
Ivan Lanese

Computer Science Department

University of Bologna/INRIA

Italy

Amending Choreographies

Joint work with Fabrizio Montesi

and Gianluigi Zavattaro

Map of the talk

 Choreographies

 Amending choreographies

 Conclusions

Map of the talk

 Choreographies

 Amending choreographies

 Conclusions

Choreographies

 Allow to describe the behavior of a distributed

communicating system at the very abstract level

 Composed by interactions of the form a → 𝑏: 𝑜

 Using different operators

– Sequential composition ;

– Parallel composition ||

– Nondeterministic choice +

 There are approaches extending choreographies with

additional information (data, recursion, ...)

 Very similar to global types in multiparty session types

Choreography projection

 Allows to automatically derive from a choreography the

description of the behavior of each participant

 Nearer to the implementation

 Preserves the semantics: when interacting, the participants

behave as specified by the choreography

Participants description

 Locations corresponding to participants, containing their

code

 Basic operations: input 𝑜 and output 𝑜

 Composed using

– sequential composition ;

– parallel composition |

– nondeterministic choice +

Examples

 The projection of a → 𝑏: o; b → 𝑐: 𝑜′ is

[𝑜]𝑎 || 𝑜; 𝑜
′
𝑏 || [𝑜

′]𝑐

 The projection of a → 𝑏: o; 𝑐 → 𝑑: 𝑜′ is

[𝑜]𝑎 || 𝑜 𝑏 || [𝑜
′]𝑐 || [𝑜

′]𝑑

– Not well-behaved

Well-behaved choreographies

 Syntactic conditions ensure choreographies are well-

behaved

 Conditions depend on

– Synchronous or asynchronous semantics

– For asynchronous, whether send, receive or both are observed

Non well-behaved choreographies

 What to do when choreographies are not

well-behaved?

 We transform them automatically into well-behaved ones

– According to the strictest of the conditions

 Preserving the intended semantics

– Weak traces

Map of the talk

 Choreographies

 Amending choreographies

 Conclusions

Choreography issues

 Connectedness for sequence

– Two roles do not agree on when the first term of a sequential

composition has been completed

 Unique points of choice

– Two roles do not agree on which branch of a choice has been

taken

 Causality safety

– A send on an operation is not received by the intended target, but

by another receiver

Our approach

 For each issue we show a pattern for solving it

– Preserving weak traces

 We compose all the patterns into a unique algorithm

solving all the issues

transI and transF

 Auxiliary definition needed for the formalization

 transI: set of interactions enabled in a term

 transF: set of interactions that may be the last one to be

executed in the term

 Can be defined by structural induction on the term

Connectedness for sequence issue

 𝐶 = 𝑎 → 𝑏: 𝑜; 𝑐 → 𝑑: 𝑜′

 𝑝𝑟𝑜𝑗 𝐶 = [𝑜]𝑎 || 𝑜 𝑏 || [𝑜
′]𝑐 || [𝑜

′]𝑑

 𝑐 does not know when 𝑏 has received the message

 Avoided if for each subterm of the form C’;C’’

– There is a participant that knows when C’ ends which regulates

when C’’ starts

– Formally, for each 𝑎 → 𝑏: 𝑜 ∈ transF(C’), each 𝑐 → 𝑑: 𝑜′ ∈
transI(C’’) we have 𝑏 = 𝑐

Connectedness for sequence pattern

 Introduce a new coordinator role e

– Checks when C’ ends

– Allows C’’ to start

 Replace each 𝑎 → 𝑏: 𝑜 ∈ transF(C’) with

 𝑎 → 𝑏: 𝑜; 𝑏 → 𝑒: 𝑜∗1

 Replace each c → 𝑑: 𝑜′ ∈ transI(C’’) with

 e → 𝑐: 𝑜∗2; 𝑐 → 𝑑: 𝑜′

 Operations with * are private, not visible in weak traces

Unique points of choice issue (1)

 𝐶 = 𝑎 → 𝑏: 𝑜 + 𝑐 → 𝑑: 𝑜′

 𝑝𝑟𝑜𝑗 𝐶 = [𝑜 + 1]𝑎 || 𝑜 + 1 𝑏 || [1 + 𝑜
′]𝑐 || [1 + 𝑜

′]𝑑

 Avoided if for each subterm C’+C’’

– There is a participant deciding which branch to take and notifying

all the others

– Formally, for each 𝑎 → 𝑏: 𝑜 ∈ transI(C’+C’’), 𝑎 is the same

 Role 𝑎 decides which branch to take

Unique points of choice issue (2)

 𝐶1 = (𝑎 → 𝑏: 𝑜 + 𝑎 → 𝑐: 𝑜
′); 𝑏 → 𝑐: 𝑜′′

 𝑝𝑟𝑜𝑗 𝐶1 = [𝑜 + 𝑜′]𝑎 || 𝑜 + 1 ; 𝑜′′ 𝑏 || [1 + 𝑜
′ ; 𝑜′′]𝑐

 Avoided if for each subterm C’+C’’

– C’ and C’’ have the same set of roles

 All the involved roles do something in each alternative

 No projection with one branch 1 and one branch non 1

Unique points of choice pattern

 Introduce a new coordinator role e making the choice

 Replace each 𝑎 → 𝑏: 𝑜 ∈ transI(C’+C’’) with

 e → 𝑎: 𝑜∗1; 𝑎 → 𝑏: 𝑜

 If role 𝑓 occurs in C’ but not in C’’ then transform C’’ into

C′′||𝑒 → 𝑓: 𝑜∗3

– And vice versa

Causality safety issue

 Avoided if for each pair of interactions 𝑎 → 𝑏: 𝑜 and

𝑐 → 𝑑: 𝑜 on the same operation

– If the send at 𝑎 may trigger, the receive at 𝑑 is not enabled

– If the send at 𝑐 may trigger, the receive at 𝑏 is not enabled

 We need either a causal dependence or a conflict

 Different approaches depending on the top-level operator

in the smallest term containing both the interactions

Sequential causality safety issue

 𝐶 = 𝑎 → 𝑏: 𝑜; 𝑏 → 𝑐: 𝑜

 𝑝𝑟𝑜𝑗 𝐶 = [𝑜]𝑎 || 𝑜; 𝑜 𝑏 || [𝑜]𝑐

 The send at 𝑎 may be get by the receive at 𝑐

 May happen in terms C’;C’’ with interactions 𝑎 → 𝑏: 𝑜 in

C’ and c → 𝑑: 𝑜 in C’’

 If the term satisfies connectedness for sequence there is a

dependence between the receive at 𝑏 and the send at 𝑐

 We add the missing dependence by replacing c → 𝑑: 𝑜 with

 c → 𝑑: 𝑜∗1; 𝑑 → 𝑐: 𝑜∗2; c → 𝑑: 𝑜

Choice causality safety issue

 𝐶 = 𝑎 → 𝑏: 𝑜′; 𝑏 → 𝑎: 𝑜; 𝑎 → 𝑐: 𝑜′′ +
 (𝑎 → 𝑐: 𝑜; 𝑐 → 𝑏: 𝑜′)

 𝑝𝑟𝑜𝑗 𝐶 = [𝑜′ ; 𝑜; 𝑜′′ + 𝑜]𝑎 || 𝑜
′; 𝑜 + 𝑜′ 𝑏 || [𝑜

′′ + 𝑜; 𝑜′]𝑐

 The message on 𝑜 to 𝑎 may be get by 𝑐

 The problem is that 𝑐 has not been notified about the

choice yet

 We add the missing dependence by replacing 𝑎 → 𝑐: 𝑜 with

 𝑎 → 𝑐: 𝑜∗1; 𝑐 → 𝑎: 𝑜∗2; 𝑎 → 𝑐: 𝑜

Parallel causality safety

 𝐶 = 𝑎 → 𝑏: 𝑜||𝑐 → 𝑑: 𝑜

 𝑝𝑟𝑜𝑗 𝐶 = [𝑜]𝑎 || 𝑜 𝑏 || [𝑜]𝑐 || [𝑜]𝑑

 The send at 𝑎 may be get by the receive at 𝑑

 Parallel causality safety cannot be amended by adding

(private) interactions only

Choreography normal form

 A choreography is in normal form if it is

 𝑎𝑖 → 𝑏𝑖: 𝑜𝑖; 𝐶𝑖
𝑖

where 𝐶𝑖 is in normal form

Expansion law

 We can use the expansion law to put choreographies in

normal form

 𝑎𝑖 → 𝑏𝑖: 𝑜𝑖; 𝐶𝑖
𝑖

|| 𝑎𝑗 → 𝑏𝑗: 𝑜𝑗; 𝐶𝑗
𝑖

=

 𝑎𝑖 → 𝑏𝑖: 𝑜𝑖; 𝐶𝑖|| 𝑎𝑗 → 𝑏𝑗: 𝑜𝑗; 𝐶𝑗
𝑖𝑖

+

 𝑎𝑗 → 𝑏𝑗: 𝑜𝑗; 𝐶𝑗|| 𝑎𝑖 → 𝑏𝑖: 𝑜𝑖; 𝐶𝑖
𝑖𝑗

 This solves parallel causality safety issues

Amending choreographies

 We can compose the patterns above to transform any

choreography into a well-behaved one

1. Apply the pattern to solve parallel causality issues

2. Apply the pattern for connectedness for sequence and unique

points of choice

3. Apply the pattern for sequential and choice causality safety

– All patterns applied from smallest subterms to largest subterms

Final result

 The transformation preserves weak traces and makes the

choreography well-behaved

– For synchronous semantics

– For asynchronous semantics, observing either send, or receive, or

both

 The projection of a well-behaved choreography preserves

traces

 The projection of the transformed choreography is weak

trace equivalent to the original choreography

Map of the talk

 Choreographies

 Amending choreographies

 Conclusions

Summary

 An automatic technique for transforming a given

choreography into a projectable one

 The transformation preserves weak traces

 All patterns but the one for parallel causality safety based

on adding auxiliary interactions

 The pattern for parallel causality safety reduces the degree

of concurrency

 Patterns are applied only when and where they are needed

Future work

 Extend the approach to deal with other features

– Recursion

– Data

 Exploiting choreography amending for choreography

composition

– Adaptive choreographies

End of talk

