
Type Inference in Intuitionistic Linear Logic

Patrick Baillot Martin Hofmann

LIP- CNRS & ENS Lyon LMU Munich

(to appear in PPDP 2010)

10/6/2010
Torino, Concerto-Pics meeting

Introduction

I linear logic (ILL) has inspired linear type systems (e.g.
Wadler’91, Mackie’94 . . .)

I automatic type inference ?
I linear decoration of intuitionistic derivations :

Danos-Joinet-Shellinx94
but does not provide all ILL derivations we are looking for

I related issue: type inference in light logics
system EAL DLAL ILL

constraints linear inequations mixed boolean/linear ?
constraints

inference P P ?
[BT05] [ABT07]

System F

System F terms will be our source language.
Types:

A ::= α | A1 → A2 | ∀α.A

Church-style lambda terms:

t ::= x | t1t2 | λx :A.t | t[A] | Λα.t

FV (t): free term variables,
FTV (T), FTV (t): free type variables.

Typing rules for system F

Γ, x :A ` x : A
(F-Var)

Γ ` t1 : A→ B Γ ` t2 : A
Γ ` t1t2 : B

(F-App) Γ, x :A ` t : B
Γ ` λx :A.t : A→ B

(F-Lam)

Γ ` t : A α 6∈ FTV (Γ)

Γ ` Λα.t : ∀α.A
(F-TLam)

Γ ` t : ∀α.A
Γ ` t[B] : A[B/α]

(F-TApp)

Linear System F: LLF

LLF types:
T ::= α | T1 (T2 | ∀α.T | !T

|.| maps LLF types to system F types: forgetting ! and replacing (
by →.

Typing rules for LLF

x :T ` x : T
(LLF-Var)

Γ, x :S ` t : T ∆ ` t′ : S
x has at most one free
occurrence in t

Γ,∆ ` t[t′/x] : T
(LLF-Cut)

Γ, x :S ` t : T

Γ ` λx :|S|.t : S (T
(LLF-Lam)

Γ ` t1 : S (T ∆ ` t2 : S

Γ,∆ ` t1t2 : T
(LLF-App)

Γ, x1:!S, x2:!S ` t : T

Γ, x :!S ` t[x/x1, x/x2] : T
(LLF-Contr)

Γ ` t : T

Γ, x :S ` t : T
(LLF-Weak)

Γ ` t : T

!Γ ` t : !T
(LLF-Prom)

Γ ` t : !T

Γ ` t : T
(LLF-Der)

Γ ` t : !T

Γ ` t : !!T
(LLF-Dig)

Rules for ∀ TLam and TApp are unchanged.

Type checking and type inference for LLF

Type checking for LLF: Given t,T , Γ is Γ ` t : T a
valid LLF-judgement?

Type inference for LLF:
Given a system F type A, context ∆ and term t, find a
concise description of the set of LLF types T and
contexts Γ with Γ ` t : T and |T | = A, |Γ| = ∆.

Towards an algorithmic typing system

Goal: remove non syntax-directed rules.

Key issue: LLF-Cut rule.
→ decompose LLF-Prom rule (box) into more basic rules.

For that we need to carry an extra piece of information: natural
integers (allow to retrieve the depth).

close to [GuerriniMartiniMasini98] (2-sequents), [MartiniMasini95]
also related to [PfenningWong95]

Algorithmic typing contexts

I an algorithmic typing context Γ is a partial map over term and
type variables:
Γ(x) = (T ,m), Γ(α) = (?,m′) where T LLF type and
m,m′ ∈ N.
Denote variables x and α as X ,Y , . . .

I Γ is well-formed if, for all x :
(Γ(x) = (T ,m) ∧ α ∈ FTV (T))⇒ Γ(α) = (?,m′) with m′ ≥
m.
If c ∈ Z then

Γ+c ok means: if Γ(X) = (U,m), then m + c ≥ 0.

Then Γ+c is defined by:

if Γ(X) = (U,m), then (Γ+c)(X) = (U,m + c).

I ALLF typing judgements:
Γ `a t : T where Γ well-formed.

ALLF typing rules

Γ(x) = (T , 0)

Γ `a x : T
(Var)

Γ, x :(S, 0) `a t : T

Γ `a λx :|S|.t : S (T
(Lam)

Γ `a t1 : S (T Γ `a t2 : S x ∈ FV (t1) ∩ FV (t2)⇒ ∃T .Γ[x] = !T

Γ `a t1t2 : T
(App)

Γ, α:(?, 0) `a t : T α /∈ FTV (Γ)

Γ `a Λα.t : ∀α.T
(TLam)

Γ `a t : ∀α.T FTV (S) ⊆ dom(Γ)

Γ `a t[S] : T [|S|/α]
(TApp)

Γ `a t : !T

Γ+1,∆0 `a t : T
(Enter)

Γ `a t : T Γ−1 ok

Γ−1 `a t : !T
(Leave)

Rules Der and Dig : as in LLF.

If ∆ = x1 : T1, . . . , xn : Tn , then ∆0 = x1 : (T1, 0), . . . , xn : (Tn, 0).

From LLF to ALLF, and back

Theorem (Completeness of ALLF)

If Γ ` t : T and E = FTV (T) ∪ FTV (t), then we have
(Γ + E)0 `a t : T.

where (Γ + E)0 = Γ0 ∪
⋃
α∈E{α : (?, 0)}.

Note that as a particular case, if FTV (T) ∪ FTV (t) ⊆ FTV (Γ)
then Γ0 `a t : T .

Theorem (Soundness of ALLF)

Let T be an LLF type and Γ an LLF context. If Γ0 `a t : T then
Γ ` t : T.

Towards type checking ? ALLF is not enough . . .

The system ALLF is not yet ready for type checking/inference.
Indeed: we have removed the Cut rule, but . . .
the rules handling ! are still not syntax-directed.

idea : we will group sequences of such rules into clusters.
For that we define one generic !-rule.

A generic ! rule

Γ `a t : !pT FV (t) = FV (Γ) condition (*)
Γ+c ,∆ `a t : !qT

(ALL-!)

with

(∗)

T is not of the form !T ′,
p ≥ 0, q ≥ 0
Γ+c ok
(Γ−1 ok) ∨ (p 6= 0) ∨ (q = c = 0)

Proposition
I The rule ALL-! is derivable in ALLF.
I Any sequence of rules Enter, Leave, Der, Dig in ALLF can be

represented by one instance of rule ALL-!.

Parameterizing types
We will use the idea of typing by decoration, using parameters
(used e.g. in [CoppolaMartini01], [B02], . . .)

For that, we define LLF-type schemas:

T ::= A | T1 (T2 | ∀α.T | !qT

where qs are formal parameters.

Free parameterization:

System F types LLF type schemas
A −→ AT

Example:

A = ∀α.α→ α

AT = !a(∀α.!b(!cα (!dα))

Type checking algorithm: (i) constraints generation

input: in LLF, (Γ, t,T)
we will construct a parameterized derivation (parameters in types
and for levels).

I schemas |T |T and |Γ(x)|T

I initial constraints
I start from (|Γ|T + E)0 `a t : |T |T and

apply bottom-up, alternatively:
I ALL-! rule, and introduce fresh parameters,
I syntax-directed logical rule.

At each step collect side-conditions and unification conditions,
→ system C of arithmetic constraints.

Constraints
constraints C generated:

a ≥ 0 (nonnegativity)
a 6= 0 (shared variables in App)

a + b = c (coupling of premise and conclusion)
a 6= 0 ∨ b 6= 0 ∨ c = 0 ((ALL-!) rule)
→ We need a generalization of (conjunctive) linear constraints.

Horn disjunctive linear relations (Horn DLR):

∧N
i=1(Ii ,1 ∨ Ii ,2 ∨ · · · ∨ Ii ,ni)

where for each i , among the Ii ,j linear conditions there are:

disequations (6=) and at most one inequality (≤).

Theorem (Jonsson and Bäckström ’96)
Satisfiability of Horn DLR over Q is decidable in polynomial time.

Type checking algorithm: (ii) constraints resolution

C constraint system generated.

Proposition
If φ is a solution of C and k ∈ N∗, then φ′ = k .φ is a solution too.

As C belongs to the class of Horn DLR:
I by the previous Theorem it can be decided in polynomial time

over Q,
I hence by this Proposition it can be decided in polynomial time

over Z.

Example

does x :!(!B (C), y :!(A (B), z:!A ` x(yz) : !C hold ?

x :(!a1 (!b1B (C), c3) `a x : !j1 (!i1B (!h2C)
Var1

x :(!a1 (!b1B (C), c2) `a x : !i1B (!h2C
ALL-!2

.

.

.

y :(!d1 (A (B), e3), z:(!f1A, g3) `a yz : !i2B
App

y :(!d1 (A (B), e2), z:(!f1A, g2) `a yz : !i1B
ALL-!3

x :(!a1 (!b1B (C), c2), y :(!d1 (A (B), e2), z:(!f1A, g2) `a x(yz) : !h2C
App

x :(!a1 (!b1B (C), c1), y :(!d1 (A (B), e1), z:(!f1A, g1) `a x(yz) : !h1C
ALL-!1

Constraints:
Var1 j1 = a1, c3 = 0, i1 = b1, h2 = 0

!3 e2 = e3 + C3, g2 = g3 + C3, (e3 6= 0 ∧ g3 6= 0) ∨ i2 6= 0 ∨ i1 = C3 = 0

!2

c2 = c3 + C2,
c3 6= 0 ∨ j1 6= 0 ∨ C2 = 0

!1

c1 = c2 + C1, e1 = e2 + C1, g1 = g2 + C1,
(c2 6= 0 ∧ e2 6= 0 ∧ g2 6= 0) ∨ h2 6= 0 ∨ h1 = C1 = 0

Positivity {a . . . k}{1...4} ≥ 0.
Initial c1 = e1 = g1 = 0, a1 6= 0, b1 6= 0, d1 6= 0, f1 6= 0, h1 6= 0

Type checking and type inference

Theorem (Decidability of LLF type checking)
Let Γ be an LLF-context, t a term, T an LLF-type. One can decide
in polynomial time whether Γ ` t : T holds.

Type inference:
Given a system F judgement Γ ` t : A, the system of constraints
generated from (ΓT + E)0 `a t : AT gives a polynomial-sized
description of all LLF decorations of this judgement.
⇒ solution of the type inference problem.

Conclusion and perspectives

I we have given efficient, constraints-based algorithms for
type-checking and type inference of system F Church terms in
LLF.
algorithmic system analogous to [GuerriniMartiniMasini08]
method to build the algorithmic system:
"decompose and clusterize" the ! rules.

I application also to S4 type systems (e.g. Pfenning-Wong’95)
I future work:

remove restriction on the cut-rule
could we infer also sharing of subterms ?

