Type Inference in Intuitionistic Linear Logic

Patrick Baillot Martin Hofmann

LIP- CNRS & ENS Lyon LMU Munich
(to appear in PPDP 2010)

10/6/2010
Torino, Concerto-Pics meeting

Introduction

» linear logic (ILL) has inspired linear type systems (e.g.
Wadler'91, Mackie'94 .. .)

» automatic type inference ?

» linear decoration of intuitionistic derivations :
Danos-Joinet-Shellinx94
but does not provide all ILL derivations we are looking for

> related issue: type inference in light logics

system EAL DLAL ILL

constraints | linear inequations | mixed boolean/linear | 7
constraints

inference P p ?
[BTO5] [ABTO7]

System F

System F terms will be our source language.
Types:
Ai=a| Al — Ay | Va.A

Church-style lambda terms:
ti=x|tita | AxcAt | t[A] | At

FV(t): free term variables,
FTV(T), FTV(t): free type variables.

Typing rules for system F

——(F-Var)
MNMxAFEx:A

N-t4:A—B N-t:A
N-titr: B

(F-App)

rFt:A agFTV(N)

(F-TLam)
N Aa.t:Va.A

MNxAkFt:B

Nl Xx:At:A— B

Et:Va A

I t[B]: AlB/q]

(F-Lam)

(F-TApp)

Linear System F: LLF

LLF types:
Ti=a| Ty — T |Va.T |!IT

|| maps LLF types to system F types: forgetting ! and replacing —o
by —.

Typing rules for LLF

MxSkt: T At :S
x has at most one free

(LLF-Var) occurrence in t
_ -Var
xTkFx:T

0 (LLF-Cut)
ARttt /x]: T
MxSkt: T l-t1:S—- T AkF-ta:S
(LLF-Lam) (LLF-App)
M= xx:|S|.t:S— T ARttt T

M x1:!S, x2:!1SHt: T
xS F t[x/x1,x/x2]: T

r=t: T
(LLF-Contr) ————— (LLF-Weak)
MxSkHt: T

r=te: T
———— (LLF-Prom)

r=t: 1T

FrEt:!T FreEe: T
———— (LLF-Der) ———— (LLF-Dig)
T-t:T Tt 0T

Rules for V TLam and TApp are unchanged.

Type checking and type inference for LLF

Type checking for LLF: Givent, T,l isTHt: T a
valid LLF-judgement?

Type inference for LLF:

Given a system F type A, context A and term t, find a
concise description of the set of LLF types T and
contexts T withT+t: T and |T| = A, || = A.

Towards an algorithmic typing system

Goal: remove non syntax-directed rules.

Key issue: LLF-Cut rule.
— decompose LLF-Prom rule (box) into more basic rules.

For that we need to carry an extra piece of information: natural
integers (allow to retrieve the depth).

close to [GuerriniMartiniMasini98] (2-sequents), [MartiniMasini95]
also related to [Pfenning\Wong95]

Algorithmic typing contexts

> an algorithmic typing context I is a partial map over term and
type variables:
rx)=(T,m), T(«a)=(x,m) where T LLF type and
m,m € N.
Denote variables x and av as X, Y, ...

» [is well-formed if, for all x:
(Frx)=(T,m)Aae FTV(T)) = («a) = (x,m") with m" >
m.

If ¢ € Z then
< ok means: if [(X) = (U, m), then m+ ¢ > 0.
Then ¢ is defined by:
if [(X) = (U, m), then (I'<)(X) = (U, m+ c).

» ALLF typing judgements:
5 t: T where I well-formed.

ALLF typing rules

M x(S,0)Fat: T
———(Lam)
MEa Ax:|S].t:S — T

(App)

rx)=(T,o0
() =(T.0) s
MFax: T
Thati:S—oT Thata:S x€FV(t1)NFV(ta) = 3T.Mx] =T
Mg tita 0 T
Mo(*,0)Fat: T a ¢ FTV(I) (TLam) Fkat:Va. T

N3 At : Va. T
FTEat:!IT
(Enter)
: T

A% b, t

Rules Der and Dig : as in LLF.

fA=x1:Tq,..

. Xn : Tn, then A® = x3 : (T1,0),...

FTV(S) C dom(T)
I Fa t[S]: T[|S|/c]

(TApp)

ko t: T r~to

k
Leave
i, t: T ()

+%n 2 (Tn, 0).

From LLF to ALLF, and back

Theorem (Completeness of ALLF)

IfTEt: T and &= FTV(T)UFTV(t), then we have
T+, ¢t:T.

where (I + €)° =P U, ee{a : (x,0)}.

Note that as a particular case, if FTV(T)U FTV(t) C FTV(I)
then O, t: T.

Theorem (Soundness of ALLF)

Let T be an LLF type and T an LLF context. IfT®\, t : T then
Fr=t:T.

Towards type checking 7 ALLF is not enough . ..

The system ALLF is not yet ready for type checking/inference.
Indeed: we have removed the Cut rule, but ...
the rules handling ! are still not syntax-directed.

idea : we will group sequences of such rules into clusters.
For that we define one generic !-rule.

A generic ! rule

M, t:1PT FV(t) = FV(I) condition (*)

ALL-!
e AbF,t: 19T (ALL)
with
T is not of the form I T’,
p>0,g=>0
(*) r+c ok
(T~ ok) V (p#0) V(g = c =0)
Proposition

» The rule ALL-! is derivable in ALLF.

» Any sequence of rules Enter, Leave, Der, Dig in ALLF can be
represented by one instance of rule ALL-!.

Parameterizing types

We will use the idea of typing by decoration, using parameters
(used e.g. in [CoppolaMartini0Ol1], [B02], ...)

For that, we define LLF-type schemas:
T :=A| Ty — Ty |Va.T | 19T

where gs are formal parameters.

Free parameterization:

System F types LLF type schemas
A — AT
Example:
A = VYaa—«

AT = 13(Va.lP(I°%a — 190))

Type checking algorithm: (i) constraints generation

input: in LLF, (I',t, T)
we will construct a parameterized derivation (parameters in types
and for levels).

» schemas |T|7 and |[(x)|"
» initial constraints

» start from (|[|7 +&)°F,t:|T|" and
apply bottom-up, alternatively:

» ALL-! rule, and introduce fresh parameters,
» syntax-directed logical rule.

At each step collect side-conditions and unification conditions,
— system C of arithmetic constraints.

Constraints

constraints C generated:
a>0 (nonnegativity)
a#0 (shared variables in App)
at+b=c (coupling of premise and conclusion)
a#z0VvVb#0Vc=0 ((ALL-!) rule)

— We need a generalization of (conjunctive) linear constraints.

Horn disjunctive linear relations (Horn DLR):
N
Niea(lin Vg Voo Vig)
where for each /i, among the /;; linear conditions there are:

disequations (#) and at most one inequality (<).

Theorem (Jonsson and Backstrém '96)
Satistiability of Horn DLR over Q is decidable in polynomial time. J

Type checking algorithm: (ii) constraints resolution

C constraint system generated.

Proposition
If ¢ is a solution of C and k € N*, then ¢/ = k.¢ is a solution too. }

As C belongs to the class of Horn DLR:

» by the previous Theorem it can be decided in polynomial time
over QQ,

» hence by this Proposition it can be decided in polynomial time
over Z.

Example

does x:!I(1B — C),y:!/(A — B),z:!AF x(yz) : IC hold ?

— Vary - - App
x:(171(1F1B — C), c3) Fa x : V111 B — 1h2) AL yi(191(A — B), e3), z:(11 A, g3) Fa yz : 12B AL
- 2 N '3
x:(171(1b1B o C), c2) Fa x : 11B — th2C yi(191(A — B), e2), z:(1L A, g2) Fa yz : 11 B A
PP
x(171(1B1B o €), c2), y:(191 (A —o B), e2), z:(11 A, g2) a4 x(yz) : th2C

ALL-14
(11 (1118 o C), e1), y:(11(A — B), e1), z:(11A, g1) Fa x(y2) : th1C

Constraints:

Vary Jj1=a1,c3=0,i1 =by,ha=0

I3 e2=e3+C3,82=g3+C3,(e3 #0Ng3 #0)Via #0Vip=C3=0

) 2 =c3+ C2,

2 3 #0Vj1 #0V C2 =0

| a=c+CG,aa=e+C,g1=8+0CC,

1 (c2#0Ae2 #0Ags #0)V hy #0V hy = C; =0

Positivity {a...k}f1..ay 20.
Initial cip =e; =g1=0,a1 #0,by #0,dy #0,f1 #0,hy #0

Type checking and type inference

Theorem (Decidability of LLF type checking)

Let I be an LLF-context, t a term, T an LLF-type. One can decide
in polynomial time whether T -t : T holds.

Type inference:

Given a system F judgement I - t : A, the system of constraints
generated from (7 +&)0F, t: AT gives a polynomial-sized
description of all LLF decorations of this judgement.

= solution of the type inference problem.

Conclusion and perspectives

» we have given efficient, constraints-based algorithms for
type-checking and type inference of system F Church terms in
LLF.
algorithmic system analogous to [GuerriniMartiniMasini08]
method to build the algorithmic system:

"decompose and clusterize" the ! rules.

> application also to S4 type systems (e.g. Pfenning-Wong'95)

» future work:
remove restriction on the cut-rule
could we infer also sharing of subterms ?

