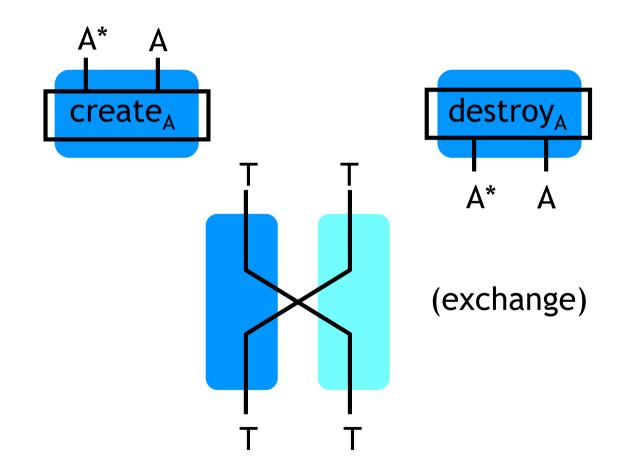
The social life of commitments



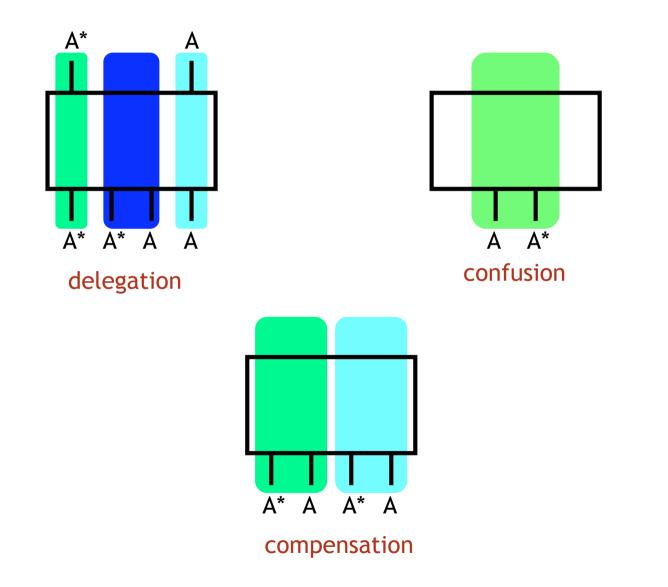
II. The geometry of commitment

Space-time diagrams

Transform commitments by composing nodes of three kinds, getting space-time diagrams

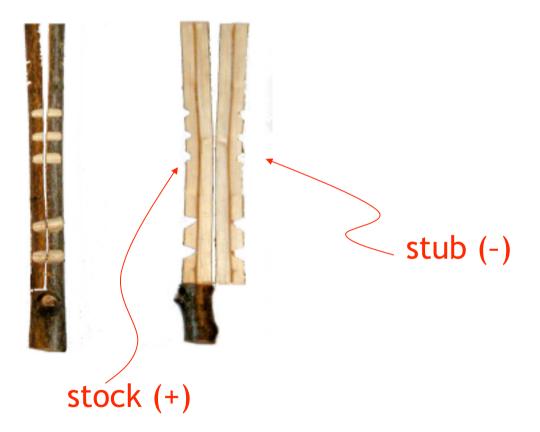


Transforming commitments (Justinian *Digesta*)



Tally sticks and their uses

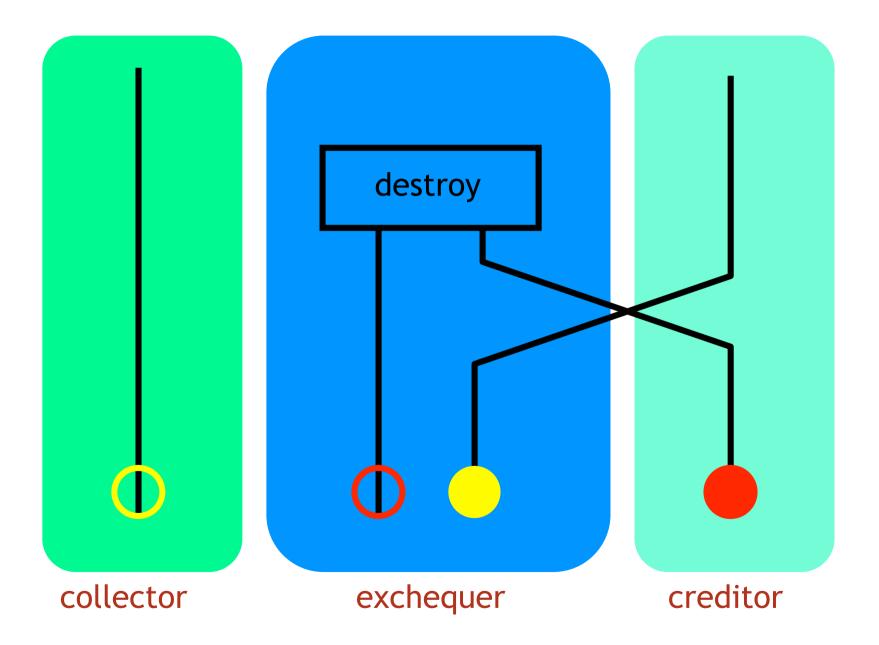
Tally sticks and their uses

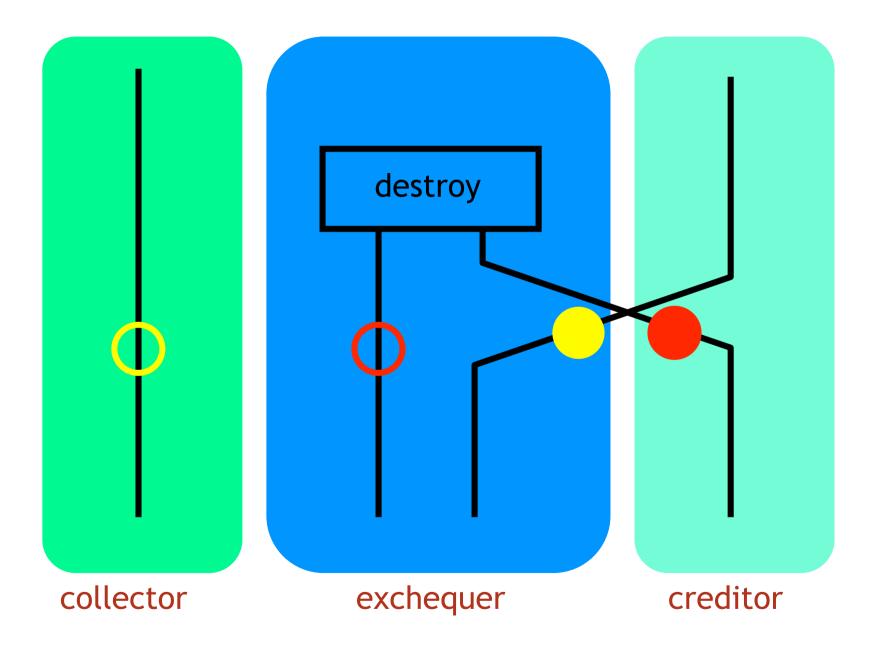


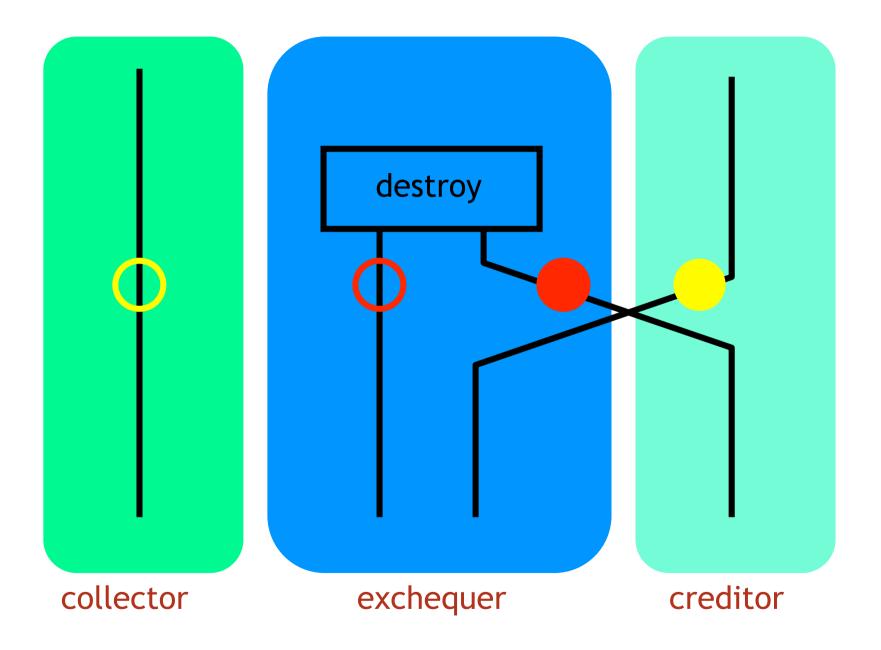
the medieval tally was split into two bits of unequal length. The stock was kept as a receipt by the person who handed over goods or money. The stub was kept by the receiver Delegation with tally sticks

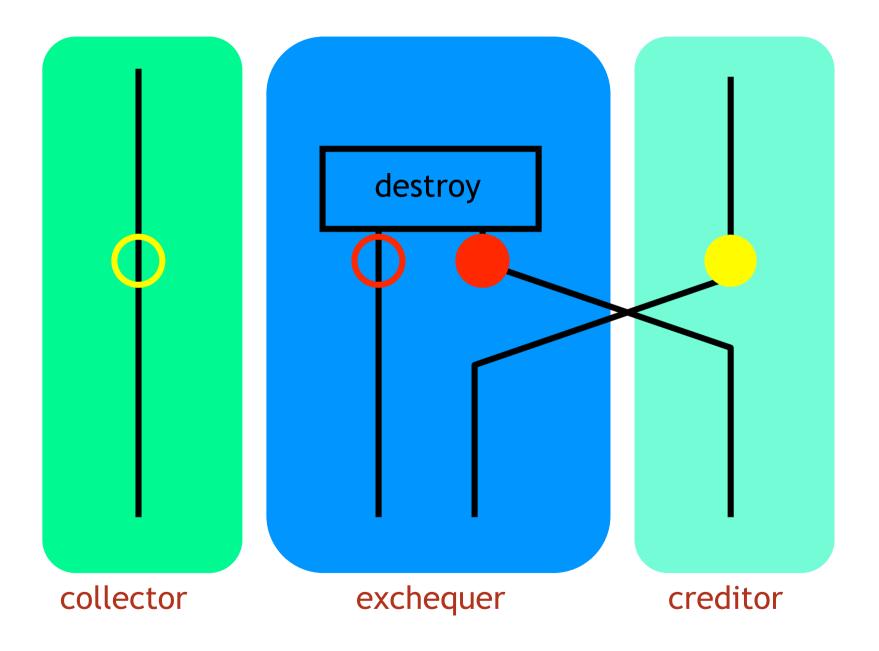
if the exchequer E was short of funds, it would cajole creditor B into taking not cash but a tally addressed to some tax collector A. The tally purported to be a receipt by the exchequer for such-and-such a sum, paid in by the collector A out of such-and-such type of revenue. Armed with this tally of assignment, creditor B presented himself to the collector, and - if all went smoothly – exchanged it for cash. The tally would afterwards serve the collector as his acquittance at the exchequer.

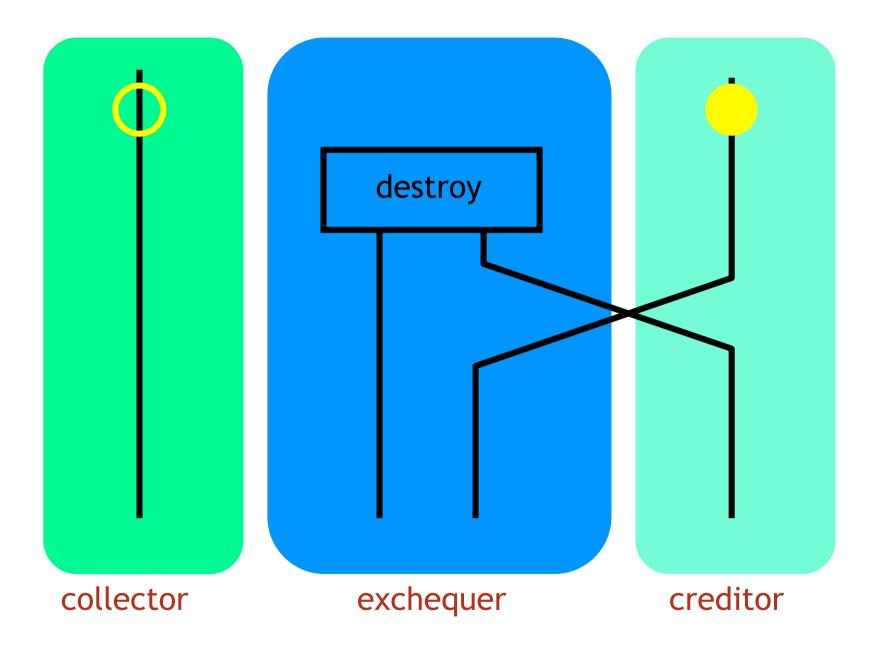
(Baxter, Early accounting: The tally and the checkerboard, The Accounting Historians Journal, 1989)

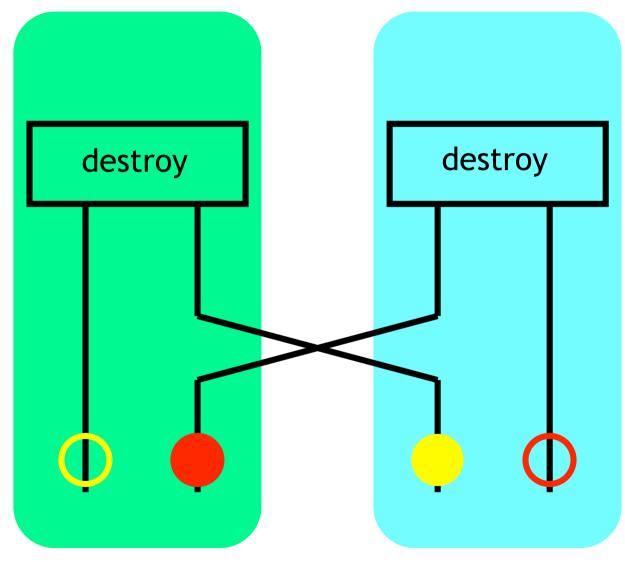


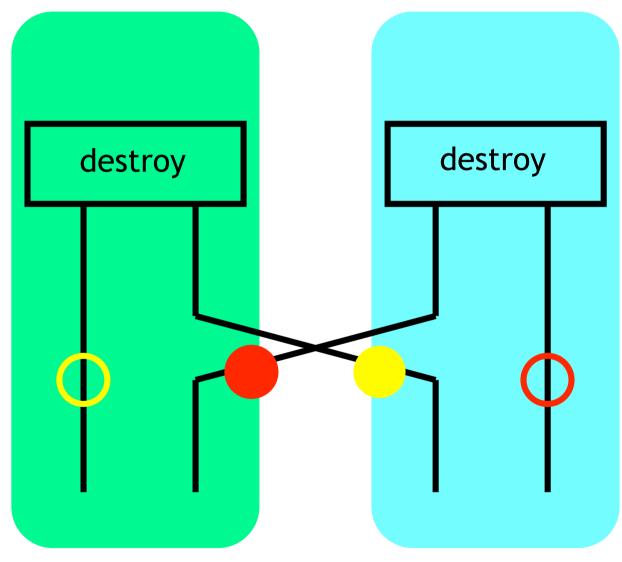


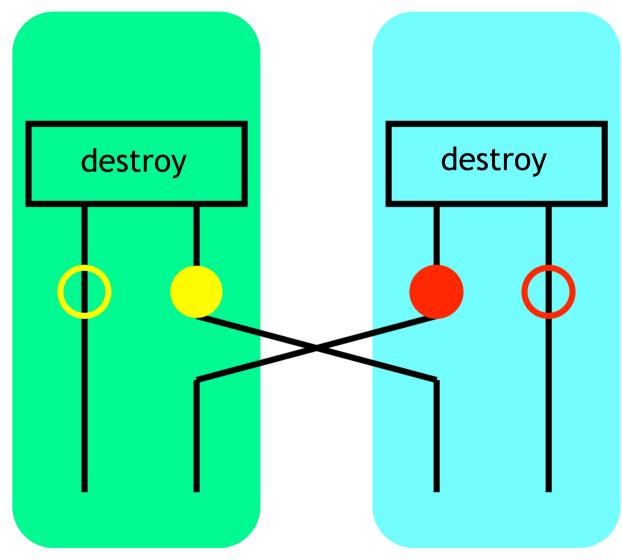


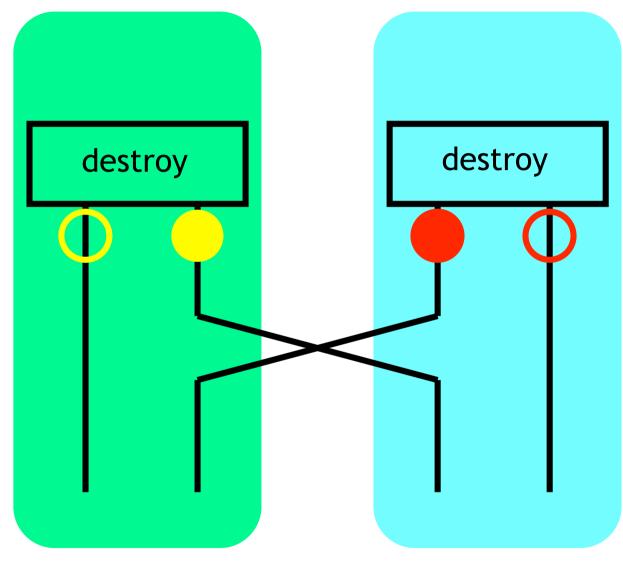


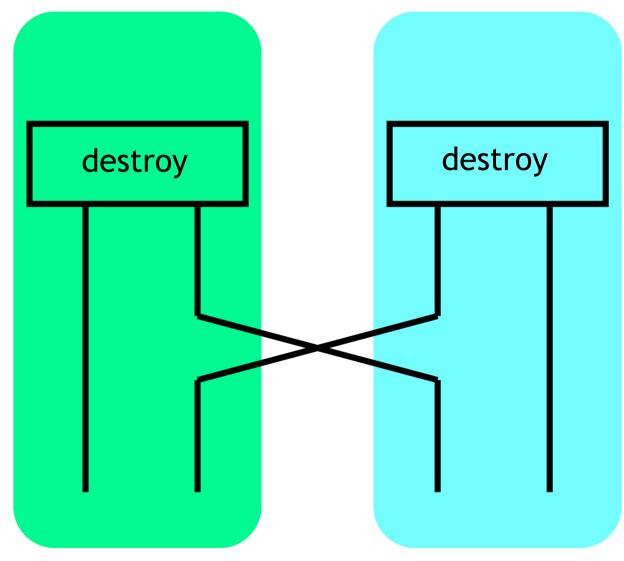






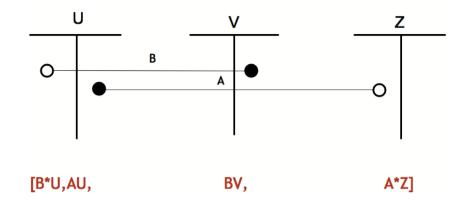


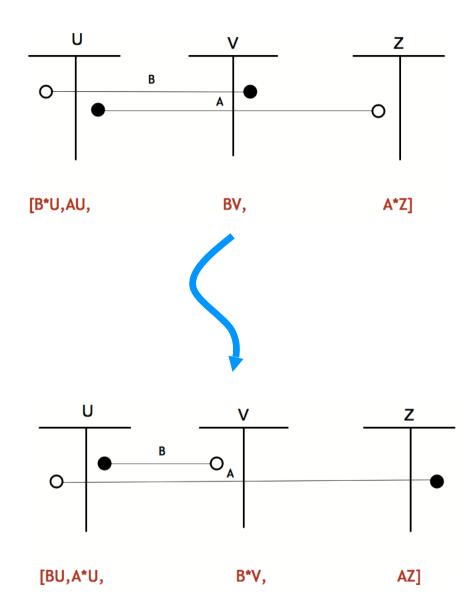




III. The algebra of commitment

Operations on accounts





Operations on accounts

For systems of accounts (one-liners) X,Y: • sum X + Y is concatenation • the dual X* is defined by ■[]* = [] $([AU] + Y)^* = [A^*U] + Y^*$ $([A^*U] + Y)^* = [AU] + Y^*$

• the zero account 0 is []

Positions

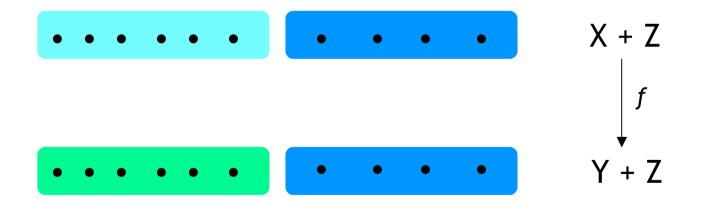
 $X = [T_1U_1, ..., T_nU_n]$ Pos(X) = { 1, ..., n }

Matchings

A matching of X with Y is a bijection $f: Pos(X) \rightarrow Pos(Y)$ that preserves types (but not necessarily places)

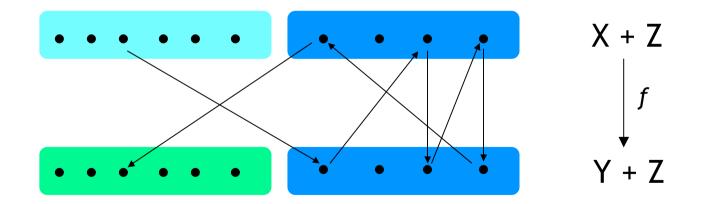
objects: strings $[A_1U_1, ..., A_nU_n]$ morphisms X \rightarrow Y: matchings of X with Y

Fact: \mathcal{M} is traced



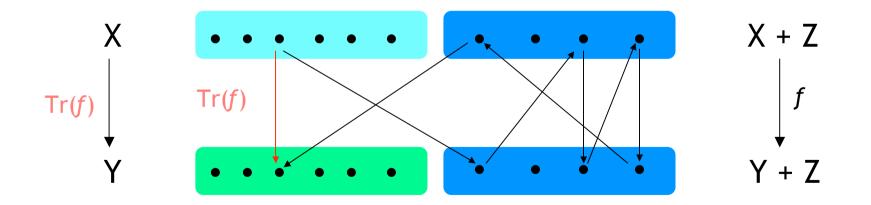
objects: strings $[A_1U_1, ..., A_nU_n]$ morphisms X \rightarrow Y: matchings of X with Y

Fact: \mathcal{M} is traced



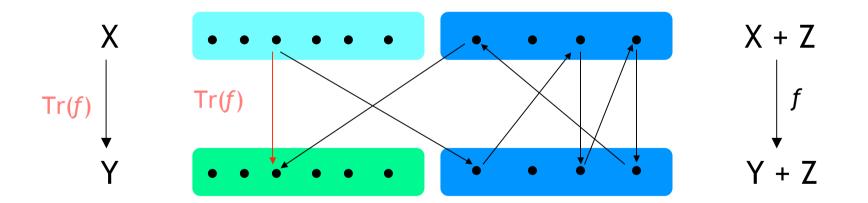
objects: strings $[A_1U_1, ..., A_nU_n]$ morphisms X \rightarrow Y: matchings of X with Y

Fact: $\mathcal M$ is traced



objects: strings $[A_1U_1, ..., A_nU_n]$ morphisms X \rightarrow Y: matchings of X with Y

Fact: \mathcal{M} is traced



(Garsia-Milne involution principle)

Accounting and the geometry of interaction

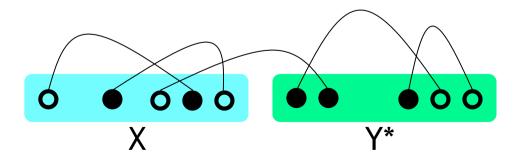
X O-account if there is a matching of X⁺ with X⁻

If X + Y^{*} is a 0-account, a morphism X \rightarrow Y in the category Acc is a matching of X⁺ + Y⁻ with X⁻ + Y⁺

Accounting and the geometry of interaction

X **0-account** if there is a matching of X⁺ with X⁻

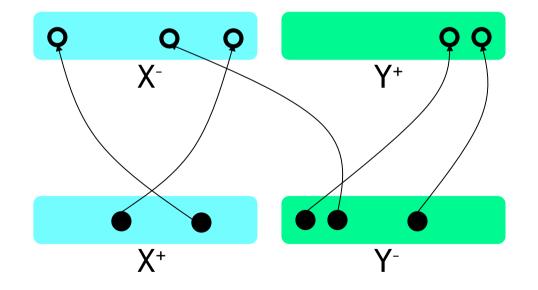
If X + Y^{*} is a 0-account, a morphism X \rightarrow Y in the category Acc is a matching of X⁺ + Y⁻ with X⁻ + Y⁺

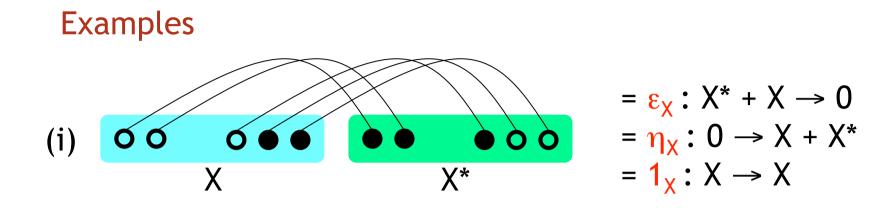


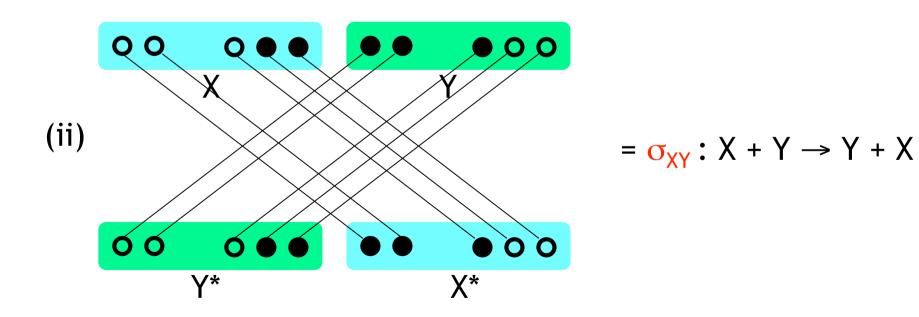
Accounting and the geometry of interaction

X **0-account** if there is a matching of X⁺ with X⁻

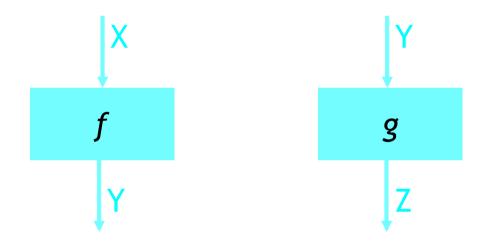
If X + Y^{*} is a 0-account, a morphism X \rightarrow Y in the category Acc is a matching of X⁺ + Y⁻ with X⁻ + Y⁺



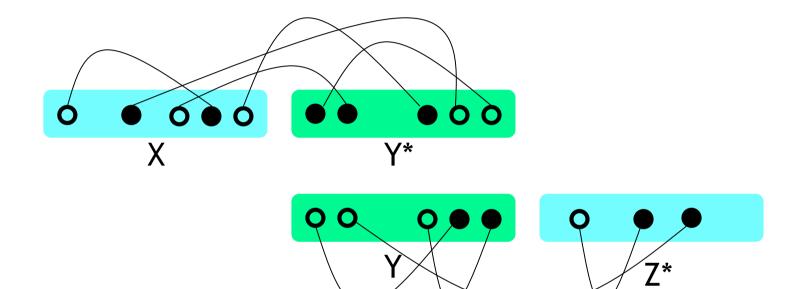




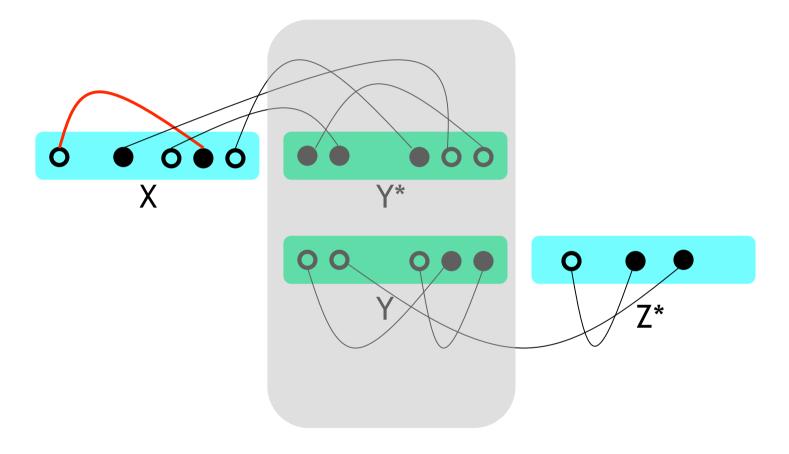
Composition



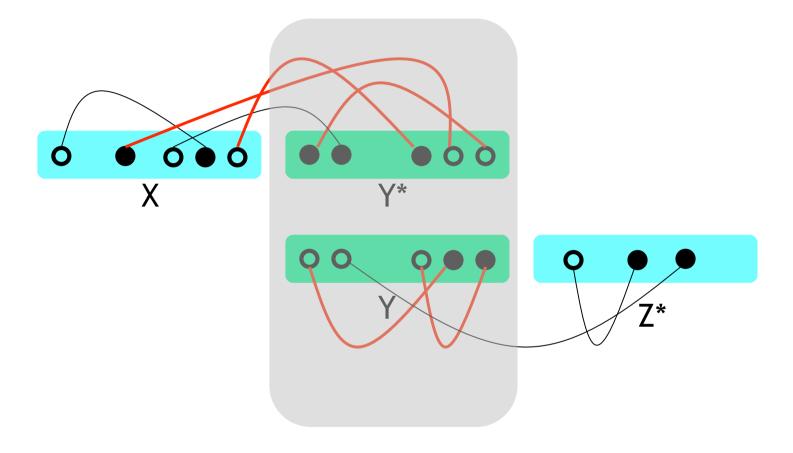
Example



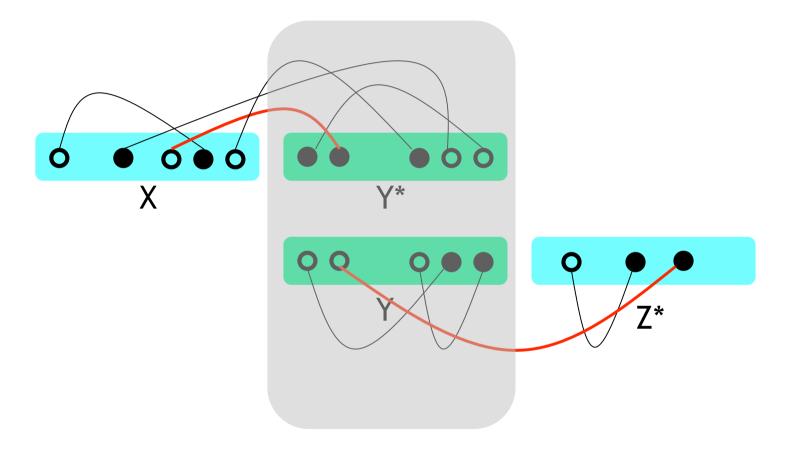
Some paths



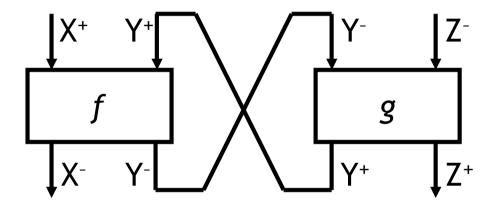
Some paths



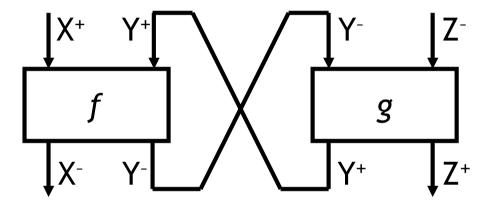
Some paths



Equivalently: composition via symmetric feedback



Equivalently: composition via symmetric feedback



geometry of accounting = geometry of interaction

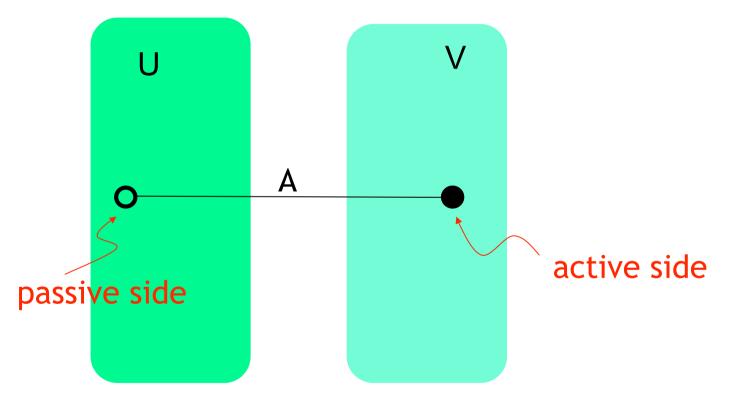
IV. Towards a logic of commitment

Whither now?

Whither now? Back to dialogues!

Whither now? Back to dialogues!

Look at the basic form of a commitment as a contract



Whither now? Back to dialogues!

Think of $A \supset B$ as a contract between a **Proponent** (passive) and an **Opponent** (active).

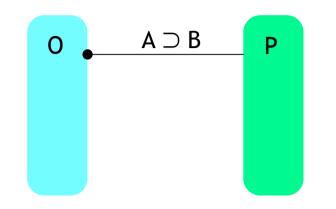
The execution of this contract is started by the active party, replacing

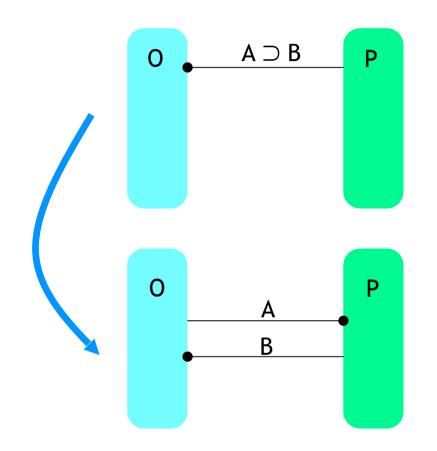
$A \supset B$

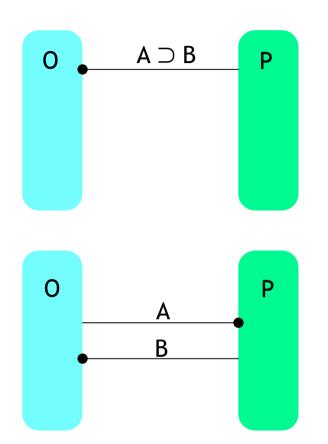
by a couple of contracts:

A where P is active, and

B where O is active

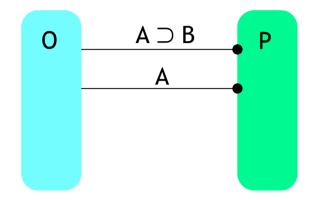




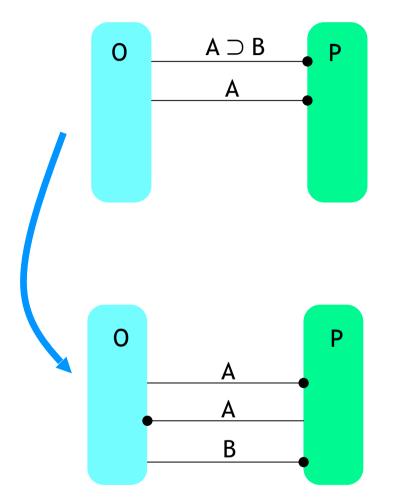


$A \supset B$ valid if – after performance – P is a 0-account

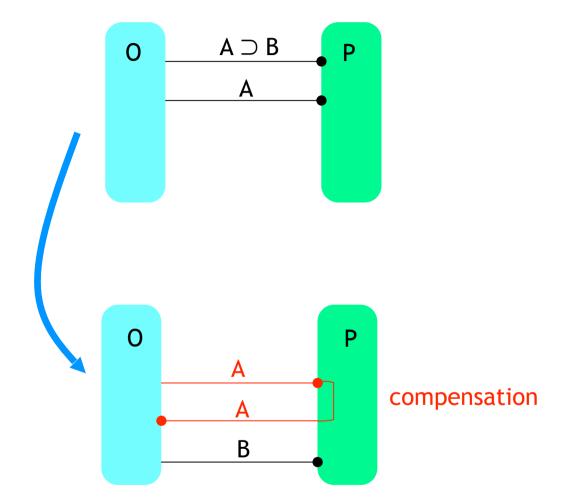
Validity of *modus ponens*



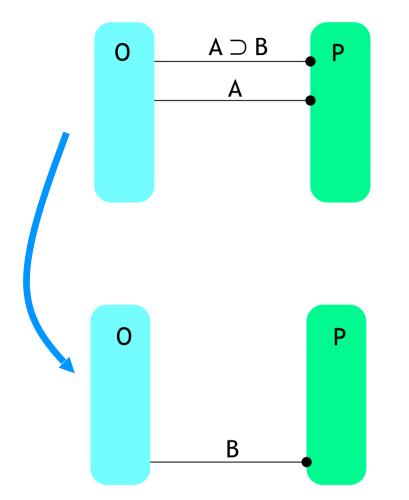
Validity of *modus ponens*



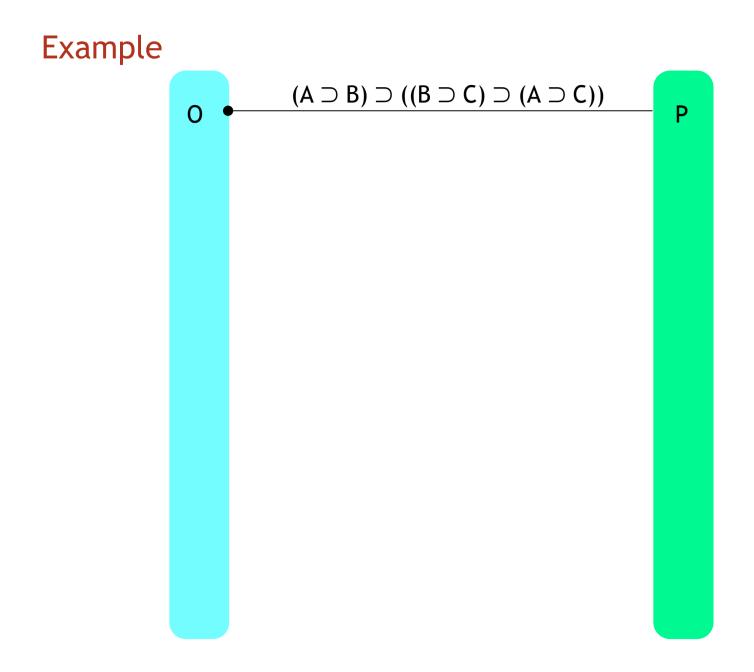
Validity of *modus ponens*

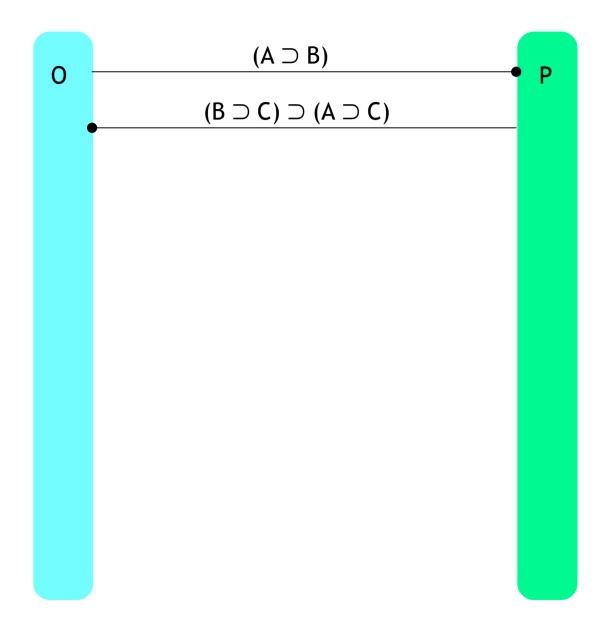


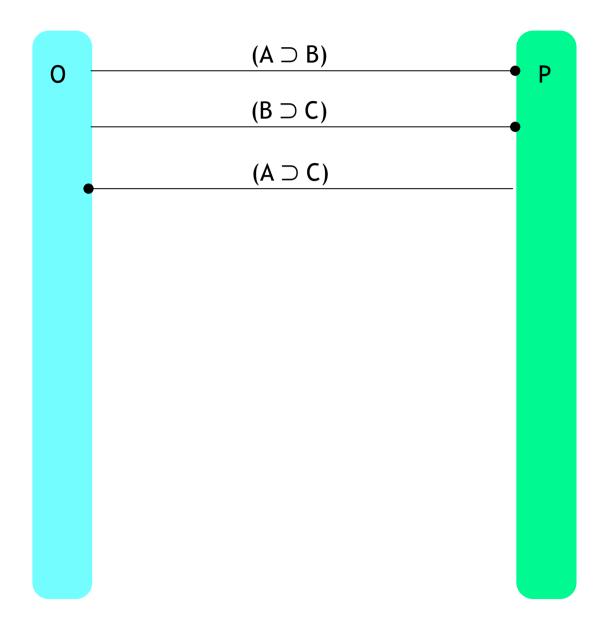
Validity of *modus ponens*

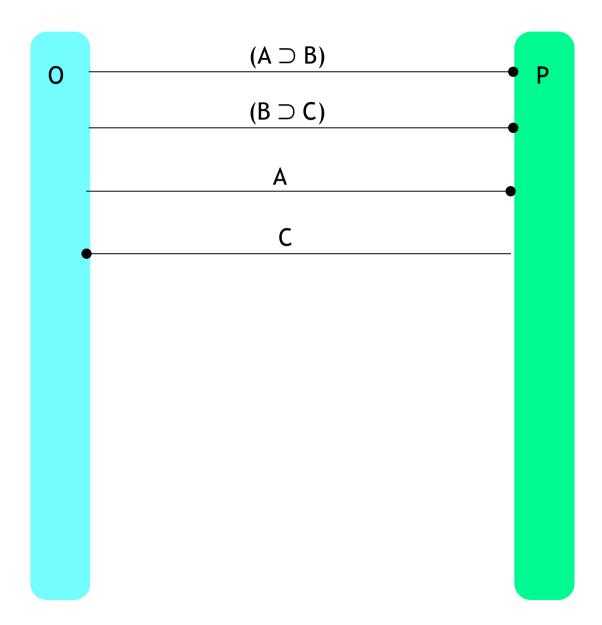


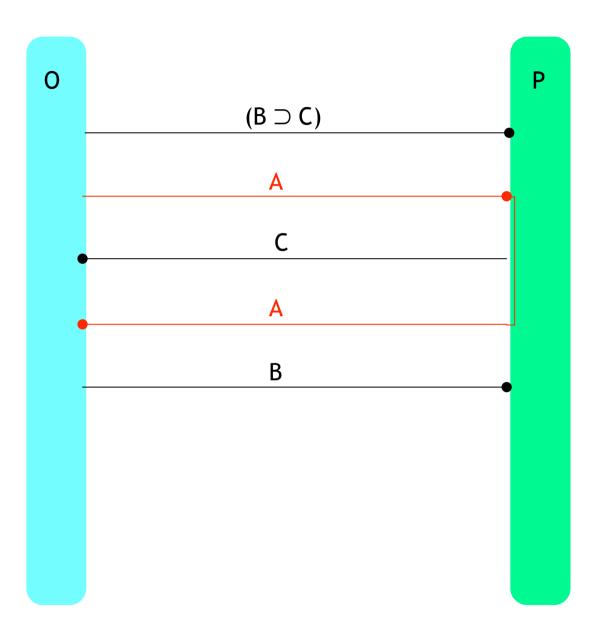
Example

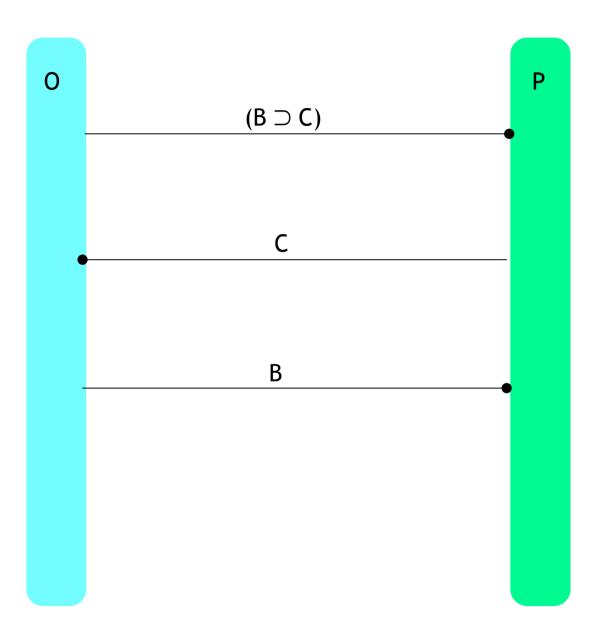


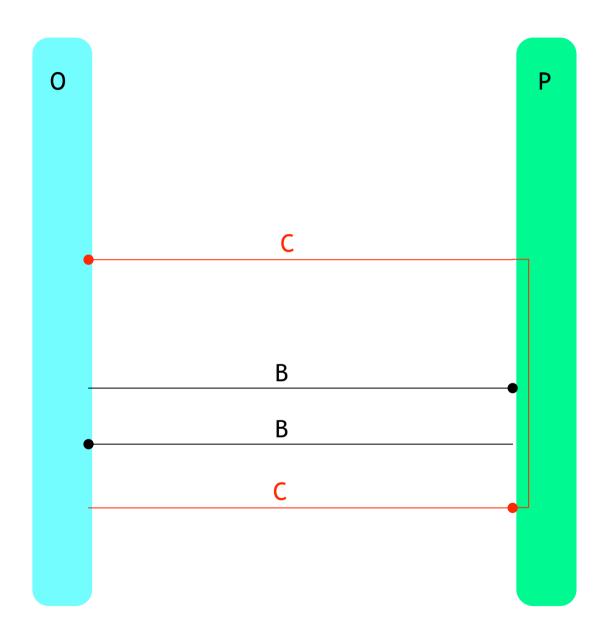


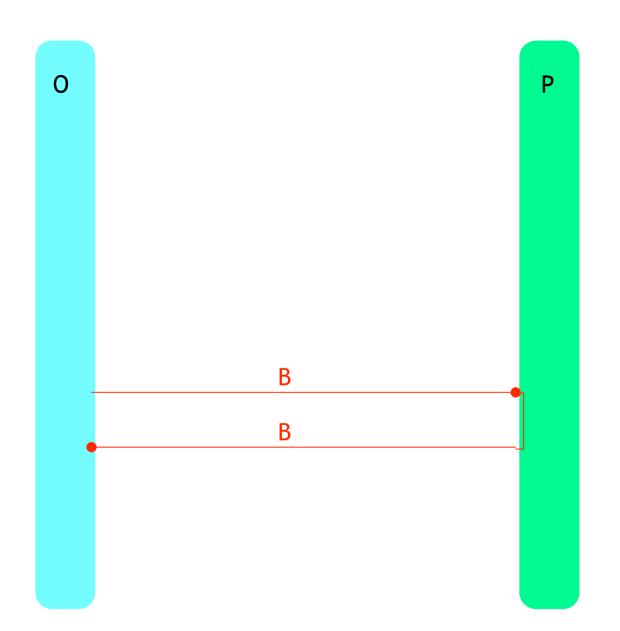


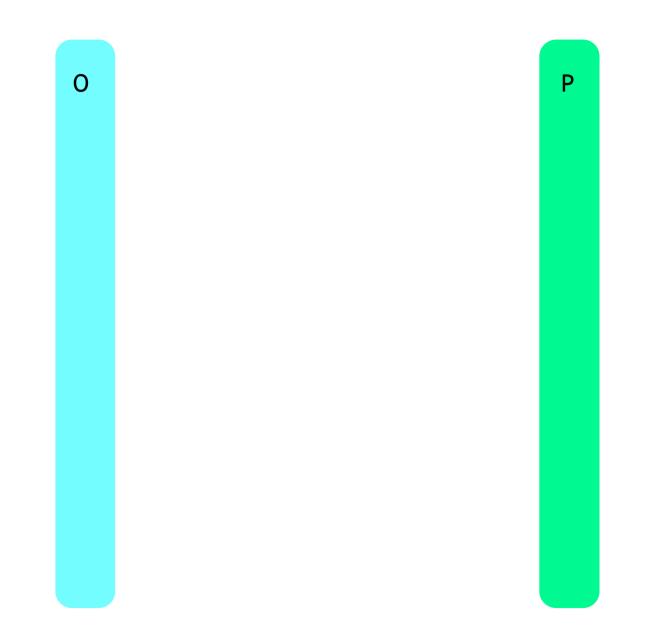


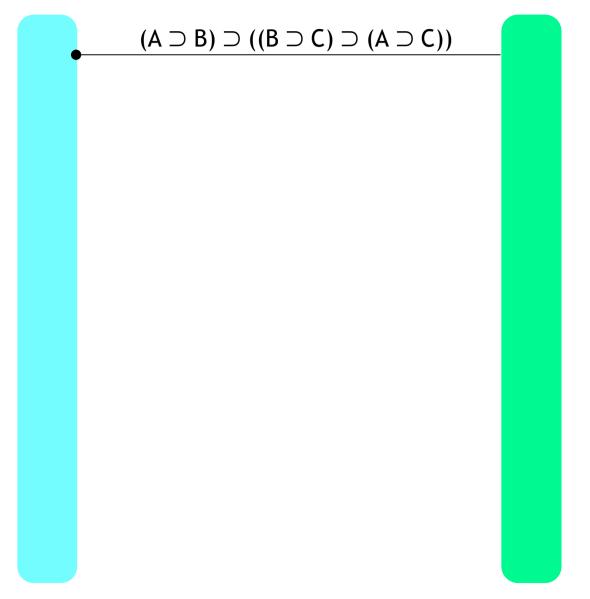


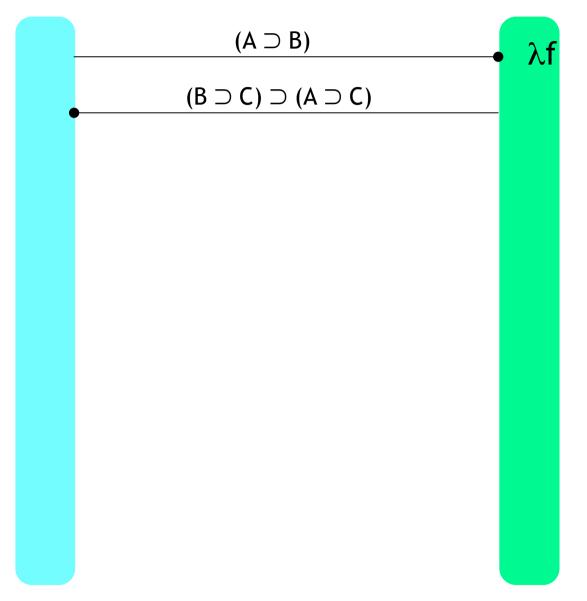


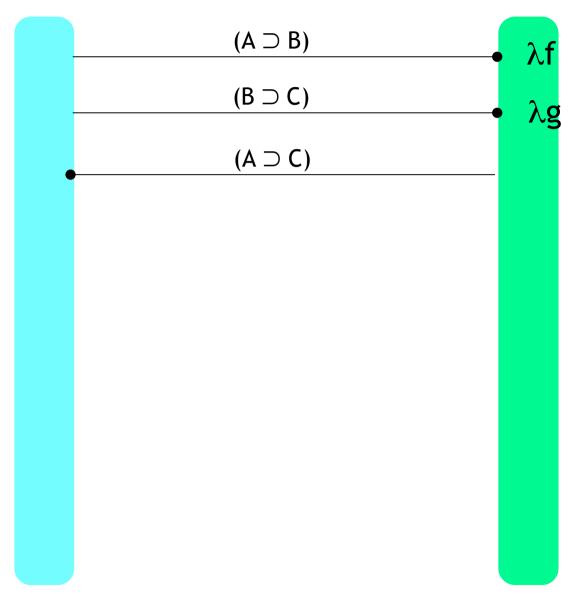


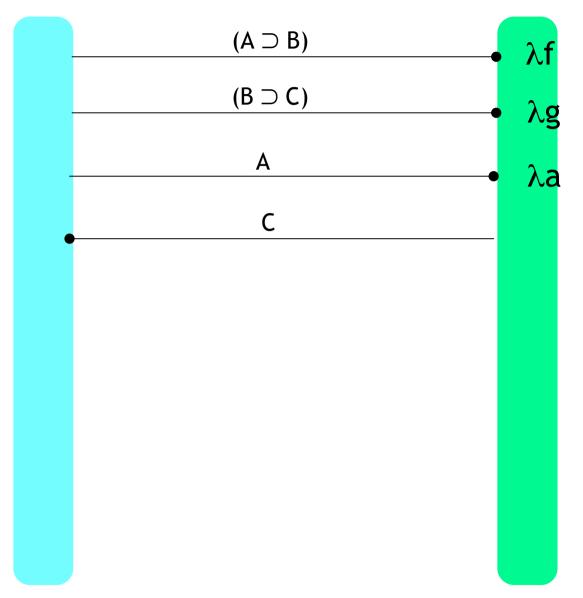


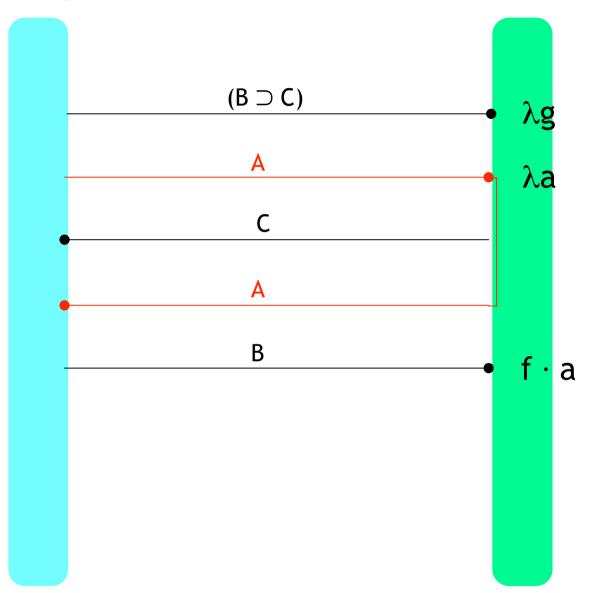


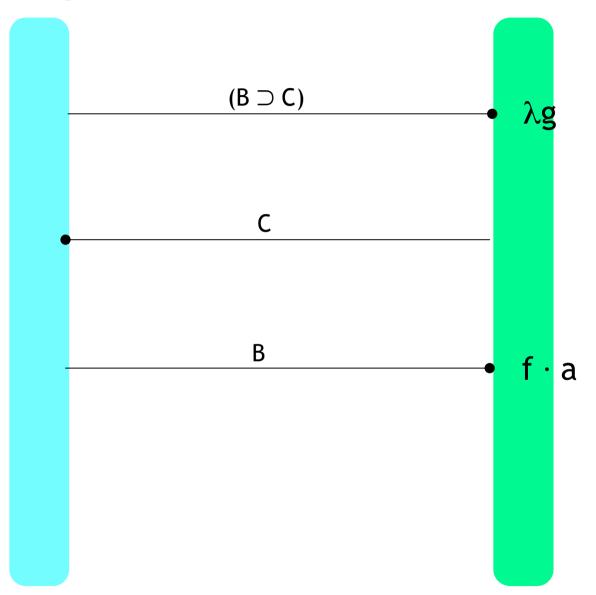


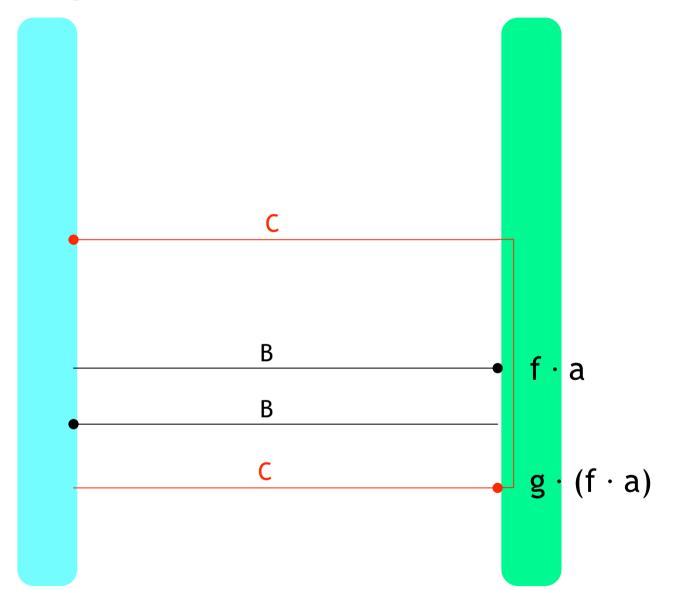


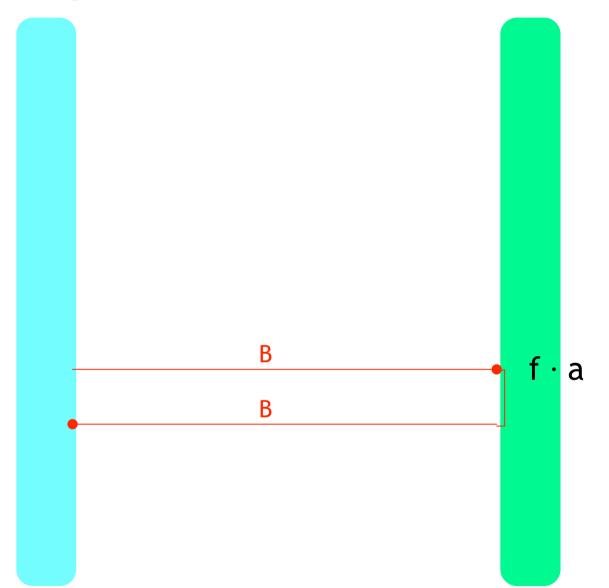


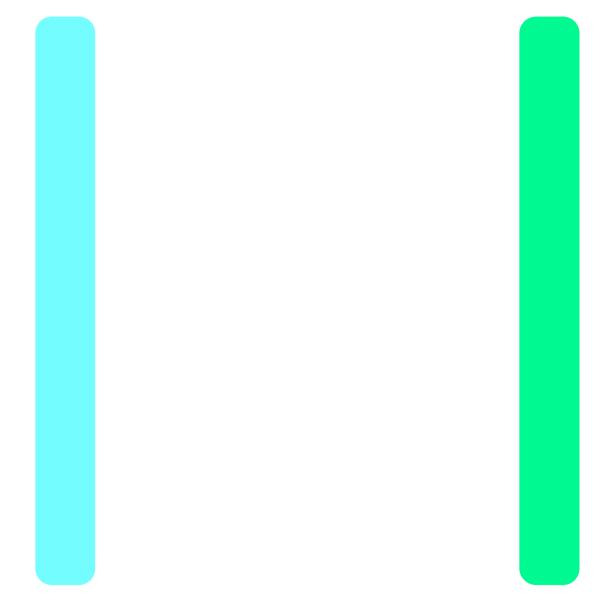












Loose ends

Relations of matchings with Kelly-MacLane graphs;

Structure of the category *Acc*;

Formulae as contracts/proofs as contract performances: what logical structure?

Applications to design and planning (use cases, design by contract, interaction design, design rationale)?

**

Philosophy: commitment as an item in a new vocabulary for computing (along with, e.g., interaction)?

The end.

The end.

Thank you.