Towards Trustworthy Multiparty Sessions

Roberto Bruni1Ivan Lanese2Hernán Melgratti3Leonardo Gaetano Mezzina4Emilio Tuosto5

¹Università di Pisa

²Università di Bologna

³Universidad de Buenos Aires

⁴IMT Alti Studi Lucca

⁵University of Leicester

SENSORIA General Meeting Pisa, Italy June 9th, 2008

Outline

1 Introduction & Motivation

2 A Glimpse of μ se, graphically

3 Something About Types

4 Concluding Remarks

1st Fact

Trustworthy Service Oriented Computing is hard: services are autonomous, heterogeeneous, separately designed computational entities to be dynamically assembled.

2nd Fact

Process Calculi can help: they allow to focus on salient features at a convenient level of abstraction.

3rd Fact

Behavioural types can help: syntactic descriptions of services are not expressive enough to guarantee their trustworthy assembly.

4th Fact (or mere conjecture?)

Existing techniques must be adapted: SOC has specific features like endpoints, sessions, dynamicity.

1st Fact

Trustworthy Service Oriented Computing is hard: services are autonomous, heterogeeneous, separately designed computational entities to be dynamically assembled.

2nd Fact

Process Calculi can help: they allow to focus on salient features at a convenient level of abstraction.

3rd Fact

Behavioural types can help: syntactic descriptions of services are not expressive enough to guarantee their trustworthy assembly.

4th Fact (or mere conjecture?)

Existing techniques must be adapted: SOC has specific features like endpoints, sessions, dynamicity.

1st Fact

Trustworthy Service Oriented Computing is hard: services are autonomous, heterogeeneous, separately designed computational entities to be dynamically assembled.

2nd Fact

Process Calculi can help: they allow to focus on salient features at a convenient level of abstraction.

3rd Fact

Behavioural types can help: syntactic descriptions of services are not expressive enough to guarantee their trustworthy assembly.

4th Fact (or mere conjecture?)

Existing techniques must be adapted: SOC has specific features like endpoints, sessions, dynamicity.

1st Fact

Trustworthy Service Oriented Computing is hard: services are autonomous, heterogeeneous, separately designed computational entities to be dynamically assembled.

2nd Fact

Process Calculi can help: they allow to focus on salient features at a convenient level of abstraction.

3rd Fact

Behavioural types can help: syntactic descriptions of services are not expressive enough to guarantee their trustworthy assembly.

4th Fact (or mere conjecture?)

Existing techniques must be adapted: SOC has specific features like endpoints, sessions, dynamicity.

Our Proposal

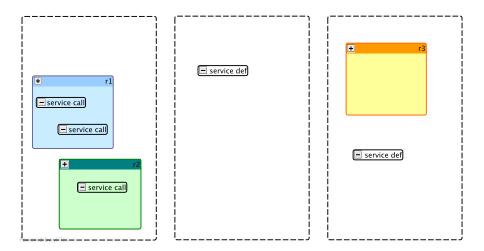
μ se (after MUltiparty SEssions)

 μ se is a process calculus for expressing computations where endpoints dynamically join existing multiparty sessions (as seen on Emilio's talk @ Munich meeting)

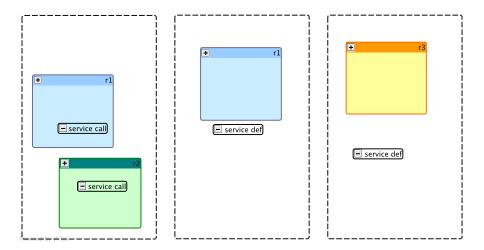
Types for

- Semantic description of services (for discovery)
- Compatibility check (for dynamic assembly)
- Early detection of possible sources of problems (trustworthiness)

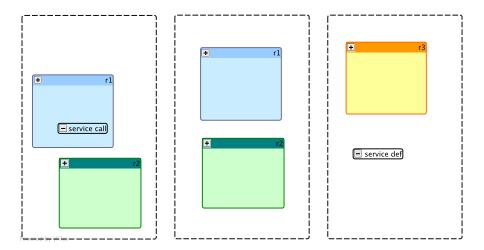
Disclaim

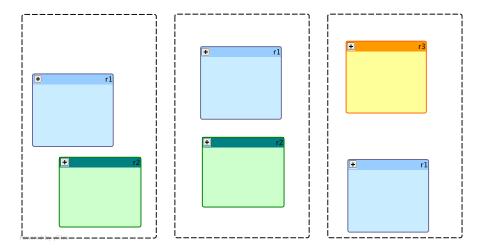

- We restrict to consider a "bare bones" fragment of μ se
- We present a parametric type system w.r.t. 3 notions (task separation, dual type compatibility, session completion)
- We conjecture subject reduction + all non-typeable processes can deadlock
- We look for stronger guarantees

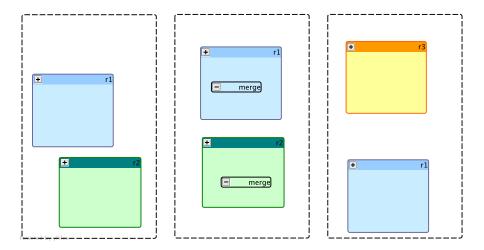
1) Introduction & Motivation


(2) A Glimpse of μ se, graphically

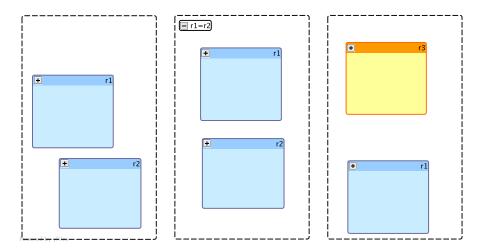
3 Something About Types


4 Concluding Remarks


伺下 イヨト イヨト


.

- E - N



Merging Sessions

-

Merging Sessions

-

A 🖡

Outline

1 Introduction & Motivation

2) A Glimpse of μ se, graphically

3 Something About Types

4 Concluding Remarks

Types for Dynamic Multiparty Sessions

Type judgments

 $\mathsf{\Gamma}; \Delta \vdash P : \{ \sigma \nearrow \rho \}$

- we call σ the $\mathit{current}$ type, and ρ the $\mathit{delegated}$ type
- P provides communication activities in σ and ρ
- activities σ concern the current participants of its session,
- activities ρ concern other endpoints that P itself will allow to join its session (via service invocation or merge)
- Γ is a finite partial mapping from variables X and polarized service / entry-point names n^{ρ} (with $\rho \in \{+, -\}$) to type pairs $\sigma \nearrow \rho$, with the understanding that actions in ρ are delegated to $n^{\overline{\rho}}$.
- Δ is a finite partial mapping from session names r to types σ, such that Δ(r) is the parallel composition of the current types of all endpoints of r

Self typeable systems

 $\mathsf{\Gamma}; \Delta \vdash S : \{ 0 \nearrow 0 \}$

Task separation

Task separation $c * \sigma$ is used to project the activities of P in separate threads for later delegation.

Our choice

Here we take the most relaxed form of separation, where $c * \sigma = c | \sigma$.

Used in

$$\frac{(\text{TACTION})}{\Gamma; \Delta \vdash P : \{\sigma \nearrow \rho\}} \frac{\Gamma; \Delta \vdash P : \{\sigma \nearrow \rho\}}{\{c * \sigma \nearrow \rho\}}$$

Parametric on Type Compatibility

Type compatibility

Type compatibility $\sigma \approx \rho$ says that σ and ρ are complementary.

Our choice

Let $I(\sigma) = \{c \mid \exists \sigma' : \sigma \stackrel{c}{\mapsto} \sigma'\}$ be the set of initial actions of σ . Here we take the largest relation on types such that whenever $\sigma \approx \rho$:

• either
$$I(\sigma) = I(\rho) = \emptyset$$
,

• or $K = I(\sigma) \cap \overline{I(\rho)} \neq \emptyset$ and, for each $x \in K$ and for each σ' and ρ' such that $\sigma \stackrel{x}{\mapsto} \sigma'$ and $\rho \stackrel{\overline{x}}{\mapsto} \rho'$, then $\sigma' \approx \rho'$.

Used in

 Γ is well-formed if:

• whenever
$$\Gamma(n^{\rho}) = \sigma \nearrow \rho$$
, then $\Gamma(n^{\overline{\rho}}) = \sigma' \nearrow \rho'$ for some $\rho' \approx \rho$,

• whenever
$$\Gamma(a^-) = \sigma \nearrow \rho$$
, then $\sigma = 0$.

Session completion

The completion set \Downarrow_0 contains those types σ that express admissible interactions of multiple endpoints.

Our choice

Here we define \Downarrow_0 as the largest set of types σ such that:

• for each $c \in I(\sigma)$ such that $\overline{c} \notin I(\sigma)$ and for each $\sigma \stackrel{\tau}{\mapsto} \sigma'$ there exists σ'' such that $\overline{c} \in I(\sigma'')$ and $\sigma' \stackrel{\tau}{\mapsto} \sigma''$,

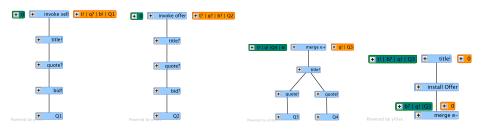
• if
$$\sigma \stackrel{\tau}{\mapsto} \sigma'$$
 then $\sigma' \in \Downarrow_0$.

Used in

We say that Δ is *fully-formed* if whenever $\Delta(r) = \sigma$, then $\sigma \in \Downarrow_0$.

Example: Two Buyers $(\nu r_1, r_2)(l_s :: Sell \mid l_1 :: Buy_1 \mid l_2 :: Buy_2)$

 $Sell = sell \Rightarrow title.install[Offer].merge^{-} e$


The service *sell* waits for a buyer to require a quote for a book (*title*), installs a new service *offer* for a second buyer and prepares for merging with an instance of *offer*.

 $Offer = offer \Rightarrow merge^+ e.(\overline{title}.(\overline{quote}.Q_3|\overline{quote}.Q_4))$ offer provides the book's *title* so that quotes are communicated to both buyers after the sessions are merged.

$$Buy_1 = r_1 \triangleright invoke \ sell. title. quote. bid. Q_1$$

 $Buy_2 = r_2 \triangleright invoke \ offer. title. quote. bid. Q_2$

Buyers communicate over *bid* and the negotiation is concluded by the interactions among Q, Q_1 and Q_2 (not modeled here).

Example: Typing the Two Buyers

$$\begin{array}{lll} \mathsf{\Gamma} &= \{ & \textit{sell}^+ : (0 \nearrow b|t|\overline{q}|Q_3), & \textit{sell}^- : (0 \nearrow \overline{b}|\overline{t}.q|Q_1), \\ & \textit{offer}^+ : (0 \nearrow \overline{b}|\overline{t}|\overline{q}|Q_4), & \textit{offer}^- : (0 \nearrow b|t|q|Q_2), \\ & e^- : (\overline{b} \nearrow 0), & e^+ : (\overline{q}|b|Q_3 \nearrow 0) \end{array} \end{array}$$

$$\frac{(\text{TINVOKE})}{\Gamma; \Delta \vdash P : \{\sigma_1 | \sigma_2 \nearrow \rho\} \quad \Gamma(a^+) = \sigma \nearrow \rho' \quad \Gamma(a^-) = 0 \nearrow \sigma_2}{\Gamma; \Delta \vdash \text{ invoke } a.P : \{\sigma | \sigma_1 \nearrow \sigma_2 | \rho\}}$$

$$\frac{(\text{TMERGE})}{\Gamma; \Delta \vdash P : \{\sigma_1 | \sigma_2 | \sigma_3 \nearrow \rho\} \quad \Gamma(e^p) = \sigma | \sigma_2 \nearrow \sigma_3 \quad \Gamma(e^{\overline{p}}) = \sigma' | \sigma'' \nearrow \rho' \quad \sigma \approx \sigma''}{\Gamma; \Delta \vdash \text{ merge}^p \ e.P : \{\sigma' | \sigma_1 | \sigma'' \nearrow \sigma_2 | \sigma_3 | \rho\}}$$

Outline

1 Introduction & Motivation

2) A Glimpse of μ se, graphically

3 Something About Types

4 Concluding Remarks

Conclusion

Preliminary study

Some self typeable systems can behave "badly" (no check on availability of services, entry points, etc).

Future work

- Suitable syntactic restrictions to obtain stronger guarantees.
- Change the notions of $c * \sigma$, \approx and \Downarrow_0 if needed
- Address intra-site communications

References

- Multiparty sessions in SOC COORDINATION 2008, LNCS 5052, pp. 67-82, Springer, 2008.
- Towards trustworthy multiparty sessions (extended abstract) PLACES 2008, Technical Report TR-08-14, DI-FCUL, 2008.

hanks for the attention!!

Conclusion

Preliminary study

Some self typeable systems can behave "badly" (no check on availability of services, entry points, etc).

Future work

- Suitable syntactic restrictions to obtain stronger guarantees.
- Change the notions of $c * \sigma$, \approx and \Downarrow_0 if needed
- Address intra-site communications

References

- Multiparty sessions in SOC COORDINATION 2008, LNCS 5052, pp. 67-82, Springer, 2008.
- Towards trustworthy multiparty sessions (extended abstract) PLACES 2008, Technical Report TR-08-14, DI-FCUL, 2008.

Thanks for the attention!!