
Core Calculi for Service-Oriented Computing

Rocco De Nicola

DSIUF- Università di Firenze

SENSORIA Workshop
Leicester - June 13, 2007

R. De Nicola (DSIUF) Core Calculi for Service-Oriented Computing SENSORIA 2007 1 / 70

Outline

1 Core Calculi and SENSORIA

2 The calculi of the first 18 months

3 SOCK: a calculus for Service Oriented Computing

4 COWS: a Calculus for Orchestration of Web Services

5 SCC: a Service Centered Calculi

R. De Nicola (DSIUF) Core Calculi for Service-Oriented Computing SENSORIA 2007 2 / 70

Outline

1 Core Calculi and SENSORIA

2 The calculi of the first 18 months

3 SOCK: a calculus for Service Oriented Computing

4 COWS: a Calculus for Orchestration of Web Services

5 SCC: a Service Centered Calculi

R. De Nicola (DSIUF) Core Calculi for Service-Oriented Computing SENSORIA 2007 3 / 70

A General Theory of Services

The strategy of SENSORIA

Integration of foundational theories, techniques, methods and tools in a
pragmatic software engineering approach.

The role of process calculi
A crucial role in the project will be played by formalisms for service
description that can lay the mathematical basis for analysing and
experimenting with components interactions, and for combining
services.

Core calculi
We seek for a small set of primitives that might serve as a basis for
formalizing and programming service oriented applications over global
computers.

R. De Nicola (DSIUF) Core Calculi for Service-Oriented Computing SENSORIA 2007 4 / 70

A General Theory of Services

The strategy of SENSORIA

Integration of foundational theories, techniques, methods and tools in a
pragmatic software engineering approach.

The role of process calculi
A crucial role in the project will be played by formalisms for service
description that can lay the mathematical basis for analysing and
experimenting with components interactions, and for combining
services.

Core calculi
We seek for a small set of primitives that might serve as a basis for
formalizing and programming service oriented applications over global
computers.

R. De Nicola (DSIUF) Core Calculi for Service-Oriented Computing SENSORIA 2007 4 / 70

A General Theory of Services

The strategy of SENSORIA

Integration of foundational theories, techniques, methods and tools in a
pragmatic software engineering approach.

The role of process calculi
A crucial role in the project will be played by formalisms for service
description that can lay the mathematical basis for analysing and
experimenting with components interactions, and for combining
services.

Core calculi
We seek for a small set of primitives that might serve as a basis for
formalizing and programming service oriented applications over global
computers.

R. De Nicola (DSIUF) Core Calculi for Service-Oriented Computing SENSORIA 2007 4 / 70

Main Objectives of WP2

Provide a foundational understanding of the Service-Oriented
Computing (SOC) paradigm.

Develop calculi for service specifications and analysis that:
comply with a service-oriented approach to business modelling;
allow for modular description of services;
support dynamic, ad-hoc, "just-in-time" composition.

Assess the quality of our proposals, by means of a number of
case studies, with respect to:

service contracts;
service discovery;
service composition.

R. De Nicola (DSIUF) Core Calculi for Service-Oriented Computing SENSORIA 2007 5 / 70

Core Calculi

Calculi based on process algebras but enhanced with

primitives for manipulating semi-structured data (e.g. pattern
matching)
mechanisms for describing safe client-service (e.g. sessions)
operators for composing (possibly unreliable) services
techniques for query and discovery of services.

The outcome will not necessarily be a single core language; there
are competing paradigms concerning

chosen level of abstraction
client-service interaction/coordination
primitives for orchestration

R. De Nicola (DSIUF) Core Calculi for Service-Oriented Computing SENSORIA 2007 6 / 70

Outline

1 Core Calculi and SENSORIA

2 The calculi of the first 18 months

3 SOCK: a calculus for Service Oriented Computing

4 COWS: a Calculus for Orchestration of Web Services

5 SCC: a Service Centered Calculi

R. De Nicola (DSIUF) Core Calculi for Service-Oriented Computing SENSORIA 2007 7 / 70

The calculi of the first 18 months

Pre-existing SENSORIA
In the first period a number of existing calculi has been used:
CCS, π−calculus, Join, Ambient, KLAIM, . . .

Within SENSORIA
A first suite of calculi has been proposed, each of them aiming at
capturing specific issues of SOC.

SOCK
COWS
SCC
SC
λreq

It is now needed to assess their relative merits and expressiveness,
and look for unifying solutions.

R. De Nicola (DSIUF) Core Calculi for Service-Oriented Computing SENSORIA 2007 8 / 70

SOCK: a calculus for Service Oriented Computing

Main Aims
SOCK is a formal calculus which aims at characterizing the basic
features of Service Oriented Computing and takes its inspiration
from WS-BPEL, a ’de facto’ standard for Web Service technology
C. Guidi, R. Lucchi, R. Gorrieri, N. Busi, G. Zavattaro 4th Int. Conf.
on Service-Oriented Computing, LNCS 4294, Springer, 2006

Basic Structure
A three layered structure inspired by the Web services protocol stack.

The service behaviour calculus provides the primitives for services
programming;
The service engine calculus provides the mechanisms for
describing service engines;
The service system calculus provides the mechanisms for
composing/deployng service engines into a system.

R. De Nicola (DSIUF) Core Calculi for Service-Oriented Computing SENSORIA 2007 9 / 70

COWS: a Calculus for Orchestration of Web Services

Main Aims
COWS exploits WS-BPEL to drive the design of a foundational
calculus to reason on specified services.
A. Lapadula, R. Pugliese, F. Tiezzi, 16th European Symposium on
Programming, LNCS 4421, Springer, 2007

Basic Structure
Threads of a service can share the store and sessions can be
modeled by means of correlation sets.
Some WS-BPEL constructs, e.g. fault and compensation
handlers and flow graphs, do not have direct counterparts; they
can be encoded by exploiting COWS operators.
Borrows ideas from other calculi: asynch. comm., pattern
matching, polyadic synchronization, localized input (Lπ), delimited
kill & protection (StACi)

R. De Nicola (DSIUF) Core Calculi for Service-Oriented Computing SENSORIA 2007 10 / 70

SCC: a Sesrvice-Centered Calculus

Main Aims
A a small set of primitives for programming and orchestrating
services. A concept of session for client-server interaction.
M. Boreale, R. Bruni, L. Caires, R. De Nicola, I. Lanese, M. Loreti,
F. Martins, U. Montanari, A. Ravara, D. Sangiorgi, V. Vasconcelos,
G. Zavattaro, 3rd Int. Workshop on Web Services and Formal
Methods, LNCS 4184, pages 38-57, Springer, 2006.

Basic Structure
Looks for a small set of primitives that might serve as a basis for
formalising and programming service oriented applications over
global computers
integrates complementary aspects from π-calculus (naming,
hence sessions), Orc (pipelining of activities), webπ, cjoin, Sagas
(implicit transactions and compensations)

R. De Nicola (DSIUF) Core Calculi for Service-Oriented Computing SENSORIA 2007 11 / 70

SC: Signal Calculus

Main Aims
Event-Based Service Coordination with the goal of providing a
semantic based framework to implement higher level languages
e.g. WS-CDL, BPEL, SAGA, . . . , and a common programming
model for service coordination (choreography)
G. Ferrari, R. Guanciale, D. Strollo, 4th Int. Conference on
Service-Oriented Computing, LNCS 4294, Springer, 2006

Basic Structure
A process calculus with asynchronous communication based on
the Event Notification paradigm
Uses event topics to describe coordination policies
Permits dynamic interface publication and modification of service
connections.

R. De Nicola (DSIUF) Core Calculi for Service-Oriented Computing SENSORIA 2007 12 / 70

λreq (or CCC): A Calculus for Call by Contract

Main Aims
Calculus based on call-by-contract service selection that
guarantees security-awareness from the design phase and
supports verification techniques for planning sound compositions
M. Bartoletti, P. Degano, G.L. Ferrari, Tech Report TR-07-02, Dip.
Informatica, Univ. Pisa. To appear in Journal of Computer
Security, 2007.

Basic Structure
Selects and configures services, to guarantee that their
composition enjoys some desirable properties
Takes into account non-functional aspects: security and contracts
Analizes service infrastructure to see which features are needed
to guarantee semantic properties on service behaviour

R. De Nicola (DSIUF) Core Calculi for Service-Oriented Computing SENSORIA 2007 13 / 70

Assessing the Calculi

Different abstraction levels and different aims
SC aims at providing a basic framework (a middleware?) for

implementing languages for SOC;

SOCK is an abstraction of BPEL approach but sufficiently close
to it to mimic its development process;

COWS starts from BPEL but abstract more from it to get very
close to a classical process description language;

SCC starts from the abstract notion of session to develop a
calculus along the lines of π-calculus;

λreq is specifically designed for call-by-contract service
selection and the advocated paradigm could be used to
extend any of the previous formalisms.

R. De Nicola (DSIUF) Core Calculi for Service-Oriented Computing SENSORIA 2007 14 / 70

Assessing the Calculi

Different abstraction levels and different aims
SC aims at providing a basic framework (a middleware?) for

implementing languages for SOC;

SOCK is an abstraction of BPEL approach but sufficiently close
to it to mimic its development process;

COWS starts from BPEL but abstract more from it to get very
close to a classical process description language;

SCC starts from the abstract notion of session to develop a
calculus along the lines of π-calculus;

λreq is specifically designed for call-by-contract service
selection and the advocated paradigm could be used to
extend any of the previous formalisms.

R. De Nicola (DSIUF) Core Calculi for Service-Oriented Computing SENSORIA 2007 14 / 70

Assessing the Calculi

Different abstraction levels and different aims
SC aims at providing a basic framework (a middleware?) for

implementing languages for SOC;

SOCK is an abstraction of BPEL approach but sufficiently close
to it to mimic its development process;

COWS starts from BPEL but abstract more from it to get very
close to a classical process description language;

SCC starts from the abstract notion of session to develop a
calculus along the lines of π-calculus;

λreq is specifically designed for call-by-contract service
selection and the advocated paradigm could be used to
extend any of the previous formalisms.

R. De Nicola (DSIUF) Core Calculi for Service-Oriented Computing SENSORIA 2007 14 / 70

Assessing the Calculi

Different abstraction levels and different aims
SC aims at providing a basic framework (a middleware?) for

implementing languages for SOC;

SOCK is an abstraction of BPEL approach but sufficiently close
to it to mimic its development process;

COWS starts from BPEL but abstract more from it to get very
close to a classical process description language;

SCC starts from the abstract notion of session to develop a
calculus along the lines of π-calculus;

λreq is specifically designed for call-by-contract service
selection and the advocated paradigm could be used to
extend any of the previous formalisms.

R. De Nicola (DSIUF) Core Calculi for Service-Oriented Computing SENSORIA 2007 14 / 70

Assessing the Calculi

Different abstraction levels and different aims
SC aims at providing a basic framework (a middleware?) for

implementing languages for SOC;

SOCK is an abstraction of BPEL approach but sufficiently close
to it to mimic its development process;

COWS starts from BPEL but abstract more from it to get very
close to a classical process description language;

SCC starts from the abstract notion of session to develop a
calculus along the lines of π-calculus;

λreq is specifically designed for call-by-contract service
selection and the advocated paradigm could be used to
extend any of the previous formalisms.

R. De Nicola (DSIUF) Core Calculi for Service-Oriented Computing SENSORIA 2007 14 / 70

Assessing the Calculi

Different abstraction levels and different aims
SC aims at providing a basic framework (a middleware?) for

implementing languages for SOC;

SOCK is an abstraction of BPEL approach but sufficiently close
to it to mimic its development process;

COWS starts from BPEL but abstract more from it to get very
close to a classical process description language;

SCC starts from the abstract notion of session to develop a
calculus along the lines of π-calculus;

λreq is specifically designed for call-by-contract service
selection and the advocated paradigm could be used to
extend any of the previous formalisms.

R. De Nicola (DSIUF) Core Calculi for Service-Oriented Computing SENSORIA 2007 14 / 70

Future Development of the Calculi

Possible future for the Calculi
SC could be used as a basis for developing (in alternative to

IMC or together with it) middleware for the implementation
of service description languages;

SOCK could be distilled into a process calculus, possibly
evaluating its relationships with COWS;

COWS could be refined and contrasted with SCC with the aim of
understanding which of them is better suited for qualitative
and quantitative analysis of the specified systems;

SCC that in the mean time has given rise to different dialects
should be cleaned up and assessed against case studies;

λreq will be part of the service composition deliverable and will
be used to extend other calculi.

R. De Nicola (DSIUF) Core Calculi for Service-Oriented Computing SENSORIA 2007 15 / 70

Future Development of the Calculi

Possible future for the Calculi
SC could be used as a basis for developing (in alternative to

IMC or together with it) middleware for the implementation
of service description languages;

SOCK could be distilled into a process calculus, possibly
evaluating its relationships with COWS;

COWS could be refined and contrasted with SCC with the aim of
understanding which of them is better suited for qualitative
and quantitative analysis of the specified systems;

SCC that in the mean time has given rise to different dialects
should be cleaned up and assessed against case studies;

λreq will be part of the service composition deliverable and will
be used to extend other calculi.

R. De Nicola (DSIUF) Core Calculi for Service-Oriented Computing SENSORIA 2007 15 / 70

Future Development of the Calculi

Possible future for the Calculi
SC could be used as a basis for developing (in alternative to

IMC or together with it) middleware for the implementation
of service description languages;

SOCK could be distilled into a process calculus, possibly
evaluating its relationships with COWS;

COWS could be refined and contrasted with SCC with the aim of
understanding which of them is better suited for qualitative
and quantitative analysis of the specified systems;

SCC that in the mean time has given rise to different dialects
should be cleaned up and assessed against case studies;

λreq will be part of the service composition deliverable and will
be used to extend other calculi.

R. De Nicola (DSIUF) Core Calculi for Service-Oriented Computing SENSORIA 2007 15 / 70

Future Development of the Calculi

Possible future for the Calculi
SC could be used as a basis for developing (in alternative to

IMC or together with it) middleware for the implementation
of service description languages;

SOCK could be distilled into a process calculus, possibly
evaluating its relationships with COWS;

COWS could be refined and contrasted with SCC with the aim of
understanding which of them is better suited for qualitative
and quantitative analysis of the specified systems;

SCC that in the mean time has given rise to different dialects
should be cleaned up and assessed against case studies;

λreq will be part of the service composition deliverable and will
be used to extend other calculi.

R. De Nicola (DSIUF) Core Calculi for Service-Oriented Computing SENSORIA 2007 15 / 70

Future Development of the Calculi

Possible future for the Calculi
SC could be used as a basis for developing (in alternative to

IMC or together with it) middleware for the implementation
of service description languages;

SOCK could be distilled into a process calculus, possibly
evaluating its relationships with COWS;

COWS could be refined and contrasted with SCC with the aim of
understanding which of them is better suited for qualitative
and quantitative analysis of the specified systems;

SCC that in the mean time has given rise to different dialects
should be cleaned up and assessed against case studies;

λreq will be part of the service composition deliverable and will
be used to extend other calculi.

R. De Nicola (DSIUF) Core Calculi for Service-Oriented Computing SENSORIA 2007 15 / 70

Future Development of the Calculi

Possible future for the Calculi
SC could be used as a basis for developing (in alternative to

IMC or together with it) middleware for the implementation
of service description languages;

SOCK could be distilled into a process calculus, possibly
evaluating its relationships with COWS;

COWS could be refined and contrasted with SCC with the aim of
understanding which of them is better suited for qualitative
and quantitative analysis of the specified systems;

SCC that in the mean time has given rise to different dialects
should be cleaned up and assessed against case studies;

λreq will be part of the service composition deliverable and will
be used to extend other calculi.

R. De Nicola (DSIUF) Core Calculi for Service-Oriented Computing SENSORIA 2007 15 / 70

Simplifying the Scenario

We propose to:
Further study SC within WP6 as a tool for developing middleware
for services deployment.
To study λreq within the task of WP2 dealing with resources
handling and services discovery.

This will enable us to concentrate the calculi that appear to be at
comparable abstraction level:

SOCK
COWS
SCC

and to better understand their structure.

We would like to end up with a set of basic concepts - primitives -
operators that capture basic notion of SOC and could be then
grouped/subsetted in different calculi aiming for capturing different
approaches to services development and analysis.

R. De Nicola (DSIUF) Core Calculi for Service-Oriented Computing SENSORIA 2007 16 / 70

Correlations vs Sessions

Correlation Based Calculi
The link between partners (caller and callee) are determined by
correlation sets. An instance contains some correlation values and
only messages with the right correlation values are received. Two
different alternatives are being considered corresponding to COWS
and SOCKS, their main difference is that the former is stateless
(correlation based on values) and the latter is stateful (correlation
based on variables).

Session Based Calculi
In SCC, a session corresponds to a private channel that is instantiated
when calling a service: It binds caller and callee and is used for their
communication. To manage inter-session communication different
mechanisms have been proposed ({C,P,S}-SCC) and are at the
moment under evaluation.

R. De Nicola (DSIUF) Core Calculi for Service-Oriented Computing SENSORIA 2007 17 / 70

Variants of SCC

PSCC: Dataflow oriented
Boreale, Bruni, DeNicola, Loreti:
A pipelining operator (à la ORC) is introduced to model the passage of
information between sessions; return is used by sessions for passing
values to the environment.

SSCC: Stream oriented
Lanese, Martins, Ravara, Vasconcelos:
Relies on explicit streams; primitives for inserting/retrieving data are
used both for inter-session communication and for communication with
the environment.

CSCC: Message passing oriented
Caires, Vieira:
Three distinct primitives are used for inter-process and inter-session
communication and for communicating with the environment.

R. De Nicola (DSIUF) Core Calculi for Service-Oriented Computing SENSORIA 2007 18 / 70

Outline

1 Core Calculi and SENSORIA

2 The calculi of the first 18 months

3 SOCK: a calculus for Service Oriented Computing

4 COWS: a Calculus for Orchestration of Web Services

5 SCC: a Service Centered Calculi

R. De Nicola (DSIUF) Core Calculi for Service-Oriented Computing SENSORIA 2007 19 / 70

A three layered calculus

SOCK is structured along three layers corresponding to different
phases of services development and deployment:

Service behaviour calculus
Service engine calculus
Service behaviour calculus

The core component is the behavioural calculus; its operators can be
grouped as follows:

Communication primitives inspired by WSDL operations:
One-Way(Input), Request-Response (Input/Output) Notification
(Output), Solicit-Response (Output/Input).
Computational primitives: Assignment.
Workflow operators: Sequentialization, Parallel Composition,
Choice (if then else or input-guarded), Iteration, Compensation
and fault handling.

R. De Nicola (DSIUF) Core Calculi for Service-Oriented Computing SENSORIA 2007 20 / 70

SOCK service behaviour calculus

ε ::= s | o(~x) | or (~x , ~y , P) inputs
ε ::= s̄ | o@k(~x) | or@k(~x , ~y) outputs

P, Q, . . . ::= processes
0 null process

| ε output
| x := e assignment
| χ?P : Q if then else
| P; P sequence
| P|P pararallel
|

∑+
i∈W εi ; Pi input-guarded non-det. choice

| χ
 P iteration
| install(u, P) install handler
| {P}q scope (shortcut for {P : H0}q)
| throw(f) throw
| comp(q) compensate

Notification and Solicit-Response need the location (given by the
variable k) of the receiver to perform the sending of the message

R. De Nicola (DSIUF) Core Calculi for Service-Oriented Computing SENSORIA 2007 21 / 70

SOCK service behaviour calculus: the semantics

Action labels are composed by an action name and two
parameters, the former parameter expresses a reading condition
on the state, the latter parameter expresses a state update. Both
parameters are tested within the service engine layer.
One-Way message exchange rules:

(ONE-WAYOUT)

o@z(~x)
o(~v)@l(l/z,~v/~x :_)−−−−−−−−−−−−→ 0

(ONE-WAYIN)

o(~x)
o(~v)(∅:~v/~x)−−−−−−−−→ 0

Assignment rule:

(ASSIGN)
Dom(σ) = Var(e) JeσK = v

x := e
τ(σ:v/x)−−−−−−→ 0

R. De Nicola (DSIUF) Core Calculi for Service-Oriented Computing SENSORIA 2007 22 / 70

SOCK service engine calculus

A service engine executes service behaviour sessions.
It is composed of:

A declaration that specifies how the service has to be deployed
within the engine
An execution environment that is the set of running sessions with
their (possibly shared) state.

A declaration allows for the specification of:
Service behaviour
State: It may be persistent (shared among the running sessions) or
not persistent (each session has its own state that expires when it
terminates).
Correlation set: each session is characterized by the values of
some variables of the behaviour specified within the declaration as
correlated variables
Execution modality: A session can be sequential (it starts only if
there is no other active sessions) or concurrent (it is spawned in
parallel within the execution environment).

R. De Nicola (DSIUF) Core Calculi for Service-Oriented Computing SENSORIA 2007 23 / 70

SOCK service engine calculus

A service engine executes service behaviour sessions.
It is composed of:

A declaration that specifies how the service has to be deployed
within the engine
An execution environment that is the set of running sessions with
their (possibly shared) state.

A declaration allows for the specification of:
Service behaviour
State: It may be persistent (shared among the running sessions) or
not persistent (each session has its own state that expires when it
terminates).
Correlation set: each session is characterized by the values of
some variables of the behaviour specified within the declaration as
correlated variables
Execution modality: A session can be sequential (it starts only if
there is no other active sessions) or concurrent (it is spawned in
parallel within the execution environment).

R. De Nicola (DSIUF) Core Calculi for Service-Oriented Computing SENSORIA 2007 23 / 70

SOCK service engine calculus: the syntax

A service engine is defined in the following way:

Y ::= D[H]

where D is the declaration and H is the execution environment

Declaration syntax:
D ::=!W | W ∗ Execution modality (concurrent/sequential)
W ::= c . U c is the correlation set
U ::= P• | P× P is a service behaviour and subscript indicates

whether the state is persistent or not

Execution environment syntax:
H ::= c . I Execution environment
I ::= (P,S) | I | I Session consisting of parallel

couples of behaviours and states

R. De Nicola (DSIUF) Core Calculi for Service-Oriented Computing SENSORIA 2007 24 / 70

SOCK service engine calculus: the syntax

A service engine is defined in the following way:

Y ::= D[H]

where D is the declaration and H is the execution environment

Declaration syntax:
D ::=!W | W ∗ Execution modality (concurrent/sequential)
W ::= c . U c is the correlation set
U ::= P• | P× P is a service behaviour and subscript indicates

whether the state is persistent or not

Execution environment syntax:
H ::= c . I Execution environment
I ::= (P,S) | I | I Session consisting of parallel

couples of behaviours and states

R. De Nicola (DSIUF) Core Calculi for Service-Oriented Computing SENSORIA 2007 24 / 70

SOCK service engine calculus: the syntax

A service engine is defined in the following way:

Y ::= D[H]

where D is the declaration and H is the execution environment

Declaration syntax:
D ::=!W | W ∗ Execution modality (concurrent/sequential)
W ::= c . U c is the correlation set
U ::= P• | P× P is a service behaviour and subscript indicates

whether the state is persistent or not

Execution environment syntax:
H ::= c . I Execution environment
I ::= (P,S) | I | I Session consisting of parallel

couples of behaviours and states

R. De Nicola (DSIUF) Core Calculi for Service-Oriented Computing SENSORIA 2007 24 / 70

SOCK service engine calculus:
persistent or not persistent state

A state is a function storing the value of the variables
The state is supplied by the engine within the execution
environment
A ‘persistent’ state is shared among the running sessions
Semantics for the state: ι is the action name and ~v/~x and S(~x)
are two parameters exploited within the correlation layer.

(ENGINE-STATE 1)

P
ι(σ:~v/~x)−−−−−−→ P ′,S ` σ, ι 6= τ

(P,S)
ι(~v/~x :S(~x))−−−−−−−−→ (P ′,S ⊕[~v/~x])

R. De Nicola (DSIUF) Core Calculi for Service-Oriented Computing SENSORIA 2007 25 / 70

SOCK service engine calculus: correlation set

Semantics rules, where ~v/~x `c ~w means that variable ~x is
correlated under cset c because its actual value ~w corresponds to
the incoming value ~v and ~x belongs to c, or ~x does not belong to
c.

(CORRELATED)

I
ι(~v/~x :~w)−−−−−−→ I′, ~v/~x `c ~w

I
ι,c−−→ I′

Example:

R. De Nicola (DSIUF) Core Calculi for Service-Oriented Computing SENSORIA 2007 26 / 70

SOCK service engine calculus: correlation set

Semantics rules, where ~v/~x `c ~w means that variable ~x is
correlated under cset c because its actual value ~w corresponds to
the incoming value ~v and ~x belongs to c, or ~x does not belong to
c.

(CORRELATED)

I
ι(~v/~x :~w)−−−−−−→ I′, ~v/~x `c ~w

I
ι,c−−→ I′

Example:

R. De Nicola (DSIUF) Core Calculi for Service-Oriented Computing SENSORIA 2007 26 / 70

SOCK service engine calculus: correlation set

Semantics rules, where ~v/~x `c ~w means that variable ~x is
correlated under cset c because its actual value ~w corresponds to
the incoming value ~v and ~x belongs to c, or ~x does not belong to
c.

(CORRELATED)

I
ι(~v/~x :~w)−−−−−−→ I′, ~v/~x `c ~w

I
ι,c−−→ I′

Example:

{x} . (a(< x , y >); P,S[4/x])

{x}. defines x as the correlated variable

S[4/x] is the actual state of the service where x is initialized with the
value 4. Since x is a correlated variable, a message can be received on
a only if the first received value is equal to 4

R. De Nicola (DSIUF) Core Calculi for Service-Oriented Computing SENSORIA 2007 26 / 70

SOCK service engine calculus: execution modality

The execution modality expresses how the different sessions must
be executed
Sessions can be executed

sequentially: a session can start only if there are no other active
sessions within the execution environment
concurrently: each session can start independently from the others.
It will be spawned in parallel within the execution environment

Concurrent not persistent rule.

(SPAWN)

(P,S⊥)
ι,c−−→ (P ′,S), 6 ∃Si ∈ extr(I).(P,Si)

ι,c−−→ (P ′,S ′i), ι ∈ In

c . P[I] ι−→ c . P[I|(P ′,S)]

A new session is started only if not session exists whose state
satisfies correlation set c.

R. De Nicola (DSIUF) Core Calculi for Service-Oriented Computing SENSORIA 2007 27 / 70

Service system calculus: the syntax

The service system calculus permits composing located service
engines within a system

E ::= Y@l | E ‖ E

One-Way message exchange rule:

(NORMALSYNC)

Y@l ′ λ@l−−−→ Y ′@l ′ , Z@l λ′−−→ Z ′@l , comp(λ, λ′)

Y@l ′ ‖ Z@l τ−−→ Y ′@l ′ ‖ Z ′@l

where comp(λ, λ′) verifies that operation names and exchanged
values in One-Way λ and Notification λ are equal.

R. De Nicola (DSIUF) Core Calculi for Service-Oriented Computing SENSORIA 2007 28 / 70

Outline

1 Core Calculi and SENSORIA

2 The calculi of the first 18 months

3 SOCK: a calculus for Service Oriented Computing

4 COWS: a Calculus for Orchestration of Web Services

5 SCC: a Service Centered Calculi

R. De Nicola (DSIUF) Core Calculi for Service-Oriented Computing SENSORIA 2007 29 / 70

COWS: Calculus for Orchestration of Web Services

Processes (services) create instances to serve specific service
invocations.

Instances contain concurrent threads (possibly with a shared state)

Services and instances communicate through channels (endpoints).

Endpoint’s names can be communicated but received end-point can only
be used for sending.

Communication is regulated by pattern-matching that is also used to
correlate, by means of their same contents, different service interactions
logically forming sessions.

The only binder is the delimitation operator; it can generate fresh names
and regulate the range of application of substitutions generated by
communication

Termination of parallel activities can be forced by a kill, but sensitive
code can be protected.

R. De Nicola (DSIUF) Core Calculi for Service-Oriented Computing SENSORIA 2007 30 / 70

COWS−−: Syntax

s ::= (services) (notations)
u •u′!ē (invoke) e expressions

|
∑r

i=0 pi •oi?w̄i .si (receive-guarded choice) x variables
| s | s (parallel composition) v values
| [d] s (delimitation) n, p, o names
| ∗ s (replication) u, d : names|vars

w : values|vars

Services are provided and invoked through communication endpoints,
written as p •o (i.e. ‘partner name’ plus ‘operation name’)

Partner names and operation names can be exchanged when
communicating (only the ‘send capability’ is passed over).

Only one binding construct: [d] s binds d in the scope s
(free/bound names/variables and closed terms defined accordingly)

·̄ denotes tuples of objects, while empty choice will be rendered as 0.

R. De Nicola (DSIUF) Core Calculi for Service-Oriented Computing SENSORIA 2007 31 / 70

COWS−−: Structural congruence

Delimitation is used to
generate fresh names (like the restriction of the π-calculus)
regulate the range of application of substitutions generated by
communication (indeed, receive activities do not bind variables)

[d] 0 ≡ 0 [d1] [d2] s ≡ [d2] [d1] s

s1 | [d] s2 ≡ [d] (s1 | s2) if d /∈ fd(s1)

. . . plus standard laws for
∑

, | and ∗

. . . and the standard operational rule

s ≡ s1 s1
α−→ s2 s2 ≡ s′

s α−→ s′

R. De Nicola (DSIUF) Core Calculi for Service-Oriented Computing SENSORIA 2007 32 / 70

COWS−−: Structural congruence

Delimitation is used to
generate fresh names (like the restriction of the π-calculus)
regulate the range of application of substitutions generated by
communication (indeed, receive activities do not bind variables)

[d] 0 ≡ 0 [d1] [d2] s ≡ [d2] [d1] s

s1 | [d] s2 ≡ [d] (s1 | s2) if d /∈ fd(s1)

. . . plus standard laws for
∑

, | and ∗

. . . and the standard operational rule

s ≡ s1 s1
α−→ s2 s2 ≡ s′

s α−→ s′

R. De Nicola (DSIUF) Core Calculi for Service-Oriented Computing SENSORIA 2007 32 / 70

COWS−−: Invoke/receive activities & Choice

Invoke activities
Can proceed only if the expressions in the argument can be evaluated

Evaluation function [[_]]: takes closed expressions and returns values

[[ē]] = v̄

p •o!ē
(p·o)Cv̄−−−−−→ 0

Receive activities & Choice
Offers an alternative choice of endpoints

It is not a binder for names and variables (delimitation is used to delimit
their scope) ∑r

i=0 pi •oi?w̄i .si
(pi ·oi)Bw̄i−−−−−−−→ si

R. De Nicola (DSIUF) Core Calculi for Service-Oriented Computing SENSORIA 2007 33 / 70

COWS−−: Invoke/receive activities & Choice

Invoke activities
Can proceed only if the expressions in the argument can be evaluated

Evaluation function [[_]]: takes closed expressions and returns values

[[ē]] = v̄

p •o!ē
(p·o)Cv̄−−−−−→ 0

Receive activities & Choice
Offers an alternative choice of endpoints

It is not a binder for names and variables (delimitation is used to delimit
their scope) ∑r

i=0 pi •oi?w̄i .si
(pi ·oi)Bw̄i−−−−−−−→ si

R. De Nicola (DSIUF) Core Calculi for Service-Oriented Computing SENSORIA 2007 33 / 70

COWS−−: Communication

Take place when two parallel services perform matching receive and
invoke activities

If more then one matching is possible the receive that needs fewer
substitutions is selected to progress.

s1
(p·o)Bw̄−−−−−−→s′1 s2

(p·o)Cv̄−−−−−→s′2 M(w̄ , v̄)=σ ¬(s1 | s2 ↓|σ|p •o,v̄)

s1 | s2
p·o bσc w̄ v̄−−−−−−−→ s′1 | s′2

Matching function

M(x , v) = {x 7→ v} M(v , v) = ∅
M(w1, v1) = σ1 M(w̄2, v̄2) = σ2

M((w1, w̄2), (v1, v̄2)) = σ1] σ2

Predicate s ↓|σ|p •o,v̄ checks existence of potential communication conflicts
i.e. the ability of s of performing a receive activity matching v̄ over
the endpoint p •o which generates a substitution ‘smaller’ than σ

R. De Nicola (DSIUF) Core Calculi for Service-Oriented Computing SENSORIA 2007 34 / 70

COWS−−: Communication

Take place when two parallel services perform matching receive and
invoke activities

If more then one matching is possible the receive that needs fewer
substitutions is selected to progress.

s1
(p·o)Bw̄−−−−−−→s′1 s2

(p·o)Cv̄−−−−−→s′2 M(w̄ , v̄)=σ ¬(s1 | s2 ↓|σ|p •o,v̄)

s1 | s2
p·o bσc w̄ v̄−−−−−−−→ s′1 | s′2

Matching function

M(x , v) = {x 7→ v} M(v , v) = ∅
M(w1, v1) = σ1 M(w̄2, v̄2) = σ2

M((w1, w̄2), (v1, v̄2)) = σ1] σ2

Predicate s ↓|σ|p •o,v̄ checks existence of potential communication conflicts
i.e. the ability of s of performing a receive activity matching v̄ over
the endpoint p •o which generates a substitution ‘smaller’ than σ

R. De Nicola (DSIUF) Core Calculi for Service-Oriented Computing SENSORIA 2007 34 / 70

COWS−−: Parallel composition

Execution of parallel services is interleaved, when no communication
is involved:

s1
α−→ s′1 α 6= (p · o bσc w̄ v̄)

s1 | s2
α−→ s′1 | s2

In case of communications, the receive activity with greater priority
progresses:

s1
p·o bσc w̄ v̄−−−−−−−→ s′1 ¬(s2 ↓

|M(w̄ ,v̄)|
p •o,v̄)

s1 | s2
p·o bσc w̄ v̄−−−−−−−→ s′1 | s2

R. De Nicola (DSIUF) Core Calculi for Service-Oriented Computing SENSORIA 2007 35 / 70

COWS−−: Parallel composition

Execution of parallel services is interleaved, when no communication
is involved:

s1
α−→ s′1 α 6= (p · o bσc w̄ v̄)

s1 | s2
α−→ s′1 | s2

In case of communications, the receive activity with greater priority
progresses:

s1
p·o bσc w̄ v̄−−−−−−−→ s′1 ¬(s2 ↓

|M(w̄ ,v̄)|
p •o,v̄)

s1 | s2
p·o bσc w̄ v̄−−−−−−−→ s′1 | s2

R. De Nicola (DSIUF) Core Calculi for Service-Oriented Computing SENSORIA 2007 35 / 70

COWS−−: Delimitation

[d] s behaves like s, except when the transition label α contains d

When the whole scope of a variable x is determined, and a
communication involving x within that scope is taking place the
delimitation is ignored and the substitution for x is performed

s α−→ s′ d /∈d(α)

[d] s α−→ [d] s′
s

p·o bσ]{x 7→v ′}c w̄ v̄−−−−−−−−−−−−−→ s′

[x] s
p·o bσc w̄ v̄−−−−−−−→ s′ ·{x 7→ v ′}

Substitutions (ranged over by σ):

functions from variables to values (written as collections of pairs x 7→ v)

σ1] σ2 denotes the union of σ1 and σ2 when they have disjoint domains

d(α) avoids capturing endpoints of actual communications, it denotes the set
of names and variables occurring in α

except for α = p · o bσc w̄ v̄ for which we let d(p · o bσc w̄ v̄) = d(σ)

R. De Nicola (DSIUF) Core Calculi for Service-Oriented Computing SENSORIA 2007 36 / 70

COWS−−: Delimitation

[d] s behaves like s, except when the transition label α contains d

When the whole scope of a variable x is determined, and a
communication involving x within that scope is taking place the
delimitation is ignored and the substitution for x is performed

s α−→ s′ d /∈d(α)

[d] s α−→ [d] s′
s

p·o bσ]{x 7→v ′}c w̄ v̄−−−−−−−−−−−−−→ s′

[x] s
p·o bσc w̄ v̄−−−−−−−→ s′ ·{x 7→ v ′}

Substitutions (ranged over by σ):

functions from variables to values (written as collections of pairs x 7→ v)

σ1] σ2 denotes the union of σ1 and σ2 when they have disjoint domains

d(α) avoids capturing endpoints of actual communications, it denotes the set
of names and variables occurring in α

except for α = p · o bσc w̄ v̄ for which we let d(p · o bσc w̄ v̄) = d(σ)

R. De Nicola (DSIUF) Core Calculi for Service-Oriented Computing SENSORIA 2007 36 / 70

COWS−−: Delimitation

[d] s behaves like s, except when the transition label α contains d

When the whole scope of a variable x is determined, and a
communication involving x within that scope is taking place the
delimitation is ignored and the substitution for x is performed

s α−→ s′ d /∈d(α)

[d] s α−→ [d] s′
s

p·o bσ]{x 7→v ′}c w̄ v̄−−−−−−−−−−−−−→ s′

[x] s
p·o bσc w̄ v̄−−−−−−−→ s′ ·{x 7→ v ′}

Substitutions (ranged over by σ):

functions from variables to values (written as collections of pairs x 7→ v)

σ1] σ2 denotes the union of σ1 and σ2 when they have disjoint domains

d(α) avoids capturing endpoints of actual communications, it denotes the set
of names and variables occurring in α

except for α = p · o bσc w̄ v̄ for which we let d(p · o bσc w̄ v̄) = d(σ)

R. De Nicola (DSIUF) Core Calculi for Service-Oriented Computing SENSORIA 2007 36 / 70

COWS: Syntax

s ::= (services) (notations)
kill(k) (kill) k (killer) labels

| u •u′!ē (invoke) e expressions
|

∑r
i=0 pi •oi?w̄i .si (receive-guarded choice) x variables

| s | s (parallel composition) v values
| {|s|} (protection) n, p, o names
| [d] s (delimitation) u: names|vars
| ∗ s (replication) w : values|vars

d : labels|names|vars

Only one binding construct: [d] s binds d in the scope s
(free/bound names/variables/labels and closed terms defined accordingly)

R. De Nicola (DSIUF) Core Calculi for Service-Oriented Computing SENSORIA 2007 37 / 70

COWS: Delimitation & Protection

Delimitation is used to:
generate fresh names

regulate the range of application of substitutions

delimit the field of action of kill activities

s1 | [d] s2 ≡ [d] (s1 | s2) if d /∈ fd(s1)∪fk(s2)

Differently from names/variables, the scope of killer labels cannot be
extended

Protection
Protect sensitive code from the effect of a forced termination

{|0|} ≡ 0 {| {|s|} |} ≡ {|s|} {|[d] s|} ≡ [d] {|s|}

s α−→ s′

{|s|} α−→ {|s′|}

R. De Nicola (DSIUF) Core Calculi for Service-Oriented Computing SENSORIA 2007 38 / 70

COWS: Delimitation & Protection

Delimitation is used to:
generate fresh names

regulate the range of application of substitutions

delimit the field of action of kill activities

s1 | [d] s2 ≡ [d] (s1 | s2) if d /∈ fd(s1)∪fk(s2)

Differently from names/variables, the scope of killer labels cannot be
extended

Protection
Protect sensitive code from the effect of a forced termination

{|0|} ≡ 0 {| {|s|} |} ≡ {|s|} {|[d] s|} ≡ [d] {|s|}

s α−→ s′

{|s|} α−→ {|s′|}

R. De Nicola (DSIUF) Core Calculi for Service-Oriented Computing SENSORIA 2007 38 / 70

COWS: Kill activity

Activity kill(k) forces termination of all unprotected parallel activities inside an
enclosing [k] , that stops the killing effect

kill(k)
†k−−→ 0

s1
†k−−→ s′1

s1 | s2
†k−−→ s′1 | halt(s2)

s †k−−→ s′

[k] s †−→ [k] s′

Kill activities are executed eagerly

s α−→ s′ d /∈d(α) s ↓d⇒ α=†, †k

[d] s α−→ [d] s′

Function halt(s), defined by s.i., strips off the protected activities and returns
the service obtained by only retaining the protected activities inside s

Predicate s ↓d checks the ability of s of immediately performing kill(d)

R. De Nicola (DSIUF) Core Calculi for Service-Oriented Computing SENSORIA 2007 39 / 70

COWS: Kill activity

Activity kill(k) forces termination of all unprotected parallel activities inside an
enclosing [k] , that stops the killing effect

kill(k)
†k−−→ 0

s1
†k−−→ s′1

s1 | s2
†k−−→ s′1 | halt(s2)

s †k−−→ s′

[k] s †−→ [k] s′

Kill activities are executed eagerly

s α−→ s′ d /∈d(α) s ↓d⇒ α=†, †k

[d] s α−→ [d] s′

Function halt(s), defined by s.i., strips off the protected activities and returns
the service obtained by only retaining the protected activities inside s

Predicate s ↓d checks the ability of s of immediately performing kill(d)

R. De Nicola (DSIUF) Core Calculi for Service-Oriented Computing SENSORIA 2007 39 / 70

Outline

1 Core Calculi and SENSORIA

2 The calculi of the first 18 months

3 SOCK: a calculus for Service Oriented Computing

4 COWS: a Calculus for Orchestration of Web Services

5 SCC: a Service Centered Calculi

R. De Nicola (DSIUF) Core Calculi for Service-Oriented Computing SENSORIA 2007 40 / 70

General Principles: service definitions and invocations

Service definitions
services expose their protocols (i.e. behaviours)
services can be deployed dynamically, shut down and updated
services can handle multiple requests separately

Service invocations
service calls expose their protocols
multiple invocations are possible (via data streaming á la Orc)

R. De Nicola (DSIUF) Core Calculi for Service-Oriented Computing SENSORIA 2007 41 / 70

Sessions

sessions are two-party (service-side + client-side)
service invocations spawn fresh session parties
(locally to each partner)
communication within sessions is bi-directional
sessions can be nested
values can be returned outside sessions
sessions can be closed by the involved parties

R. De Nicola (DSIUF) Core Calculi for Service-Oriented Computing SENSORIA 2007 42 / 70

Service Activation, Graphically

P

Q v

u

R. De Nicola (DSIUF) Core Calculi for Service-Oriented Computing SENSORIA 2007 43 / 70

Bidirectional Session, Graphically

Q

P

v

Pu Qu

R. De Nicola (DSIUF) Core Calculi for Service-Oriented Computing SENSORIA 2007 44 / 70

Intra-Session Communication, Graphically

v R

w

s s

u

T

R. De Nicola (DSIUF) Core Calculi for Service-Oriented Computing SENSORIA 2007 45 / 70

Intra-Session Communication, Graphically

v R

s s

u

T w

R. De Nicola (DSIUF) Core Calculi for Service-Oriented Computing SENSORIA 2007 45 / 70

Intra-Session Communication, Graphically

v R

s s

T wu

R. De Nicola (DSIUF) Core Calculi for Service-Oriented Computing SENSORIA 2007 45 / 70

Nested Services and Multi-Sessions, Graphically

v

R. De Nicola (DSIUF) Core Calculi for Service-Oriented Computing SENSORIA 2007 46 / 70

Nested Services and Multi-Sessions, Graphically

R. De Nicola (DSIUF) Core Calculi for Service-Oriented Computing SENSORIA 2007 46 / 70

Returning Values, Graphically

s s

T
return u

R. De Nicola (DSIUF) Core Calculi for Service-Oriented Computing SENSORIA 2007 47 / 70

Returning Values, Graphically

s s

T

u

R. De Nicola (DSIUF) Core Calculi for Service-Oriented Computing SENSORIA 2007 47 / 70

Returning Values, Graphically

s s

T u

R. De Nicola (DSIUF) Core Calculi for Service-Oriented Computing SENSORIA 2007 47 / 70

PSCC Syntax (Close-free fragment)

P, Q ::= 0 Nil
| γP Concretion (output)
|
∑

i(F̃i)Pi Abstraction (input)
| !P Replication
| s.P Service Definition
| s.P Service Invocation
|P > Q Pipeline
| r B P Session
|P|Q Parallel Composition
| (νn)P Name Restriction

γ ::= 〈Ṽ 〉|〈Ṽ 〉↑

V ::= . . . Values
F ::= . . . Patterns

R. De Nicola (DSIUF) Core Calculi for Service-Oriented Computing SENSORIA 2007 48 / 70

PSCC: Abstractions and Concretions

Concretion:
〈V 〉P produces a value V and then behaves like P:

〈V 〉P 〈V 〉−−−→ P

Abstraction:∑
i(Fi)Pi waits for a value matching one of F1,. . . ,Fn and then

activates the corresponding process:

match(Fj , V) = σ
k∑

i=0

(Fi)Pi
(V)−−−→ Pjσ

R. De Nicola (DSIUF) Core Calculi for Service-Oriented Computing SENSORIA 2007 49 / 70

PSCC: Service Definition and Service Invocation

Service Definition and Service Invocation
s.P identifies a definition for service s with body P.
s.Q invokes service s using protocol Q.
A service invocation causes the activation of a new session; a
fresh name r (r 6∈ fn(P)) identifies the two sides of the session.

s.P
s(r)−−−→ r B P s.Q

s(r)−−−→ r B Q

P
s(r)−−−→ P ′ Q

s(r)−−−→ Q′

P|Q τ−−→ (νr)(P ′|Q′)

R. De Nicola (DSIUF) Core Calculi for Service-Oriented Computing SENSORIA 2007 50 / 70

PSCC: Session

Session:
r B P is an abstract channel for Client and Server interaction:

P
〈V 〉−−−→ P ′

r B P
r :〈V 〉−−−−→ r B P ′

P
(V)−−−→ P ′

r B P
r :(V)−−−−→ r B P ′

P
r :(V)−−−−→ P ′ Q

r :〈V 〉−−−−→ Q′

P|Q τ−−→ P ′|Q′

P λ−−→ P ′

r B P λ−−→ r B P ′
λ = τ, s(r), s(r)

R. De Nicola (DSIUF) Core Calculi for Service-Oriented Computing SENSORIA 2007 51 / 70

PSCC: Inter-session interactions

Return:
〈V 〉↑P can be used to return a value to the enclosing environment:

〈V 〉↑P ↑V−−→ P
P ↑V−−→ P ′

r B P
〈V〉−−−→ r B P ′

Pipeline:
Different activities can be composed by using pipeline P > Q. Each
value produced by P activates a new instantiation Q′ of Q:

P
〈V 〉−−−→ P ′ Q

(V)−−−→ Q′

P > Q τ−−→ (P ′ > Q)|Q′
P λ−−→ P ′ λ 6= 〈V 〉

P > Q λ−−→ P ′ > Q

R. De Nicola (DSIUF) Core Calculi for Service-Oriented Computing SENSORIA 2007 52 / 70

PSCC Syntax (with close)

P, Q ::= 0 Nil
| γP Concretion
|
∑

i(F̃i)Pi Abstraction
| !P Replication
| close Close
| sk .P Service Definition
| sk .Q Service Invocation
|P > Q Pipeline
| r Bk P Session
|�P Terminated Session
|P|Q Parallel Composition
| (νn)P Name Restriction

R. De Nicola (DSIUF) Core Calculi for Service-Oriented Computing SENSORIA 2007 53 / 70

PSCC: Closing sessions

The syntax of service definition and service invocation become
sk .Q and sk .P, where k is used for identifying the termination
handler service to be associated to the other side of the
instantiated session.

sk1 .P
s(r)k1

k2−−−−→ r Bk2 P sk2Q
s(r)k1

k2−−−−→ r Bk1 P

P
s(r)k1

k2−−−−→ P ′ Q
s(r)k1

k2−−−−→ Q′

P|Q τ−−→ (νr)(P ′|Q′)

R. De Nicola (DSIUF) Core Calculi for Service-Oriented Computing SENSORIA 2007 54 / 70

PSCC: Closing sessions

We associate to each session a service name k which identifies a
termination handler service (r Bk P)
As soon as P execute close , session r enters a closing state (�Q)
and the corresponding termination handler is invoked

close close−−−−→ 0
P close−−−−→ P ′

r Bk P τ−−→ �P ′|k .0

A closing session can only trigger further closing of nested
subsessions.

r Bk P
†(k)−−−−→ P

P
†(k)−−−−→ P ′

�P τ−−→ �P ′|k .0

R. De Nicola (DSIUF) Core Calculi for Service-Oriented Computing SENSORIA 2007 55 / 70

SSCC Syntax

P, Q ::= 0 Nil
|P|Q Parallel Composition
| (νa)P Name Restriction
|X Process Variable
| rec X .P Recursive Process Definition
|a ⇒ P Service Definition
|a ⇐ P Service Invocation
| v .P Value Sending
| (x)P Value Reception
| stream P as f in Q Stream
| feed v .P Feed the Process’ Stream
| f (x).P Read froom a Stream

u, v ::= a Service Name
|unit Unit Value

R. De Nicola (DSIUF) Core Calculi for Service-Oriented Computing SENSORIA 2007 56 / 70

SSCC: Runtime syntax

We use an extended syntax to give semantics to SSCC.

P, Q ::= . . . Static Operators
| r B P Server Session
| r C P Client Session
| (νr)P Session Restriction
| stream P as f = ~v in Q Stream with Values

Sessions are not available as programming construct.

R. De Nicola (DSIUF) Core Calculi for Service-Oriented Computing SENSORIA 2007 57 / 70

SSCC: Service Definition and Service Invocation

Service Definition and Service Invocation
Service definitions are rendered as a ⇒ P where a is the service
name and P is the process defining the service behaviour.
Service invocation is written as a ⇐ P where service a is invoked
with client protocol P.
Service invocation and service definition are symmetric.
A service invocation creates a new session. A fresh name r
identifies the two sides of the session. Client and server protocols
are instantiated each at the proper side of the session.

r 6∈ fn(P)

a ⇒ P
a⇒(r)−−−−−→ r B P

r 6∈ fn(P)

a ⇐ P
a⇐(r)−−−−−→ r C P

P
a⇒(r)−−−−−→ P ′ Q

a⇐(r)−−−−−→ Q′

P|Q τ−−→ (νr)(P ′|Q′)

R. De Nicola (DSIUF) Core Calculi for Service-Oriented Computing SENSORIA 2007 58 / 70

SSCC: In-Session Communication

Session:
A session (r B P) is an abstraction for a bidirectional channel used by
Client and Server protocols to interact each other:

v .P
←
v−−→ P (x)P

→
v−−→ P{v/x}

P
↔
v−−→ P ′ ,

↔
v∈ {

←
v ,
→
v } , ./∈ {B,C}

r ./ P r./
↔
v−−−−→ r ./ P ′

P λ−−→ P ′ , ./∈ {B,C} , λ /∈ {
→
v ,
←
v }

r ./ P λ−−→ r ./ P ′

P r./
←
v−−−−→ P ′ Q r./

→
v−−−−→ Q′ , ./∈ {B,C}

P|Q rτ−−→ P ′|Q′

R. De Nicola (DSIUF) Core Calculi for Service-Oriented Computing SENSORIA 2007 59 / 70

SSCC: Extra-Session Communication

The idea
Processes need to communicate outside sessions (e.g., data from
a google client are used by an hotel booking client).
Models communication between processes on the same
“machine” (but we do not want to represent machines explicitly).
Should be orthogonal w.r.t. the session structure.
Tradeoff between expressive power and structured communication
(for typability, . . .)
We propose stream P as f in Q, modelling a stream named f for
communication from process P to process Q.

R. De Nicola (DSIUF) Core Calculi for Service-Oriented Computing SENSORIA 2007 60 / 70

SSCC: Extra-Session Communication

stream P as f in Q
P and Q are concurrently executing.
P can feed data to the nearest enclosing stream using feed v .P ′

(feeds an unknown context).
Q can read from stream named f with f (x).Q′ (Q can read from
multiple sources).
Feed is non blocking (f acts as a buffer), read is blocking.

feed v .P
⇑v−−→ P f (x).P

f⇓v−−−→ P{v/x}
P

⇑v−−→ P ′

stream P as f = ~w in Q τ−−→ stream P ′ as f = v : : ~w in Q
Q

f⇓v−−−→ Q′

stream P as f = ~w : : v in Q τ−−→ stream P as f = ~w in Q′

R. De Nicola (DSIUF) Core Calculi for Service-Oriented Computing SENSORIA 2007 61 / 70

CSCC: Key features

Context
A site, or a conversation context, shared by various partners.

Service instantiation
Service instantiation creates a new (split) conversation context.

Provider and client code lie in their respective contexts.

Services instances as delegated processes
Tasks may be delegated either locally or remotely (loose coupling).

Uniform communication mechanism by message passing
in the same conversation context (e.g., in a orchestration);
between nested contexts (e.g., between system and subsystem);
between two endpoint roles (e.g, in a session).

R. De Nicola (DSIUF) Core Calculi for Service-Oriented Computing SENSORIA 2007 62 / 70

CSCC: Endpoint Roles and Communication Directions

ρ ::= I Responder
| J Initiator

}
Roles

service instance

client context provider context

context

process

initiator endpoint

responder endpoint

α ::= � n Here
| � n Up
| � n There

 Directions

inside other side upside

R. De Nicola (DSIUF) Core Calculi for Service-Oriented Computing SENSORIA 2007 63 / 70

CSCC: Syntax

P, Q ::=
stop Inaction

| P | Q Parallel
| (new n)P Restriction
| out α(v1, . . . , vn).P Out
| in α(x1, . . . , xn).P In (with choice ⊕)
| !P Replication

π-Calculus

| nρ [P] Context
| here(x).P Awareness
| instance nρs ⇐ P Instantiation
| def s ⇒ P Definition

 Services

| try P catch Q Try-Catch
| throw.P Throw

}
Exceptions

R. De Nicola (DSIUF) Core Calculi for Service-Oriented Computing SENSORIA 2007 64 / 70

CSCC: Semantics (1/4)

π-calculus

in α(x).P
(n)α(v)−→ P{x�v} (n ⊆ v) out α(v).P

α(v)−→ P

P λ−→ Q λ 6= throw

P | R λ−→ Q | R

P λ−→ Q n 6∈ λ

(new n)P λ−→ (new n)Q

P λ−→ Q n ∈ out(λ)

(new n)P
(n)λ−→ Q

P
(n)λ−→ P ′ Q

(n)λ−→ Q′

P | Q τ−→ (new n)(P ′ | Q′)

P | !P λ−→ Q

!P λ−→ Q

R. De Nicola (DSIUF) Core Calculi for Service-Oriented Computing SENSORIA 2007 65 / 70

CSCC: Semantics (2/4)

Message directions

P
↑λ−→ Q

nρ [P]
↓λ−→ nρ [Q]

P �λ−→ Q

nρ [P]
nρ.�λ−→ nρ [Q]

P �λ−→ Q

nρ [P]
nρ.�λ−→ nρ [Q]

Service instantiation

def s ⇒ P
(c)def s−→ c I [P] instance nρs ⇐ P

(c)nρ.def s−→ c J [P]

P
(c)def s−→ Q

nρ [P]
(c)nρ.def s−→ nρ [Q]

R. De Nicola (DSIUF) Core Calculi for Service-Oriented Computing SENSORIA 2007 66 / 70

CSCC: Semantics (3/4)

Context awareness

here(x).P
nρ.here−→ P{x�n} P

nρ.here−→ Q

nρ [P]
τ−→ nρ [Q]

P
(o)λ−→ P ′ Q

(o)nρλ−→ Q′

P | Q
nρ.here−→ (new o)(P ′ | Q′)

Context

P τ−→ Q

nρ [P]
τ−→ nρ [Q]

P
mρ.λ−→ Q λ 6= here

nρ [P]
mρ.λ−→ nρ [Q]

R. De Nicola (DSIUF) Core Calculi for Service-Oriented Computing SENSORIA 2007 67 / 70

CSCC: Semantics (4/4)

Exception handling

throw.P throw−→ P
P throw−→ R

try P catch Q τ−→ Q | R

P throw−→ R

P | Q throw−→ R

P λ−→ Q λ 6= throw

try P catch R λ−→ try Q catch R

P throw−→ R

nρ [P]
throw−→ R

R. De Nicola (DSIUF) Core Calculi for Service-Oriented Computing SENSORIA 2007 68 / 70

CSCC: Bisimulation

Definition
A (strong) bisimulation is a symmetric binary relation R on processes
such that, for all processes P and Q, if PRQ, we have:

If P λ−→ P ′ and bn(λ)#Q then there is a process Q′ such that
Q λ−→ Q′ and P ′RQ′.

We denote by ∼ (strong bisimilarity) the largest strong bisimulation.

Proposition
Strong bisimilarity is a congruence for all operators.

Equations
n I [P] | n I [Q] ∼ n I [P | Q].
n J [out ↑ m(v)] ∼ out ↓ m(v).

R. De Nicola (DSIUF) Core Calculi for Service-Oriented Computing SENSORIA 2007 69 / 70

Thank you for your attention!

Questions?

R. De Nicola (DSIUF) Core Calculi for Service-Oriented Computing SENSORIA 2007 70 / 70

	Core Calculi and SENSORIA
	The calculi of the first 18 months
	SOCK
	COWS
	SCC
	SC
	Lambda-req

	SOCK: a calculus for Service Oriented Computing
	Service behaviour calculus
	Service engine calculus
	SOCK services system calculus

	COWS: a Calculus for Orchestration of Web Services
	SCC: a Service Centered Calculi
	SCC: Goals & Features
	P-SCC
	S-SCC
	C-SCC

	The end

