Behavioural Theory for Session-Oriented Calculi

António Ravara¹

Dep of Informatics, FCT, New Univ of Lisbon

Milan, November 23, 2009

¹with Ivan Lanese and Hugo T. Vieira

Introduction	SSCC	Muse	CC
●○○○	00000	00	000
Motivation			

Aim

- Congruence relations, supporting
- equational reasoning, and enjoying of
- o co-inductive characterisations, providing proof techniques.

- Behavioural contextual equivalence: barbed congruence
- Co-inductive characterisation: full bisimilarity Substitution-closed ground bisimilarity over an early LTS
- Axioms for algebraic reasoning

Introduction	SSCC	Muse	CC
●○○○	00000	00	000
Motivation			

Aim

- Congruence relations, supporting
- equational reasoning, and enjoying of
- o co-inductive characterisations, providing proof techniques.

- Behavioural contextual equivalence: barbed congruence
- Co-inductive characterisation: full bisimilarity Substitution-closed ground bisimilarity over an early LTS
- Axioms for algebraic reasoning

Introduction	SSCC 00000	Muse	CC 000
Motivation		00	000

Aim

- Congruence relations, supporting
- equational reasoning, and enjoying of

co-inductive characterisations, providing proof techniques.

- Behavioural contextual equivalence: barbed congruence
- Co-inductive characterisation: full bisimilarity Substitution-closed ground bisimilarity over an early LTS
- Axioms for algebraic reasoning

Introduction	SSCC	Muse	CC
●○○○	00000	00	000
Motivation			

Aim

- Congruence relations, supporting
- equational reasoning, and enjoying of

co-inductive characterisations, providing proof techniques.

- Behavioural contextual equivalence: barbed congruence
- Co-inductive characterisation: full bisimilarity Substitution-closed ground bisimilarity over an early LTS
- Axioms for algebraic reasoning

Introduction	SSCC	Muse	CC
●○○○	00000		000
Motivation			000

Aim

- Congruence relations, supporting
- equational reasoning, and enjoying of
- co-inductive characterisations, providing proof techniques.

- Behavioural contextual equivalence: barbed congruence
- Co-inductive characterisation: full bisimilarity Substitution-closed ground bisimilarity over an early LTS
- Axioms for algebraic reasoning

Introduction	SSCC	Muse	CC
●○○○	00000	00	000
Motivation			

Aim

- Congruence relations, supporting
- equational reasoning, and enjoying of
- co-inductive characterisations, providing proof techniques.

- Behavioural contextual equivalence: barbed congruence
- Co-inductive characterisation: full bisimilarity Substitution-closed ground bisimilarity over an early LTS
- Axioms for algebraic reasoning

Introduction	SSCC	Muse	CC
●○○○	00000	00	000
Motivation			

Aim

- Congruence relations, supporting
- equational reasoning, and enjoying of
- co-inductive characterisations, providing proof techniques.

- Behavioural contextual equivalence: barbed congruence
- Co-inductive characterisation: full bisimilarity Substitution-closed ground bisimilarity over an early LTS
- Axioms for algebraic reasoning

Introduction	SSCC	Muse	CC
●○○○	00000	00	000
Motivation			

Aim

- Congruence relations, supporting
- equational reasoning, and enjoying of
- co-inductive characterisations, providing proof techniques.

- Behavioural contextual equivalence: barbed congruence
- Co-inductive characterisation: full bisimilarity Substitution-closed ground bisimilarity over an early LTS
- Axioms for algebraic reasoning

Introduction	SSCC	Muse	CC
●○○○	00000	00	000
Motivation			

Aim

- Congruence relations, supporting
- equational reasoning, and enjoying of
- co-inductive characterisations, providing proof techniques.

- Behavioural contextual equivalence: barbed congruence
- Co-inductive characterisation: full bisimilarity Substitution-closed ground bisimilarity over an early LTS
- Axioms for algebraic reasoning

Introduction	SSCC	Muse	CC
000	00000	00	000
Work developed within SENSORIA			
Achievements			

- Congruence relations: constructs of the calculi as compositional semantic operators on bisimilarity equivalence classes
- Axioms supporting equational reasoning, useful for proving:
 - Service compliance to an abstract behaviour
 - Correctness of program optimizations

Introduction	SSCC	Muse	CC
	00000	00	000
Work developed within SENSORIA			
Achievements			

- Congruence relations: constructs of the calculi as compositional semantic operators on bisimilarity equivalence classes
- Axioms supporting equational reasoning, useful for proving:
 - Service compliance to an abstract behaviour
 - Correctness of program optimizations

Introduction	SSCC	Muse	CC
	00000	00	000
Work developed within SENSORIA			
Achievements			

- Congruence relations: constructs of the calculi as compositional semantic operators on bisimilarity equivalence classes
- Axioms supporting equational reasoning, useful for proving:
 - Service compliance to an abstract behaviour
 - Correctness of program optimizations

Introduction	SSCC	Muse	CC
	00000	00	000
Work developed within SENSORIA			
Achievements			

- Congruence relations: constructs of the calculi as compositional semantic operators on bisimilarity equivalence classes
- Axioms supporting equational reasoning, useful for proving:
 - Service compliance to an abstract behaviour
 - Correctness of program optimizations

Introduction	SSCC	Muse	CC
0000	00000	00	000
This Chapter			

- Labelled transition systems,
- Behavioural equivalences, and
- Some useful axioms for
 - SSCC: Stream-based Service Centered Calculus
 - µse: dynamic multiparty session-based calculus
 - CC: Conversation Calculus

Introduction	SSCC	Muse	CC
0000	00000	00	000
This Chapter			

- Labelled transition systems,
- Behavioural equivalences, and
- Some useful axioms for
 - SSCC: Stream-based Service Centered Calculus
 - μse: dynamic multiparty session-based calculus
 - CC: Conversation Calculus

Introduction	SSCC	Muse	CC
0000	00000	00	000
This Chapter			

- Labelled transition systems,
- Behavioural equivalences, and
- Some useful axioms for
 - SSCC: Stream-based Service Centered Calculus
 - μse: dynamic multiparty session-based calculus
 - CC: Conversation Calculus

Introduction	SSCC	Muse	CC
0000	00000	00	000
This Chapter			

- Labelled transition systems,
- Behavioural equivalences, and
- Some useful axioms for
 - SSCC: Stream-based Service Centered Calculus
 - μse: dynamic multiparty session-based calculus
 - CC: Conversation Calculus

Introduction	SSCC	Muse	CC
0000	00000	00	000
This Chapter			

- Labelled transition systems,
- Behavioural equivalences, and
- Some useful axioms for
 - SSCC: Stream-based Service Centered Calculus
 - μ se: dynamic multiparty session-based calculus
 - CC: Conversation Calculus

Introduction	SSCC	Muse	CC
0000	00000	00	000
This Chapter			

- Labelled transition systems,
- Behavioural equivalences, and
- Some useful axioms for
 - SSCC: Stream-based Service Centered Calculus
 - μ se: dynamic multiparty session-based calculus
 - CC: Conversation Calculus

Introduction	SSCC	Muse	CC
0000	00000	00	000
This Chapter			

- 2 SSCC's behavioural theory
 - Barbed congruence coincides with full bisimilarity, which is a congruence
 - Axioms that clarify the relationships between some constructs, and allow the proof of program transformations
- 3 μ se's behavioural theory
 - Weak full bisimilarity
 - Axioms that clarify the relationships between some constructs, and allow the proof of program transformations
- 4 CC's behavioural theory
 - Strong and weak bisimilarity notions, which are congruences
 - Behavioral identities: illuminate on the spatial nature of processes; and pave the way for establishing a normal form result

Introduction	SSCC	Muse	CC
000	00000	00	000
This Chapter			

- 2 SSCC's behavioural theory
 - Barbed congruence coincides with full bisimilarity, which is a congruence
 - Axioms that clarify the relationships between some constructs, and allow the proof of program transformations
- 3 μ se's behavioural theory
 - Weak full bisimilarity
 - Axioms that clarify the relationships between some constructs, and allow the proof of program transformations
- 4 CC's behavioural theory
 - Strong and weak bisimilarity notions, which are congruences
 - Behavioral identities: illuminate on the spatial nature of processes; and pave the way for establishing a normal form result

Introduction	SSCC	Muse	CC
0000	00000	00	000
This Chapter			

- 2 SSCC's behavioural theory
 - Barbed congruence coincides with full bisimilarity, which is a congruence
 - Axioms that clarify the relationships between some constructs, and allow the proof of program transformations
- 3 μ se's behavioural theory
 - Weak full bisimilarity
 - Axioms that clarify the relationships between some constructs, and allow the proof of program transformations
- 4 CC's behavioural theory
 - Strong and weak bisimilarity notions, which are congruences
 - Behavioral identities: illuminate on the spatial nature of processes; and pave the way for establishing a normal form result

Introduction	SSCC	Muse	CC
0000	00000	00	000
This Chapter			

- 2 SSCC's behavioural theory
 - Barbed congruence coincides with full bisimilarity, which is a congruence
 - Axioms that clarify the relationships between some constructs, and allow the proof of program transformations
- 3 μ se's behavioural theory
 - Weak full bisimilarity
 - Axioms that clarify the relationships between some constructs, and allow the proof of program transformations
- 4 CC's behavioural theory
 - Strong and weak bisimilarity notions, which are congruences
 - Behavioral identities: illuminate on the spatial nature of processes; and pave the way for establishing a normal form result

Introduction	SSCC	Muse	CC
0000	00000	00	000
This Chapter			

- 2 SSCC's behavioural theory
 - Barbed congruence coincides with full bisimilarity, which is a congruence
 - Axioms that clarify the relationships between some constructs, and allow the proof of program transformations
- 3μ se's behavioural theory
 - Weak full bisimilarity
 - Axioms that clarify the relationships between some constructs, and allow the proof of program transformations
- 4 CC's behavioural theory
 - Strong and weak bisimilarity notions, which are congruences
 - Behavioral identities: illuminate on the spatial nature of processes; and pave the way for establishing a normal form result

Introduction	SSCC	Muse	CC
0000	00000	00	000
This Chapter			

- 2 SSCC's behavioural theory
 - Barbed congruence coincides with full bisimilarity, which is a congruence
 - Axioms that clarify the relationships between some constructs, and allow the proof of program transformations
- 3μ se's behavioural theory
 - Weak full bisimilarity
 - Axioms that clarify the relationships between some constructs, and allow the proof of program transformations
- 4 CC's behavioural theory
 - Strong and weak bisimilarity notions, which are congruences
 - Behavioral identities: illuminate on the spatial nature of processes; and pave the way for establishing a normal form result

Introduction	SSCC	Muse	CC
0000	00000	00	000
This Chapter			

- 2 SSCC's behavioural theory
 - Barbed congruence coincides with full bisimilarity, which is a congruence
 - Axioms that clarify the relationships between some constructs, and allow the proof of program transformations
- 3μ se's behavioural theory
 - Weak full bisimilarity
 - Axioms that clarify the relationships between some constructs, and allow the proof of program transformations
- 4 CC's behavioural theory
 - Strong and weak bisimilarity notions, which are congruences
 - Behavioral identities: illuminate on the spatial nature of processes; and pave the way for establishing a normal form result

Introduction	SSCC	Muse	CC
0000	00000	00	000
This Chapter			

- 2 SSCC's behavioural theory
 - Barbed congruence coincides with full bisimilarity, which is a congruence
 - Axioms that clarify the relationships between some constructs, and allow the proof of program transformations
- 3μ se's behavioural theory
 - Weak full bisimilarity
 - Axioms that clarify the relationships between some constructs, and allow the proof of program transformations
- 4 CC's behavioural theory
 - Strong and weak bisimilarity notions, which are congruences
 - Behavioral identities: illuminate on the spatial nature of processes; and pave the way for establishing a normal form result

Introduction	SSCC	Muse	CC
0000	00000	00	000
This Chapter			

- 2 SSCC's behavioural theory
 - Barbed congruence coincides with full bisimilarity, which is a congruence
 - Axioms that clarify the relationships between some constructs, and allow the proof of program transformations
- 3μ se's behavioural theory
 - Weak full bisimilarity
 - Axioms that clarify the relationships between some constructs, and allow the proof of program transformations
- 4 CC's behavioural theory
 - Strong and weak bisimilarity notions, which are congruences
 - Behavioral identities: illuminate on the spatial nature of processes; and pave the way for establishing a normal form result

Introduction	SSCC	Muse	CC
0000	00000	00	000
This Chapter			

- 2 SSCC's behavioural theory
 - Barbed congruence coincides with full bisimilarity, which is a congruence
 - Axioms that clarify the relationships between some constructs, and allow the proof of program transformations
- 3μ se's behavioural theory
 - Weak full bisimilarity
 - Axioms that clarify the relationships between some constructs, and allow the proof of program transformations
- 4 CC's behavioural theory
 - Strong and weak bisimilarity notions, which are congruences
 - Behavioral identities: illuminate on the spatial nature of processes; and pave the way for establishing a normal form result

Introduction	SSCC	Muse	CC
0000	00000	00	000
This Chapter			

- 2 SSCC's behavioural theory
 - Barbed congruence coincides with full bisimilarity, which is a congruence
 - Axioms that clarify the relationships between some constructs, and allow the proof of program transformations
- 3μ se's behavioural theory
 - Weak full bisimilarity
 - Axioms that clarify the relationships between some constructs, and allow the proof of program transformations
- 4 CC's behavioural theory
 - Strong and weak bisimilarity notions, which are congruences
 - Behavioral identities: illuminate on the spatial nature of processes; and pave the way for establishing a normal form result

Introduction	SSCC	Muse	CC
0000	•0000	00	000
Axioms			

SSCC Behavioural identities

Garbage Collection Laws

Session Garbage Collection Consider that \mathcal{D} does not bind r

$$(\nu r) \mathcal{D}[\![r \rhd \boldsymbol{0}, r \lhd \boldsymbol{0}]\!] \sim_{f} \mathcal{D}[\![\boldsymbol{0}, \boldsymbol{0}]\!]$$
(1)

Stream Garbage Collection if f does not occur in P,

stream **0** as
$$f$$
 in $P \sim_{\rm f} P$ (2)

Introduction	SSCC	Muse	CC
0000	OOOO	00	000
Axioms			

SSCC Behavioural identities

Independence Laws

Session Independence if $s \neq r$,

 $r \bowtie \mathsf{Q} \mid s \bowtie \mathsf{P} \sim_{\mathsf{f}} r \bowtie (s \bowtie \mathsf{P} \mid \mathsf{Q}) \tag{3}$

Stream Independence if $f \neq g$,

stream P as f in stream P' as g in $Q \sim_{f}$ stream P' as g in stream P as f in Q (4)

Streams are Orthogonal to Sessions

$$r \bowtie (\text{feed } v \mid P) \sim_{\mathsf{f}} \text{feed } v \mid r \bowtie P \tag{5}$$

Introduction	SSCC	Muse	CC
0000	00000	00	000
Axioms			

SSCC Behavioural identities

Streams Laws

Stream Locality if $f \notin \operatorname{fn}(Q')$,

stream P as f in
$$(Q | Q') \sim_{f} (\text{stream } P \text{ as } f \text{ in } Q) | Q'$$

(6)

Unused Stream

stream
$$P$$
 as f in $0 \approx_{f} P\{\text{feed } v. Q \rightarrow Q\}$ (7)

Parallel Composition Versus Streams if $f \notin fn(Q)$ and P does not contain feed,

stream P as f in
$$Q \sim_{\rm f} P | Q$$
 (8)

Introduction	SSCC	Muse	CC
0000	00000	00	000
Brogram Transformations in SSCC			

From an object-centred to a session-centred view

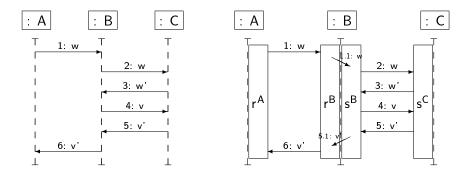


Figure: Sequence diagram communication pattern: object-centred and session-centred view.

Introduction	SSCC	Muse	CC
0000	00000	00	000
D T 4 1 1 0000			

Program Transformations in SSCC

Breaking sessions into request-response patterns

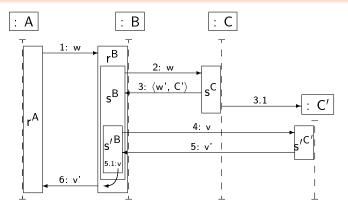


Figure: Sequence diagram communication pattern: using subsessions and continuations.

Introduction	SSCC	Muse	CC
0000	00000	●○	000
Axioms			

Muse Behavioural identities

Garbage Collection Laws

Session Garbage Collection $r \triangleright \mathbf{0} \sim_{f} \mathbf{0}$

Location Garbage Collection $I :: \mathbf{0} \sim_{\mathbf{f}} \mathbf{0}$

Sessions Laws

Session Independence $r \triangleright Q \mid s \triangleright P \sim_{f} r \triangleright (s \triangleright P \mid Q)$

Intra-Session Communication is Orthogonal w.r.t. Locations

 $I :: xw \sim_{f} m :: xw$

Intra-Location Communication is Orthogonal w.r.t. Sessions $r \triangleright x! w \sim_{f} s \triangleright x! w$

Introduction	SSCC	Muse	CC
0000	00000	●○	000
Axioms			

Muse Behavioural identities

Garbage Collection Laws

Session Garbage Collection $r \triangleright \mathbf{0} \sim_{\mathbf{f}} \mathbf{0}$

Location Garbage Collection $I :: \mathbf{0} \sim_{\mathbf{f}} \mathbf{0}$

Sessions Laws

Session Independence $r \triangleright Q \mid s \triangleright P \sim_{f} r \triangleright (s \triangleright P \mid Q)$

Intra-Session Communication is Orthogonal w.r.t. Locations

 $I :: \overline{x} w \sim_{\mathbf{f}} m :: \overline{x} w$

Intra-Location Communication is Orthogonal w.r.t. Sessions $r \triangleright x! w \sim_{f} s \triangleright x! w$

Introduction	SSCC	Muse	CC
0000	00000	0●	000
Program Transformations in Muse			

Implementation correct with respect to a specification

Credit request scenario: specification

 $I :: *CalculateRating \Rightarrow P$ with $P = data(user).some_comp.ret$ rating

Credit request scenario: implementation

$$:: (\nu Calc_1 \dots Calc_n) ((\nu av) (\prod_{i=1}^n \operatorname{rec} X.av! Calc_i.X |$$

$$* CalculateRating \Rightarrow av?(u).invoke u) | \prod_{i=1}^n * Calc_i \Rightarrow P)$$

Introduction	SSCC	Muse	CC
0000	00000	00	●○○
Axioms			

CC Behavioural identities

Laws
• $n \triangleleft [P] \mid n \triangleleft [Q] \sim n \triangleleft [P \mid Q]$
m ◄ [n ◀ [o ◀ [P]]] ~ n ◀ [o ◀ [P]]
② $n \blacktriangleleft [I^{\uparrow}!(\tilde{n}).P] \sim I^{\downarrow}!(\tilde{n}).n \blacktriangleleft [P]$
● If $n \notin \tilde{x}$ then $n \blacktriangleleft [I^{\uparrow}?(\tilde{x}).P] \sim I^{\downarrow}?(\tilde{x}).n \blacktriangleleft [P]$
$ \ {\color{black} \bullet} m \blacktriangleleft \left[n \bigstar \left[l^{\downarrow} ! (\tilde{n}) . P \right] \right] \sim n \bigstar \left[l^{\downarrow} ! (\tilde{n}) . m \bigstar \left[n \bigstar \left[P \right] \right] \right] $
o If $\{m, n\} \# \tilde{x}$ then
$m \blacktriangleleft [n \blacktriangleleft [l^{\downarrow}?(\tilde{x}).P]] \sim n \blacktriangleleft [l^{\downarrow}?(\tilde{x}).m \blacktriangleleft [n \blacktriangleleft [P]]]$

Introduction	SSCC	Muse 00	CC ⊙●O
Program Transformations in CC			
Einance Portal			

Implementation correct with respect to a specification

CreditChat ◄ [login[↓]?(uld).FinPort ◄ [CreditChat ◀ [ServProt]]] | Client ◀ [CreditChat ◀ [login[↓]!(uld).ClientProt]]

CreditChat ◄ [login[↓]?(uld).FinPort ◄ [CreditChat ◄ [ServProt]]] | CreditChat ◄ [login[↓]!(uld).Client ◄ [CreditChat ◄ [ClientProt]]]

 \sim

Introduction 0000	SSCC 00000	Muse 00	CC ○○●
Program Transformations in CC			
Finance Portal			

Implementation correct with respect to a specification