
$$$: $ervices, $essions and $treams

Roberto Bruni

Dipartimento di Informatica
Università di Pisa

SENSORIA
Theme 1 Meeting

Florence, Italy, January 17–19, 2007

Roberto Bruni (Pisa) $$$: $ervices, $essions and $treams THEME 1 (FLorence) 1 / 58

Outline

1 Introduction

2 SCC Overview

3 Termination handlers

4 Services, Sessions ... and STREAMS

5 The Evidence

Roberto Bruni (Pisa) $$$: $ervices, $essions and $treams THEME 1 (FLorence) 2 / 58

Outline

1 Introduction

2 SCC Overview

3 Termination handlers

4 Services, Sessions ... and STREAMS

5 The Evidence

Roberto Bruni (Pisa) $$$: $ervices, $essions and $treams THEME 1 (FLorence) 3 / 58

A General Theory of Services

The strategy of Sensoria

Integration of foundational theories, techniques, methods and tools in a
pragmatic software engineering approach.

The role of process calculi

A crucial role in the project will be played by formalisms for service
description that can lay the mathematical basis for analysing and
experimenting with components interactions, and for combining services.

Core calculi (WP 2)

Several calculi have emerged in months 0-12, each based on a small set of
primitives that might serve as a basis for formalizing and programming
service oriented applications.
Months 13-30 will be used to assess and refine them.

Roberto Bruni (Pisa) $$$: $ervices, $essions and $treams THEME 1 (FLorence) 4 / 58

A General Theory of Services

The strategy of Sensoria

Integration of foundational theories, techniques, methods and tools in a
pragmatic software engineering approach.

The role of process calculi

A crucial role in the project will be played by formalisms for service
description that can lay the mathematical basis for analysing and
experimenting with components interactions, and for combining services.

Core calculi (WP 2)

Several calculi have emerged in months 0-12, each based on a small set of
primitives that might serve as a basis for formalizing and programming
service oriented applications.
Months 13-30 will be used to assess and refine them.

Roberto Bruni (Pisa) $$$: $ervices, $essions and $treams THEME 1 (FLorence) 4 / 58

A General Theory of Services

The strategy of Sensoria

Integration of foundational theories, techniques, methods and tools in a
pragmatic software engineering approach.

The role of process calculi

A crucial role in the project will be played by formalisms for service
description that can lay the mathematical basis for analysing and
experimenting with components interactions, and for combining services.

Core calculi (WP 2)

Several calculi have emerged in months 0-12, each based on a small set of
primitives that might serve as a basis for formalizing and programming
service oriented applications.
Months 13-30 will be used to assess and refine them.

Roberto Bruni (Pisa) $$$: $ervices, $essions and $treams THEME 1 (FLorence) 4 / 58

This talk

SCC: Service Centered Calculus

A guided tour of SCC
Prototypes and work in progress
Pragmatic evidence that SCC reconcile theory and practice

To keep in mind

We are dealing with conceptual abstractions
The syntax does not necessarily reflect implementation details

Example 1

All service instances (serving different requests) can be handled by one
service port

Example 2

A session is a logical entity that can be implemented by an additional sid

parameter carried by all related messaging

Roberto Bruni (Pisa) $$$: $ervices, $essions and $treams THEME 1 (FLorence) 5 / 58

This talk

SCC: Service Centered Calculus

A guided tour of SCC
Prototypes and work in progress
Pragmatic evidence that SCC reconcile theory and practice

To keep in mind

We are dealing with conceptual abstractions
The syntax does not necessarily reflect implementation details

Example 1

All service instances (serving different requests) can be handled by one
service port

Example 2

A session is a logical entity that can be implemented by an additional sid

parameter carried by all related messaging

Roberto Bruni (Pisa) $$$: $ervices, $essions and $treams THEME 1 (FLorence) 5 / 58

This talk

SCC: Service Centered Calculus

A guided tour of SCC
Prototypes and work in progress
Pragmatic evidence that SCC reconcile theory and practice

To keep in mind

We are dealing with conceptual abstractions
The syntax does not necessarily reflect implementation details

Example 1

All service instances (serving different requests) can be handled by one
service port

Example 2

A session is a logical entity that can be implemented by an additional sid

parameter carried by all related messaging

Roberto Bruni (Pisa) $$$: $ervices, $essions and $treams THEME 1 (FLorence) 5 / 58

Outline

1 Introduction

2 SCC Overview

3 Termination handlers

4 Services, Sessions ... and STREAMS

5 The Evidence

Roberto Bruni (Pisa) $$$: $ervices, $essions and $treams THEME 1 (FLorence) 6 / 58

Service Centered Calculus: General Principles

Service definitions

services can be deployed dynamically
services expose their protocols
services can handle multiple requests separately
services can be shut down and updated

Service invocations

service calls expose their protocols
multiple invocations by data streaming

Sessions

sessions are two-party (service-side + client-side)
service invocation spawn fresh session parties (locally to each partner)
communication within sessions is bi-directional
sessions can be nested
values can be returned outside sessions (one level up)

Roberto Bruni (Pisa) $$$: $ervices, $essions and $treams THEME 1 (FLorence) 7 / 58

Service Centered Calculus: General Principles

Service definitions

services can be deployed dynamically
services expose their protocols
services can handle multiple requests separately
services can be shut down and updated

Service invocations

service calls expose their protocols
multiple invocations by data streaming

Sessions

sessions are two-party (service-side + client-side)
service invocation spawn fresh session parties (locally to each partner)
communication within sessions is bi-directional
sessions can be nested
values can be returned outside sessions (one level up)

Roberto Bruni (Pisa) $$$: $ervices, $essions and $treams THEME 1 (FLorence) 7 / 58

Service Centered Calculus: General Principles

Service definitions

services can be deployed dynamically
services expose their protocols
services can handle multiple requests separately
services can be shut down and updated

Service invocations

service calls expose their protocols
multiple invocations by data streaming

Sessions

sessions are two-party (service-side + client-side)
service invocation spawn fresh session parties (locally to each partner)
communication within sessions is bi-directional
sessions can be nested
values can be returned outside sessions (one level up)

Roberto Bruni (Pisa) $$$: $ervices, $essions and $treams THEME 1 (FLorence) 7 / 58

Service Centered Calculus: Session Closing Principles

Session termination

service definitions expose generic termination handlers (processes)
service invocations expose specific termination handlers (service
names)
the local closure of a session activates partner’s handler (if any)
local session termination: autonomous + on partner’s request
session termination cancels all locally nested processes (including
service definitions)

Sources of inspiration

We have integrated complementary aspects from

π-calculus (names handling primitives)
Orc (pipelining and pruning of activities)
webπ, cjoin, Sagas (primitives for LRT and compensations)

Roberto Bruni (Pisa) $$$: $ervices, $essions and $treams THEME 1 (FLorence) 8 / 58

Service Centered Calculus: Session Closing Principles

Session termination

service definitions expose generic termination handlers (processes)
service invocations expose specific termination handlers (service
names)
the local closure of a session activates partner’s handler (if any)
local session termination: autonomous + on partner’s request
session termination cancels all locally nested processes (including
service definitions)

Sources of inspiration

We have integrated complementary aspects from

π-calculus (names handling primitives)
Orc (pipelining and pruning of activities)
webπ, cjoin, Sagas (primitives for LRT and compensations)

Roberto Bruni (Pisa) $$$: $ervices, $essions and $treams THEME 1 (FLorence) 8 / 58

Service Definition

Service definition

s ⇒ (x)P

s is the service name

x is the formal parameter

P is the actual implementation of the service.

Examples: Successor and prime teller

succ ⇒ (x)x + 1

Received an integer communicates back its successor.

prime ⇒ (n)P

Received an integer n communicates back the n-th prime number.

Roberto Bruni (Pisa) $$$: $ervices, $essions and $treams THEME 1 (FLorence) 9 / 58

Service Definition

Service definition

s ⇒ (x)P

s is the service name

x is the formal parameter

P is the actual implementation of the service.

Examples: Successor and prime teller

succ ⇒ (x)x + 1

Received an integer communicates back its successor.

prime ⇒ (n)P

Received an integer n communicates back the n-th prime number.

Roberto Bruni (Pisa) $$$: $ervices, $essions and $treams THEME 1 (FLorence) 9 / 58

Service Invocation

Service invocation

s{(x)P} ⇐ Q

each new value v produced by the client Q will trigger a new
invocation of service s (like Orc sequencing Q > x > P)

for each invocation, a suitable instance P{v/x} of the process P ,
implements the client-side protocol

Example: A sample client

prime{(x)(y)return y} ⇐ 5

Shorthand notation

The client side makes no use of the formal parameter x : we abbreviate it as
prime{(−)(y)return y} ⇐ 5

Roberto Bruni (Pisa) $$$: $ervices, $essions and $treams THEME 1 (FLorence) 10 / 58

Service Invocation

Service invocation

s{(x)P} ⇐ Q

each new value v produced by the client Q will trigger a new
invocation of service s (like Orc sequencing Q > x > P)

for each invocation, a suitable instance P{v/x} of the process P ,
implements the client-side protocol

Example: A sample client

prime{(x)(y)return y} ⇐ 5

Shorthand notation

The client side makes no use of the formal parameter x : we abbreviate it as
prime{(−)(y)return y} ⇐ 5

Roberto Bruni (Pisa) $$$: $ervices, $essions and $treams THEME 1 (FLorence) 10 / 58

Service Invocation, Graphically

P

Q v

u

Roberto Bruni (Pisa) $$$: $ervices, $essions and $treams THEME 1 (FLorence) 11 / 58

Bidirectional Session, Graphically

Q

P

v

Pu Qu

Roberto Bruni (Pisa) $$$: $ervices, $essions and $treams THEME 1 (FLorence) 12 / 58

Service Activation

Service activation

CJ s ⇒ (x)P K |
DJ s{(y)P ′} ⇐ (Q|u.R) K

→ (νr)

(

CJ r ⊲ P{u/x} | s ⇒ (x)P K |
DJ r ⊲ P ′{u/y} | s{(y)P ′} ⇐ (Q|R) K

)

if r is fresh and u, s not bound by C,D

A service invocation causes activation of a new session:

dual fresh identifiers, r and r , name the two sides of the session
client and service protocols run each at the proper side of the session

Example: Asking for prime numbers

The invocation of service prime triggers the session

(νr)
(

... r ⊲ P{5/n} ... | ... r ⊲ (z)return z ...
)

The client waits for a value from the server (11) to be substituted for z

Roberto Bruni (Pisa) $$$: $ervices, $essions and $treams THEME 1 (FLorence) 13 / 58

Service Activation

Service activation

CJ s ⇒ (x)P K |
DJ s{(y)P ′} ⇐ (Q|u.R) K

→ (νr)

(

CJ r ⊲ P{u/x} | s ⇒ (x)P K |
DJ r ⊲ P ′{u/y} | s{(y)P ′} ⇐ (Q|R) K

)

if r is fresh and u, s not bound by C,D

A service invocation causes activation of a new session:

dual fresh identifiers, r and r , name the two sides of the session
client and service protocols run each at the proper side of the session

Example: Asking for prime numbers

The invocation of service prime triggers the session

(νr)
(

... r ⊲ P{5/n} ... | ... r ⊲ (z)return z ...
)

The client waits for a value from the server (11) to be substituted for z

Roberto Bruni (Pisa) $$$: $ervices, $essions and $treams THEME 1 (FLorence) 13 / 58

Service Activation

Service activation

CJ s ⇒ (x)P K |
DJ s{(y)P ′} ⇐ (Q|u.R) K

→ (νr)

(

CJ r ⊲ P{u/x} | s ⇒ (x)P K |
DJ r ⊲ P ′{u/y} | s{(y)P ′} ⇐ (Q|R) K

)

if r is fresh and u, s not bound by C,D

A service invocation causes activation of a new session:

dual fresh identifiers, r and r , name the two sides of the session
client and service protocols run each at the proper side of the session

Example: Asking for prime numbers

The invocation of service prime triggers the session

(νr)
(

... r ⊲ P{5/n} ... | ... r ⊲ (z)return z ...
)

The client waits for a value from the server (11) to be substituted for z

Roberto Bruni (Pisa) $$$: $ervices, $essions and $treams THEME 1 (FLorence) 13 / 58

Service Activation

Service activation

CJ s ⇒ (x)P K |
DJ s{(y)P ′} ⇐ (Q|u.R) K

→ (νr)

(

CJ r ⊲ P{u/x} | s ⇒ (x)P K |
DJ r ⊲ P ′{u/y} | s{(y)P ′} ⇐ (Q|R) K

)

if r is fresh and u, s not bound by C,D

A service invocation causes activation of a new session:

dual fresh identifiers, r and r , name the two sides of the session
client and service protocols run each at the proper side of the session

Example: Asking for prime numbers

The invocation of service prime triggers the session

(νr)
(

... r ⊲ P{5/n} ... | ... r ⊲ (z)return z ...
)

The client waits for a value from the server (11) to be substituted for z

Roberto Bruni (Pisa) $$$: $ervices, $essions and $treams THEME 1 (FLorence) 13 / 58

Intra-Session Communication, Graphically

v R

w

s s

u

T

Roberto Bruni (Pisa) $$$: $ervices, $essions and $treams THEME 1 (FLorence) 14 / 58

Intra-Session Communication, Graphically

v R

s s

u

T w

Roberto Bruni (Pisa) $$$: $ervices, $essions and $treams THEME 1 (FLorence) 14 / 58

Intra-Session Communication, Graphically

v R

s s

T wu

Roberto Bruni (Pisa) $$$: $ervices, $essions and $treams THEME 1 (FLorence) 14 / 58

Session Communication

Session communication

CJ r ⊲ (P | u.Q) K |
DJ r ⊲ (R | (z)S) K

→
CJ r ⊲ (P |Q) K |
DJ r ⊲ (R |S{u/z}) K

if u, r not bound by C,D

Within sessions, communication is bi-directional, in the sense that the
interacting protocols can exchange data in both directions.

Example: 5th prime evaluated and communicated

After the value 11 has been computed, it can be communicated:

(νr)
(

... r ⊲ 11 ... | ... r ⊲ (z)return z ...
)

(νr)
(

... r ⊲ 0 ... | ... r ⊲ return 11 ...
)

Roberto Bruni (Pisa) $$$: $ervices, $essions and $treams THEME 1 (FLorence) 15 / 58

Session Communication

Session communication

CJ r ⊲ (P | u.Q) K |
DJ r ⊲ (R | (z)S) K

→
CJ r ⊲ (P |Q) K |
DJ r ⊲ (R |S{u/z}) K

if u, r not bound by C,D

Within sessions, communication is bi-directional, in the sense that the
interacting protocols can exchange data in both directions.

Example: 5th prime evaluated and communicated

After the value 11 has been computed, it can be communicated:

(νr)
(

... r ⊲ 11 ... | ... r ⊲ (z)return z ...
)

(νr)
(

... r ⊲ 0 ... | ... r ⊲ return 11 ...
)

Roberto Bruni (Pisa) $$$: $ervices, $essions and $treams THEME 1 (FLorence) 15 / 58

Session Communication

Session communication

CJ r ⊲ (P | u.Q) K |
DJ r ⊲ (R | (z)S) K

→
CJ r ⊲ (P |Q) K |
DJ r ⊲ (R |S{u/z}) K

if u, r not bound by C,D

Within sessions, communication is bi-directional, in the sense that the
interacting protocols can exchange data in both directions.

Example: 5th prime evaluated and communicated

After the value 11 has been computed, it can be communicated:

(νr)
(

... r ⊲ 11 ... | ... r ⊲ (z)return z ...
)

(νr)
(

... r ⊲ 0 ... | ... r ⊲ return 11 ...
)

Roberto Bruni (Pisa) $$$: $ervices, $essions and $treams THEME 1 (FLorence) 15 / 58

Session Communication

Session communication

CJ r ⊲ (P | u.Q) K |
DJ r ⊲ (R | (z)S) K

→
CJ r ⊲ (P |Q) K |
DJ r ⊲ (R |S{u/z}) K

if u, r not bound by C,D

Within sessions, communication is bi-directional, in the sense that the
interacting protocols can exchange data in both directions.

Example: 5th prime evaluated and communicated

After the value 11 has been computed, it can be communicated:

(νr)
(

... r ⊲ 11 ... | ... r ⊲ (z)return z ...
)

(νr)
(

... r ⊲ 0 ... | ... r ⊲ return 11 ...
)

Roberto Bruni (Pisa) $$$: $ervices, $essions and $treams THEME 1 (FLorence) 15 / 58

Session Communication

Session communication

CJ r ⊲ (P | u.Q) K |
DJ r ⊲ (R | (z)S) K

→
CJ r ⊲ (P |Q) K |
DJ r ⊲ (R |S{u/z}) K

if u, r not bound by C,D

Within sessions, communication is bi-directional, in the sense that the
interacting protocols can exchange data in both directions.

Example: 5th prime evaluated and communicated

After the value 11 has been computed, it can be communicated:

(νr)
(

... r ⊲ 11 ... | ... r ⊲ (z)return z ...
)

(νr)
(

... r ⊲ 0 ... | ... r ⊲ return 11 ...
)

Roberto Bruni (Pisa) $$$: $ervices, $essions and $treams THEME 1 (FLorence) 15 / 58

Nested Services and Multi-Sessions, Graphically

v

Roberto Bruni (Pisa) $$$: $ervices, $essions and $treams THEME 1 (FLorence) 16 / 58

Nested Services and Multi-Sessions, Graphically

Roberto Bruni (Pisa) $$$: $ervices, $essions and $treams THEME 1 (FLorence) 16 / 58

Returning Values, Graphically

s s

T
return u

Roberto Bruni (Pisa) $$$: $ervices, $essions and $treams THEME 1 (FLorence) 17 / 58

Returning Values, Graphically

s s

T

u

Roberto Bruni (Pisa) $$$: $ervices, $essions and $treams THEME 1 (FLorence) 17 / 58

Returning Values, Graphically

s s

T u

Roberto Bruni (Pisa) $$$: $ervices, $essions and $treams THEME 1 (FLorence) 17 / 58

Session Returning Values

Session returning values

r ⊲ (P | return u.Q) → u | r ⊲ (P |Q)

Values can be returned outside the session to the enclosing environment
and used for invoking other services.

Example: Returning the 5th prime number

(νr)
(

... r ⊲ 0 ... | ... 11 | r ⊲ 0 ...
)

A taste of structural congruence

Terminated protocols are immaterial

r ⊲ 0 ≡ 0

Roberto Bruni (Pisa) $$$: $ervices, $essions and $treams THEME 1 (FLorence) 18 / 58

Session Returning Values

Session returning values

r ⊲ (P | return u.Q) → u | r ⊲ (P |Q)

Values can be returned outside the session to the enclosing environment
and used for invoking other services.

Example: Returning the 5th prime number

(νr)
(

... r ⊲ 0 ... | ... 11 | r ⊲ 0 ...
)

A taste of structural congruence

Terminated protocols are immaterial

r ⊲ 0 ≡ 0

Roberto Bruni (Pisa) $$$: $ervices, $essions and $treams THEME 1 (FLorence) 18 / 58

Session Returning Values

Session returning values

r ⊲ (P | return u.Q) → u | r ⊲ (P |Q)

Values can be returned outside the session to the enclosing environment
and used for invoking other services.

Example: Returning the 5th prime number

(νr)
(

... r ⊲ 0 ... | ... 11 | r ⊲ 0 ...
)

A taste of structural congruence

Terminated protocols are immaterial

r ⊲ 0 ≡ 0

Roberto Bruni (Pisa) $$$: $ervices, $essions and $treams THEME 1 (FLorence) 18 / 58

Request-Response

A “functional” protocol

A common pattern of service invocation is:

s{(−)(y)return y} ⇐ P

where s is invoked on every value that P produces

Shorthand notation

s ⇐ P

Example: Successor of a prime

We write
succ ⇐ (prime ⇐ 5)

instead of succ{(−)(w)return w} ⇐ (prime{(−)(y)return y} ⇐ 5)

Roberto Bruni (Pisa) $$$: $ervices, $essions and $treams THEME 1 (FLorence) 19 / 58

Request-Response

A “functional” protocol

A common pattern of service invocation is:

s{(−)(y)return y} ⇐ P

where s is invoked on every value that P produces

Shorthand notation

s ⇐ P

Example: Successor of a prime

We write
succ ⇐ (prime ⇐ 5)

instead of succ{(−)(w)return w} ⇐ (prime{(−)(y)return y} ⇐ 5)

Roberto Bruni (Pisa) $$$: $ervices, $essions and $treams THEME 1 (FLorence) 19 / 58

Request-Response

A “functional” protocol

A common pattern of service invocation is:

s{(−)(y)return y} ⇐ P

where s is invoked on every value that P produces

Shorthand notation

s ⇐ P

Example: Successor of a prime

We write
succ ⇐ (prime ⇐ 5)

instead of succ{(−)(w)return w} ⇐ (prime{(−)(y)return y} ⇐ 5)

Roberto Bruni (Pisa) $$$: $ervices, $essions and $treams THEME 1 (FLorence) 19 / 58

One-Way

Vacuous protocol

If no reply is expected from a service, the client can employ a vacuous
protocol

a{(−)0} ⇐ P

Shorthand notation

a{} ⇐ P

Example: Printing values

A client invokes the service prime and then prints the result:

print{} ⇐ (prime ⇐ 5)

In this case, the service print is invoked with vacuous protocol (z)0

Roberto Bruni (Pisa) $$$: $ervices, $essions and $treams THEME 1 (FLorence) 20 / 58

One-Way

Vacuous protocol

If no reply is expected from a service, the client can employ a vacuous
protocol

a{(−)0} ⇐ P

Shorthand notation

a{} ⇐ P

Example: Printing values

A client invokes the service prime and then prints the result:

print{} ⇐ (prime ⇐ 5)

In this case, the service print is invoked with vacuous protocol (z)0

Roberto Bruni (Pisa) $$$: $ervices, $essions and $treams THEME 1 (FLorence) 20 / 58

One-Way

Vacuous protocol

If no reply is expected from a service, the client can employ a vacuous
protocol

a{(−)0} ⇐ P

Shorthand notation

a{} ⇐ P

Example: Printing values

A client invokes the service prime and then prints the result:

print{} ⇐ (prime ⇐ 5)

In this case, the service print is invoked with vacuous protocol (z)0

Roberto Bruni (Pisa) $$$: $ervices, $essions and $treams THEME 1 (FLorence) 20 / 58

PSC Syntax

Grammar

P ,Q ::= 0 Nil
| a.P Concretion (pass a to session partner)
| (x)P Abstraction (take from session partner)
| return a.P Return Value (out of current session)
| s ⇒ (x)P Service Definition
| s{(x)P} ⇐ Q Service Invocation
| r ⊲ P Session Side
|P |Q Parallel Composition
| (νa)P New Name

We call it PSC for persistent session calculus:

sessions can be established

a session can be garbage collected when the protocol has run entirely,

but sessions can neither be aborted nor closed by one of the parties
Roberto Bruni (Pisa) $$$: $ervices, $essions and $treams THEME 1 (FLorence) 21 / 58

PSC Structural Congruence

Axioms

P ≡ Q if P =α Q

(P |Q) |R ≡ P | (Q |R)
P |Q ≡ Q |P
P |0 ≡ P

(νx)(νy)P ≡ (νy)(νx)P
(νx)0 ≡ 0

P | (νx)Q ≡ (νx)(P |Q) if x /∈ fn(P)
r ⊲ (νx)P ≡ (νx)(r ⊲ P) if x 6∈ {r , r}

s{(x)P} ⇐ (νy)Q ≡ (νy)(r{(x)P} ⇐ Q) if y /∈ fn((x)P) ∪ {r , r}

r ⊲ 0 ≡ 0

Roberto Bruni (Pisa) $$$: $ervices, $essions and $treams THEME 1 (FLorence) 22 / 58

PSC Operational Semantics

Active contexts

C, D ::= J·K | C |P | a{(x)P} ⇐ C | a ⊲ C | (νa)C

An active context is a process with a hole J·K in an active position.
We denote by CJPK the process obtained by filling the hole in C with P

Reductions

CJ s ⇒ (x)P K |
DJ s{(y)P ′} ⇐ (Q|u.R) K

→ (νr)

(

CJ r ⊲ P{u/x} | s ⇒ (x)P K |
DJ r ⊲ P ′{u/y} | s{(y)P ′} ⇐ (Q|R) K

)

if r is fresh and u, s not bound by C,D

CJ r ⊲ (P |u.Q) K | DJ r ⊲ (R |(z)S) K → CJ r ⊲ (P |Q) K | DJ r ⊲ (R |S{u/z}) K

if u, r not bound by C,D

r ⊲ (P |return u.Q) → u | r ⊲ (P |Q)

CJPK → CJP ′K if P ≡ Q, Q → Q ′, Q ′ ≡ P ′

Roberto Bruni (Pisa) $$$: $ervices, $essions and $treams THEME 1 (FLorence) 23 / 58

Room Booking: A more elaborated protocol

Room Booking (service side)

bookRoom ⇒ (d)

„

avail ⇐ d |
(cs)(ν code)code.(cc)epay{(−)cc.(i)return i} ⇐ price ⇐ cs

«

Room Booking (client side)

bookRoom
˘

(−)(r)(select ⇐ r | (c)myCC.(cid)return 〈c, cid〉)
¯

⇐ dates

Comments
bookRoom is invoked with the dates d for the reservation.
It gets (via local service avail) and passes to the client the set of available rooms r .
The client interacts with the user (service select) and sends the selection cs.
A fresh reservation code is sent to the client.
The client sends her credit card number.
The service debits the cost to the credit card via service epay . (Note that price

computes the cost of the chosen room.)
Finally, if everything is ok, the client receives the confirmation id i generated by epay .

Roberto Bruni (Pisa) $$$: $ervices, $essions and $treams THEME 1 (FLorence) 24 / 58

Room Booking: A more elaborated protocol

Room Booking (service side)

bookRoom ⇒ (d)

„

avail ⇐ d |
(cs)(ν code)code.(cc)epay{(−)cc.(i)return i} ⇐ price ⇐ cs

«

Room Booking (client side)

bookRoom
˘

(−)(r)(select ⇐ r | (c)myCC.(cid)return 〈c, cid〉)
¯

⇐ dates

Comments
bookRoom is invoked with the dates d for the reservation.
It gets (via local service avail) and passes to the client the set of available rooms r .
The client interacts with the user (service select) and sends the selection cs.
A fresh reservation code is sent to the client.
The client sends her credit card number.
The service debits the cost to the credit card via service epay . (Note that price

computes the cost of the chosen room.)
Finally, if everything is ok, the client receives the confirmation id i generated by epay .

Roberto Bruni (Pisa) $$$: $ervices, $essions and $treams THEME 1 (FLorence) 24 / 58

Room Booking: A more elaborated protocol

Room Booking (service side)

bookRoom ⇒ (d)

„

avail ⇐ d |
(cs)(ν code)code.(cc)epay{(−)cc.(i)return i} ⇐ price ⇐ cs

«

Room Booking (client side)

bookRoom
˘

(−)(r)(select ⇐ r | (c)myCC.(cid)return 〈c, cid〉)
¯

⇐ dates

Comments
bookRoom is invoked with the dates d for the reservation.
It gets (via local service avail) and passes to the client the set of available rooms r .
The client interacts with the user (service select) and sends the selection cs.
A fresh reservation code is sent to the client.
The client sends her credit card number.
The service debits the cost to the credit card via service epay . (Note that price

computes the cost of the chosen room.)
Finally, if everything is ok, the client receives the confirmation id i generated by epay .

Roberto Bruni (Pisa) $$$: $ervices, $essions and $treams THEME 1 (FLorence) 24 / 58

Room Booking: A more elaborated protocol

Room Booking (service side)

bookRoom ⇒ (d)

„

avail ⇐ d |
(cs)(ν code)code.(cc)epay{(−)cc.(i)return i} ⇐ price ⇐ cs

«

Room Booking (client side)

bookRoom
˘

(−)(r)(select ⇐ r | (c)myCC.(cid)return 〈c, cid〉)
¯

⇐ dates

Comments
bookRoom is invoked with the dates d for the reservation.
It gets (via local service avail) and passes to the client the set of available rooms r .
The client interacts with the user (service select) and sends the selection cs.
A fresh reservation code is sent to the client.
The client sends her credit card number.
The service debits the cost to the credit card via service epay . (Note that price

computes the cost of the chosen room.)
Finally, if everything is ok, the client receives the confirmation id i generated by epay .

Roberto Bruni (Pisa) $$$: $ervices, $essions and $treams THEME 1 (FLorence) 24 / 58

Room Booking: A more elaborated protocol

Room Booking (service side)

bookRoom ⇒ (d)

„

avail ⇐ d |
(cs)(ν code)code.(cc)epay{(−)cc.(i)return i} ⇐ price ⇐ cs

«

Room Booking (client side)

bookRoom
˘

(−)(r)(select ⇐ r | (c)myCC.(cid)return 〈c, cid〉)
¯

⇐ dates

Comments
bookRoom is invoked with the dates d for the reservation.
It gets (via local service avail) and passes to the client the set of available rooms r .
The client interacts with the user (service select) and sends the selection cs.
A fresh reservation code is sent to the client.
The client sends her credit card number.
The service debits the cost to the credit card via service epay . (Note that price

computes the cost of the chosen room.)
Finally, if everything is ok, the client receives the confirmation id i generated by epay .

Roberto Bruni (Pisa) $$$: $ervices, $essions and $treams THEME 1 (FLorence) 24 / 58

Room Booking: A more elaborated protocol

Room Booking (service side)

bookRoom ⇒ (d)

„

avail ⇐ d |
(cs)(ν code)code.(cc)epay{(−)cc.(i)return i} ⇐ price ⇐ cs

«

Room Booking (client side)

bookRoom
˘

(−)(r)(select ⇐ r | (c)myCC.(cid)return 〈c, cid〉)
¯

⇐ dates

Comments
bookRoom is invoked with the dates d for the reservation.
It gets (via local service avail) and passes to the client the set of available rooms r .
The client interacts with the user (service select) and sends the selection cs.
A fresh reservation code is sent to the client.
The client sends her credit card number.
The service debits the cost to the credit card via service epay . (Note that price

computes the cost of the chosen room.)
Finally, if everything is ok, the client receives the confirmation id i generated by epay .

Roberto Bruni (Pisa) $$$: $ervices, $essions and $treams THEME 1 (FLorence) 24 / 58

Room Booking: A more elaborated protocol

Room Booking (service side)

bookRoom ⇒ (d)

„

avail ⇐ d |
(cs)(ν code)code.(cc)epay{(−)cc.(i)return i} ⇐ price ⇐ cs

«

Room Booking (client side)

bookRoom
˘

(−)(r)(select ⇐ r | (c)myCC.(cid)return 〈c, cid〉)
¯

⇐ dates

Comments
bookRoom is invoked with the dates d for the reservation.
It gets (via local service avail) and passes to the client the set of available rooms r .
The client interacts with the user (service select) and sends the selection cs.
A fresh reservation code is sent to the client.
The client sends her credit card number.
The service debits the cost to the credit card via service epay . (Note that price

computes the cost of the chosen room.)
Finally, if everything is ok, the client receives the confirmation id i generated by epay .

Roberto Bruni (Pisa) $$$: $ervices, $essions and $treams THEME 1 (FLorence) 24 / 58

Sound Model-Driven Service Orchestration

Automotive Scenario: Car Assistance Service

BMW ⇒ (pol , cloc , mob)(νr)
r ⊲ select{(pol , cloc)(cr , tt, g)return 〈cr , tt, g〉} ⇐ 〈pol , cloc〉 |
r ⊲ cr{(l)(crid)mob ⇐ crid} ⇐ tt{(gloc , gid)S} ⇐ g ⇐ cloc

S , cloc if gid

then (tid) if tid

then (return gloc | mob ⇐ tid)
else (return cloc |mob ⇐ notg | gid ⇐ nott)

else (return cloc |mob ⇐ notg)

Roberto Bruni (Pisa) $$$: $ervices, $essions and $treams THEME 1 (FLorence) 25 / 58

From PSC to SCC - I

WS-FM 2006 Proceedings

Encoding of lazy λ-calculus in PSC

Encoding of PSC in π-calculus

the vice versa is not easy because of sessioning

Garbage collecting concluded sessions

The client-side and service-side protocols are garbage collected by the
structural congruence only when they reduce to 0.
But many protocols cannot reduce to 0, e.g., those deploying service
definitions!

Canceling

Also, one may want to explicit program session termination, for instance in
order to implement cancellation workflow patterns or Orc’s asymmetric

parallel or to manage abnormal events.

Roberto Bruni (Pisa) $$$: $ervices, $essions and $treams THEME 1 (FLorence) 26 / 58

From PSC to SCC - I

WS-FM 2006 Proceedings

Encoding of lazy λ-calculus in PSC

Encoding of PSC in π-calculus

the vice versa is not easy because of sessioning

Garbage collecting concluded sessions

The client-side and service-side protocols are garbage collected by the
structural congruence only when they reduce to 0.
But many protocols cannot reduce to 0, e.g., those deploying service
definitions!

Canceling

Also, one may want to explicit program session termination, for instance in
order to implement cancellation workflow patterns or Orc’s asymmetric

parallel or to manage abnormal events.

Roberto Bruni (Pisa) $$$: $ervices, $essions and $treams THEME 1 (FLorence) 26 / 58

From PSC to SCC - I

WS-FM 2006 Proceedings

Encoding of lazy λ-calculus in PSC

Encoding of PSC in π-calculus

the vice versa is not easy because of sessioning

Garbage collecting concluded sessions

The client-side and service-side protocols are garbage collected by the
structural congruence only when they reduce to 0.
But many protocols cannot reduce to 0, e.g., those deploying service
definitions!

Canceling

Also, one may want to explicit program session termination, for instance in
order to implement cancellation workflow patterns or Orc’s asymmetric

parallel or to manage abnormal events.

Roberto Bruni (Pisa) $$$: $ervices, $essions and $treams THEME 1 (FLorence) 26 / 58

Outline

1 Introduction

2 SCC Overview

3 Termination handlers

4 Services, Sessions ... and STREAMS

5 The Evidence

Roberto Bruni (Pisa) $$$: $ervices, $essions and $treams THEME 1 (FLorence) 27 / 58

From PSC to SCC - II

Extending sessions

The idea is that the termination of the session on one side, should be
communicated to (termination handler service at) the opposite side.

A service name k, identifying the so-called termination handler

service, can be associated to a session: r ⊲k P

The first time the protocol P running inside the session invokes such
a service k, the session is closed

Extending services: A slight asymmetry

The syntax of clients becomes: a{(x)P} ⇐k Q

(we added the name k of the termination handler service to be
associated to the session instantiated on the service-side)

Services are now specified with the process a ⇒ (x)P : (y)T
(an additional protocol (y)T is specified which represents the body of
a fresh termination handler service that will be associated to the
corresponding session on the client-side).
Roberto Bruni (Pisa) $$$: $ervices, $essions and $treams THEME 1 (FLorence) 28 / 58

From PSC to SCC - II

Extending sessions

The idea is that the termination of the session on one side, should be
communicated to (termination handler service at) the opposite side.

A service name k, identifying the so-called termination handler

service, can be associated to a session: r ⊲k P

The first time the protocol P running inside the session invokes such
a service k, the session is closed

Extending services: A slight asymmetry

The syntax of clients becomes: a{(x)P} ⇐k Q

(we added the name k of the termination handler service to be
associated to the session instantiated on the service-side)

Services are now specified with the process a ⇒ (x)P : (y)T
(an additional protocol (y)T is specified which represents the body of
a fresh termination handler service that will be associated to the
corresponding session on the client-side).
Roberto Bruni (Pisa) $$$: $ervices, $essions and $treams THEME 1 (FLorence) 28 / 58

SCC Syntax

Grammar

P ,Q,T , . . . ::= 0 Nil
| a.P Concretion
| (x)P Abstraction
| return a.P Return Value
| a ⇒ (x)P : (y)T Service Definition
| a{(x)P} ⇐k Q Service Invocation
| a ⊲k P Session
|P |Q Parallel Composition
| (νa)P New Name

A special name close is reserved for the specification of session protocols.

Shorthand notation

We write a ⇒ (x)P for a ⇒ (x)P : (y)0.
We also omit k in a{(x)P} ⇐k Q and a ⇐k Q when it is not relevant.

Roberto Bruni (Pisa) $$$: $ervices, $essions and $treams THEME 1 (FLorence) 29 / 58

SCC Operational Semantics

CJ s ⇒ (x)P : (z)T K |
DJ s{(y)P ′} ⇐k (Q|u.R) K → (νr , k ′)

0

B

B

B

B

B

B

@

C

u
v

s ⇒ (x)P : (z)T |

r ⊲k

„

k ′ ⇒ (z)T{k/close } |

P{u/x}{
k/close }

«

}
~ |

D

s
r ⊲k′ P ′{u/y}{

k′/close } |
s{(y)P ′} ⇐k (Q|R)

{

1

C

C

C

C

C

C

A

if s 6∈ tn(D), r , k ′ are fresh and u, s, k not bound by C,D

r ⊲s DJ s{(y)P} ⇐k (Q|u.R) K → s{} ⇐k u

if s 6∈ tn(D) and u, s, k not bound by D

CJ r ⊲k (P|u.Q) K |
DJ r ⊲k′ (R|(z)S) K →

CJ r ⊲k (P|Q) K |
DJ r ⊲k′ (S{u/z} |R) K

if u, r not bound by C,D

r ⊲k (P|return u.Q) → u | r ⊲k (P|Q)

CJ P K → CJ P ′ K if P ≡ Q, Q → Q ′, Q ′ ≡ P ′

Roberto Bruni (Pisa) $$$: $ervices, $essions and $treams THEME 1 (FLorence) 30 / 58

SCC Examples: Closure Protocol

A typical usage of termination handler services is the closure of the current
session .

A typical service-side closure protocol

s ⇒ (x)P ′ : (y)close {} ⇐ y

A typical client-side closure protocol

End , close {} ⇐ (end ⇒ (x)return x))

End is designed to be included in the client-side protocol:

(ν end)s{ (y)
(

P |End
)

} ⇐end v

Closing the client-side session will in turn activate the service-side
termination handler.

Roberto Bruni (Pisa) $$$: $ervices, $essions and $treams THEME 1 (FLorence) 31 / 58

SCC Examples: Closure Protocol

A typical usage of termination handler services is the closure of the current
session .

A typical service-side closure protocol

s ⇒ (x)P ′ : (y)close {} ⇐ y

A typical client-side closure protocol

End , close {} ⇐ (end ⇒ (x)return x))

End is designed to be included in the client-side protocol:

(ν end)s{ (y)
(

P |End
)

} ⇐end v

Closing the client-side session will in turn activate the service-side
termination handler.

Roberto Bruni (Pisa) $$$: $ervices, $essions and $treams THEME 1 (FLorence) 31 / 58

SCC Examples: Closure Protocol

A typical usage of termination handler services is the closure of the current
session .

A typical service-side closure protocol

s ⇒ (x)P ′ : (y)close {} ⇐ y

A typical client-side closure protocol

End , close {} ⇐ (end ⇒ (x)return x))

End is designed to be included in the client-side protocol:

(ν end)s{ (y)
(

P |End
)

} ⇐end v

Closing the client-side session will in turn activate the service-side
termination handler.

Roberto Bruni (Pisa) $$$: $ervices, $essions and $treams THEME 1 (FLorence) 31 / 58

Outline

1 Introduction

2 SCC Overview

3 Termination handlers

4 Services, Sessions ... and STREAMS

5 The Evidence

Roberto Bruni (Pisa) $$$: $ervices, $essions and $treams THEME 1 (FLorence) 32 / 58

Novelties

What’s new?
The main novelty regards session handling mechanisms for the definition of

session naming and scoping

structured interaction protocols

service interruption, cancelation and update (dynamic environment)

In particular

The protocols to be run within the service-side / client-side session are
well-exposed in the syntax of the calculus to favour type checking, service
conformance check, service discovery

While Orc’s cancelation is too demanding (it can destroy a wide area
computation), SCC has just a local termination that activates a proper
handler at the partner site.

And why not just π?

Higher-level primitives can favour and make more scalable the development
of typing systems and proof techniques.

Roberto Bruni (Pisa) $$$: $ervices, $essions and $treams THEME 1 (FLorence) 33 / 58

Prototypes

PSC

Leonardo Mezzina (IMT Lucca), written in C#: translates PSC
(extended with data types, conditionals and a library of local sites) to
Orc and pi for simulation and static analysis.

Franco Mazzanti (CNR), written in DHTML, shell, Ada: simulation
environment for PSC (extended with expressions).

SCC

Any volunteers?

Roberto Bruni (Pisa) $$$: $ervices, $essions and $treams THEME 1 (FLorence) 34 / 58

On-going work

Extensions

Types
Channels
Distribution
Long-running transactions and compensations
Delegation
XML querying
SLA and QoS

Re-design options

Multi-party sessioning
Recursion primitives
Synchronized termination
More flexible, usable and realistic streaming of data

Roberto Bruni (Pisa) $$$: $ervices, $essions and $treams THEME 1 (FLorence) 35 / 58

Data driven coordination

Observation

If P produces a stream of values then the composition s ⇐ P invokes s

infinitely many times.

Anomaly

It is easy to program a service p that can produce unbound streams
of values,
but programming a client-side protocol for collecting all the values
returned by p is not possible unless p is slightly re-engineered to
address all values to some suitable publishing service.

Other limitations

A general mechanism for an elegant writing of different coordination
patterns is frequently needed in practice (sessions and returns are not
abstract enough to help structured programming, typing and analysis)

Roberto Bruni (Pisa) $$$: $ervices, $essions and $treams THEME 1 (FLorence) 36 / 58

Data driven coordination

Observation

If P produces a stream of values then the composition s ⇐ P invokes s

infinitely many times.

Anomaly

It is easy to program a service p that can produce unbound streams
of values,
but programming a client-side protocol for collecting all the values
returned by p is not possible unless p is slightly re-engineered to
address all values to some suitable publishing service.

Other limitations

A general mechanism for an elegant writing of different coordination
patterns is frequently needed in practice (sessions and returns are not
abstract enough to help structured programming, typing and analysis)

Roberto Bruni (Pisa) $$$: $ervices, $essions and $treams THEME 1 (FLorence) 36 / 58

Data driven coordination

Observation

If P produces a stream of values then the composition s ⇐ P invokes s

infinitely many times.

Anomaly

It is easy to program a service p that can produce unbound streams
of values,
but programming a client-side protocol for collecting all the values
returned by p is not possible unless p is slightly re-engineered to
address all values to some suitable publishing service.

Other limitations

A general mechanism for an elegant writing of different coordination
patterns is frequently needed in practice (sessions and returns are not
abstract enough to help structured programming, typing and analysis)

Roberto Bruni (Pisa) $$$: $ervices, $essions and $treams THEME 1 (FLorence) 36 / 58

PSC Examples: Stream Connection

Conference announcements

For instance, if eatcs and eapls return streams of conference
announcements on the received service name, then

emailme{} ⇐

pub ⇒ (s)return s

| eatcs{} ⇐ pub

| eapls{} ⇐ pub

will send you all the announcements collected from eatcs and eapls.
More concisely, this can be equivalently written as

eatcs{} ⇐ emailme | eapls{} ⇐ emailme.

Roberto Bruni (Pisa) $$$: $ervices, $essions and $treams THEME 1 (FLorence) 37 / 58

PSC Examples: Stream Connection

Conference announcements

For instance, if eatcs and eapls return streams of conference
announcements on the received service name, then

emailme{} ⇐

pub ⇒ (s)return s

| eatcs{} ⇐ pub

| eapls{} ⇐ pub

will send you all the announcements collected from eatcs and eapls.
More concisely, this can be equivalently written as

eatcs{} ⇐ emailme | eapls{} ⇐ emailme.

Roberto Bruni (Pisa) $$$: $ervices, $essions and $treams THEME 1 (FLorence) 37 / 58

SSCC: Streaming SCC

Orchestration constructs (similar to Orc’s buffer object)

streamP as f inQ: both P and Q execute concurrently

f is the name of a stream of data from P to Q

P can write data into the stream via feed v .P ′ (non blocking, the
value is stored in the stream)

Q can read from the stream via f (x).Q ′ (blocking, it is possible to
read from multiple streams)

two possible semantics for streams: ordered or unordered

Simplified syntax for services

s ⇒ P s ⇐ Q

No “streaming” invocation: P and Q are the protocols.

Roberto Bruni (Pisa) $$$: $ervices, $essions and $treams THEME 1 (FLorence) 38 / 58

SSCC: Examples

Chaining: Q waits the first n results fed from P before starting

P >n x1 . . . xn > Q , stream P as f in f (x1).f (xn).Q

Invoking a with n parameters and feeding the result.

call a(x1, . . . , xn) , a ⇐ x1.xn.(y)feed y

Sequencing (in standard SCC is more complicated)

call a(v) >1 x > call b(x)

Orc pipeline (one instance of Q for each value fed by P)

P > x > Q , stream P as f in recX .f (x).(Q|X)

Merging streams

(eatcs ⇐ recX .(x).feed x .X |eapls ⇐ recX .(x).feed x .X) > y > emailme ⇐ y

Roberto Bruni (Pisa) $$$: $ervices, $essions and $treams THEME 1 (FLorence) 39 / 58

SSCC: Examples

Chaining: Q waits the first n results fed from P before starting

P >n x1 . . . xn > Q , stream P as f in f (x1).f (xn).Q

Invoking a with n parameters and feeding the result.

call a(x1, . . . , xn) , a ⇐ x1.xn.(y)feed y

Sequencing (in standard SCC is more complicated)

call a(v) >1 x > call b(x)

Orc pipeline (one instance of Q for each value fed by P)

P > x > Q , stream P as f in recX .f (x).(Q|X)

Merging streams

(eatcs ⇐ recX .(x).feed x .X |eapls ⇐ recX .(x).feed x .X) > y > emailme ⇐ y

Roberto Bruni (Pisa) $$$: $ervices, $essions and $treams THEME 1 (FLorence) 39 / 58

SSCC: Examples

Chaining: Q waits the first n results fed from P before starting

P >n x1 . . . xn > Q , stream P as f in f (x1).f (xn).Q

Invoking a with n parameters and feeding the result.

call a(x1, . . . , xn) , a ⇐ x1.xn.(y)feed y

Sequencing (in standard SCC is more complicated)

call a(v) >1 x > call b(x)

Orc pipeline (one instance of Q for each value fed by P)

P > x > Q , stream P as f in recX .f (x).(Q|X)

Merging streams

(eatcs ⇐ recX .(x).feed x .X |eapls ⇐ recX .(x).feed x .X) > y > emailme ⇐ y

Roberto Bruni (Pisa) $$$: $ervices, $essions and $treams THEME 1 (FLorence) 39 / 58

SSCC: Recap

Done

Simplified service orchestration using more expressive and
easy-to-grasp primitives (recursion, streaming, uniform notation)

Reduction and LTS semantics with correspondence theorem

Simple type system (for compatibility of deterministic conversations)

Implementation of all the WP not requiring the close .

Plans

Improve typing systems (more refined ones)

Introducing a close primitive

Related work

Other type systems for SCC and its variants are under development (see
minutes from yesterday SCC meeting)

Roberto Bruni (Pisa) $$$: $ervices, $essions and $treams THEME 1 (FLorence) 40 / 58

SSCC: Recap

Done

Simplified service orchestration using more expressive and
easy-to-grasp primitives (recursion, streaming, uniform notation)

Reduction and LTS semantics with correspondence theorem

Simple type system (for compatibility of deterministic conversations)

Implementation of all the WP not requiring the close .

Plans

Improve typing systems (more refined ones)

Introducing a close primitive

Related work

Other type systems for SCC and its variants are under development (see
minutes from yesterday SCC meeting)

Roberto Bruni (Pisa) $$$: $ervices, $essions and $treams THEME 1 (FLorence) 40 / 58

SSCC: Recap

Done

Simplified service orchestration using more expressive and
easy-to-grasp primitives (recursion, streaming, uniform notation)

Reduction and LTS semantics with correspondence theorem

Simple type system (for compatibility of deterministic conversations)

Implementation of all the WP not requiring the close .

Plans

Improve typing systems (more refined ones)

Introducing a close primitive

Related work

Other type systems for SCC and its variants are under development (see
minutes from yesterday SCC meeting)

Roberto Bruni (Pisa) $$$: $ervices, $essions and $treams THEME 1 (FLorence) 40 / 58

Outline

1 Introduction

2 SCC Overview

3 Termination handlers

4 Services, Sessions ... and STREAMS

5 The Evidence

Roberto Bruni (Pisa) $$$: $ervices, $essions and $treams THEME 1 (FLorence) 41 / 58

SCC: From Theory to Practice I

Soccer world champion (June 2006)

SWC ⇒ (−)brasil

When a team becomes the new world champion then the service must be updated!

In PSC there is no way to cancel a definition and replace it with a new one.

By contrast, in SCC we can define the termination handler

new ⇒ (z)
(

SWC ⇒ (−)z | new{} ⇐new (update ⇒ (y)return y)
)

to be run in parallel with

r ⊲new

(

SWC ⇒ (−)brasil | new{} ⇐new (update ⇒ (y)return y)
)

Roberto Bruni (Pisa) $$$: $ervices, $essions and $treams THEME 1 (FLorence) 42 / 58

SCC: From Theory to Practice - II

And the winner is...

update{} ⇐ italy

| new ⇒ (z)
(

SWC ⇒ (−)z | new{} ⇐new (update ⇒ (y)return y)
)

| r ⊲new

(

SWC ⇒ (−)brasil | new{} ⇐new (update ⇒ (y)return y)
)

→ (νa)

(

update{} ⇐ 0 | ā ⊲ 0 | new ⇒ (z)
(

...
)

| r ⊲new

(

... | new{} ⇐new (... | a ⊲ return italy)
)

)

→ (νa)

(

update{} ⇐ 0 | new ⇒ (z)
(

...
)

| r ⊲new

(

... | new{} ⇐new (... | italy | a ⊲ 0)
)

)

→
(

update{} ⇐ 0 | new ⇒ (z)
(

...
)

| new{} ⇐new italy
)

→

(νb)

update{} ⇐ 0 | new ⇒ (z)
(

...
)

| b ⊲new

(

SWC ⇒ (−)italy | new{} ⇐new (update ⇒ (y)return y)
)

| new{} ⇐new 0 | b̄ ⊲ 0

Roberto Bruni (Pisa) $$$: $ervices, $essions and $treams THEME 1 (FLorence) 43 / 58

SCC: From Theory to Practice - II

And the winner is...

update{} ⇐ italy

| new ⇒ (z)
(

SWC ⇒ (−)z | new{} ⇐new (update ⇒ (y)return y)
)

| r ⊲new

(

SWC ⇒ (−)brasil | new{} ⇐new (update ⇒ (y)return y)
)

→ (νa)

(

update{} ⇐ 0 | ā ⊲ 0 | new ⇒ (z)
(

...
)

| r ⊲new

(

... | new{} ⇐new (... | a ⊲ return italy)
)

)

→ (νa)

(

update{} ⇐ 0 | new ⇒ (z)
(

...
)

| r ⊲new

(

... | new{} ⇐new (... | italy | a ⊲ 0)
)

)

→
(

update{} ⇐ 0 | new ⇒ (z)
(

...
)

| new{} ⇐new italy
)

→

(νb)

update{} ⇐ 0 | new ⇒ (z)
(

...
)

| b ⊲new

(

SWC ⇒ (−)italy | new{} ⇐new (update ⇒ (y)return y)
)

| new{} ⇐new 0 | b̄ ⊲ 0

Roberto Bruni (Pisa) $$$: $ervices, $essions and $treams THEME 1 (FLorence) 43 / 58

SCC WORKS!

And SSCC might even work better!

Roberto Bruni (Pisa) $$$: $ervices, $essions and $treams THEME 1 (FLorence) 44 / 58

SCC WORKS!

And SSCC might even work better!

Roberto Bruni (Pisa) $$$: $ervices, $essions and $treams THEME 1 (FLorence) 44 / 58

PSC Examples: Encoding of the lazy λ-calculus

The translation is in the spirit of Milner’s π-calculus encoding:

JxKp = x{} ⇐ p

Jλx .MKp = p ⇒ (x)(q)JMKq

JM NKp = (νm)(νn)

JMKm

| n ⇒ (s)JNKs

| m{(−)p} ⇐ n

The more important differences

1 each service invocation opens a new session where the computation can
progress (remind that sessions cannot be closed in PSC)

2 all service definitions will remain available even when no further invocation
will be possible.

If on one hand, the encoding witnesses the expressive power of PSC, on the other
hand, it also motivates the introduction of some mechanism for closing sessions.

Roberto Bruni (Pisa) $$$: $ervices, $essions and $treams THEME 1 (FLorence) 45 / 58

Encoding of PSC into π-calculus

The encoding below shows that PSC can be seen as a fragment of the π-calculus.

Ja{(x)P} ⇐ QKin,out,ret = (νz)
(

JQKin,z,ret | !z(x).(νr , r̃)a〈r , r̃ , x〉.JPKr,r̃ ,out

)

Ja ⇒ (x)PKin,out,ret = !a(r , r̃ , x).(JPKr̃ ,r,out)

Ja ⊲ PKin,out,ret = JPKa,ã,out

Ja.PKin,out,ret = out a.JPKin,out,ret

J(x)PKin,out,ret = in(x).JPKin,out,ret

Jreturn a.PKin,out,ret = ret a | JPKin,out,ret

JP |QKin,out,ret = JPKin,out,ret | JQKin,out,ret

J(νx)PKin,out,ret = (νx)JPKin,out,ret

J0Kin,out,ret = 0

The encoding can hardly be extended to full SCC calculus due to the session
interruption mechanism that has no direct couterpart in the π-calculus.

Roberto Bruni (Pisa) $$$: $ervices, $essions and $treams THEME 1 (FLorence) 46 / 58

SCC Examples: A blog service - I

Blog

We consider a service that implements a blog, i.e. a web page used by a
web client to log personal annotations.

Interaction with the Blog

A blog provides two services:

get to read the current contents of the blog

set to modify the contents.

The close -free fragment is not expressive enough to faithfully model such
a service because it does not support service update, here needed to
update the blog contents.

Roberto Bruni (Pisa) $$$: $ervices, $essions and $treams THEME 1 (FLorence) 47 / 58

SCC Examples: A blog service - II

Blog Factory

newBlog ⇒ (v , get, set)
(

blog{} ⇐newBlog 〈v , get, set〉
)

|
blog ⇒ (v , get, set)

(

get ⇒ (−)v |
close {} ⇐ (set ⇒ (v ′)return 〈v ′, get, set〉)

)

We use the service newBlog as a factory of blogs. It receives three names:

the initial contents v

the name for the new get service

the name for the new set service

Upon invocation, the factory forwards the three received values to the blog service
which is the responsible for the actual instantiation of the get and set services.

The update of the blog contents is achieved by invoking the service close which is
bound to newBlog ; this invocation cancels the currently available get and set

services and delegates to newBlog the creation of their new instances passing also
the updated contents v ′.

Roberto Bruni (Pisa) $$$: $ervices, $essions and $treams THEME 1 (FLorence) 48 / 58

SCC Examples: A blog service - III

Blog update

The process below installs a wiki page with initial contents v , then it adds
some new contents v ′.

newBlog{} ⇐ 〈v , get, set〉 |
set{} ⇐

(

concat{ (−)v ′.get ⇐ • | (x)return x } ⇐ •
)

The service concat simply computes the new contents appending v ′ to the
contents v received after service invocation:

concat ⇒ (−)(y)(z).y ◦ z

Here ◦ denotes justaposition of blog contents.

Roberto Bruni (Pisa) $$$: $ervices, $essions and $treams THEME 1 (FLorence) 49 / 58

SCC Examples: Encoding Orc in SCC

SCC as a service orchestration language

To evaluate the expressiveness and usability of SCC as a language for
service orchestration, one has to challenge its ability of encoding some
frequently used service composition patterns.

Workflow patterns

A library of basic patterns, called the workflow patterns, has been
identified by van der Aalst et al.

Workflow patterns and Orc

Orc can conveniently model most workflow patterns! [Coordination’06]
Since SCC can encode Orc, then by transitivity SCC can implement van
der Aalst’s workflow patterns.

Roberto Bruni (Pisa) $$$: $ervices, $essions and $treams THEME 1 (FLorence) 50 / 58

SCC Examples: Encoding Orc in SCC

SCC as a service orchestration language

To evaluate the expressiveness and usability of SCC as a language for
service orchestration, one has to challenge its ability of encoding some
frequently used service composition patterns.

Workflow patterns

A library of basic patterns, called the workflow patterns, has been
identified by van der Aalst et al.

Workflow patterns and Orc

Orc can conveniently model most workflow patterns! [Coordination’06]
Since SCC can encode Orc, then by transitivity SCC can implement van
der Aalst’s workflow patterns.

Roberto Bruni (Pisa) $$$: $ervices, $essions and $treams THEME 1 (FLorence) 50 / 58

Encoding Orc in SCC - I

While a value is trivially encoded as itself, i.e., [[u]] = u, for variables (and
thus for actual parameters) we need two different encodings, depending on
whether they are passed by name or evaluated.

We distinguish the two encodings by different subscripts:

[[x]]n = x [[x]]v = x ⇐ •

The evaluation of a variable x is encoded as a request for the current
value to the variable manager of x .

Variable managers are created by both sequential composition and
asymmetric parallel composition.

Roberto Bruni (Pisa) $$$: $ervices, $essions and $treams THEME 1 (FLorence) 51 / 58

Encoding Orc in SCC - II

[[E (x) , P]] = E ⇒ (x)[[P]]

[[a(p)]] = a ⇐ [[p]]v

[[x(p)]] = (νforw , pub)
(

forw{} ⇐ [[x]]v |

forw ⇒ (a)pub{} ⇐ [[a(p)]] |

pub ⇒ (y)return y
)

[[E (p)]] = E ⇐ [[p]]n

[[P |Q]] = [[P]]|[[Q]]

[[P > x > Q]] = (νz, pub)
(

z{} ⇐ [[P]] |

z ⇒ (y)(νx)(x ⇒ (−)y | pub{} ⇐ [[Q]]) |

pub ⇒ (y)return y
)

[[Q where x :∈ P]] = (νx , z, w)
(

[[Q]] |

z ⇒ (y)(x ⇒ (−)y) |

w{} ⇐z • |

w ⇒ (−)(close {} ⇐ [[P]])
)

Roberto Bruni (Pisa) $$$: $ervices, $essions and $treams THEME 1 (FLorence) 52 / 58

From Orc to SCC: An Example

Emailing news in Orc

Let us consider the Orc expression

CNN(d)|BBC (d) > x > email(x)

which invokes the news services of both CNN and BBC asking for news of
day d . For each reply it sends an email (to a default address) with the
received news. Thus this expression can send from zero up to two emails.
The SCC encoding is as follows:

(νz , pub)
(

z{} ⇐ (CNN ⇐ d |BBC ⇐ d) |
z ⇒ (y)(νx)(x ⇒ (−)y | pub{} ⇐ email ⇐ x ⇐ •) |
pub ⇒ (y)return y

)

We have supposed here to have CNN , BBC and email available as
services.

Roberto Bruni (Pisa) $$$: $ervices, $essions and $treams THEME 1 (FLorence) 53 / 58

PSC Examples: Recursion - I

Shorthand notation

We presuppose a distinct name • to be used as a unit value.

Clock (service side)

Service invocations can be nested recursively inside a service definition:

clock ⇒ (−)

(

return tick

| clock{} ⇐ •

)

Invoked with clock{} ⇐ •, produces an infinite number of ticks...
but just on the service-side!

Roberto Bruni (Pisa) $$$: $ervices, $essions and $treams THEME 1 (FLorence) 54 / 58

PSC Examples: Recursion - I

Shorthand notation

We presuppose a distinct name • to be used as a unit value.

Clock (service side)

Service invocations can be nested recursively inside a service definition:

clock ⇒ (−)

(

return tick

| clock{} ⇐ •

)

Invoked with clock{} ⇐ •, produces an infinite number of ticks...
but just on the service-side!

Roberto Bruni (Pisa) $$$: $ervices, $essions and $treams THEME 1 (FLorence) 54 / 58

PSC Examples: Recursion - II

Clock (client side)

To produce the ticks on a specific location different from the service-side,
the service to be invoked can be written as

remoteClock ⇒ (s)

(

s{} ⇐ tick

| remoteClock{} ⇐ s

)

and a local publishing service

pub ⇒ (t)return t

must be located where the ticks must be produced.
Then invoke the service as below:

remoteClock{} ⇐ pub

Roberto Bruni (Pisa) $$$: $ervices, $essions and $treams THEME 1 (FLorence) 55 / 58

PSC Examples: Stream Connection - II

Trivial recursion does not work!
One might think to exploit recursion to deploy local receivers of the form
(x)return x , but the implicit nesting of sessions would cause all such receivers to
collect values only from different sessions than the original one.

No Replicator!

Extending the syntax with π-calculus like replicator !P :

pipe = (−)!(x)return x

No Code Passing!

Extending the syntax with return P .Q, whose semantics is:

r ⊲ (R |return P .Q) → P | r ⊲ (R |Q)

Replication can then be coded as follows:

!P = (ν rec)
(

rec ⇒ (−)(return P | rec{} ⇐ •) | rec{} ⇐ •
)

Roberto Bruni (Pisa) $$$: $ervices, $essions and $treams THEME 1 (FLorence) 56 / 58

PSC Examples: Stream Connection - II

Trivial recursion does not work!
One might think to exploit recursion to deploy local receivers of the form
(x)return x , but the implicit nesting of sessions would cause all such receivers to
collect values only from different sessions than the original one.

No Replicator!

Extending the syntax with π-calculus like replicator !P :

pipe = (−)!(x)return x

No Code Passing!

Extending the syntax with return P .Q, whose semantics is:

r ⊲ (R |return P .Q) → P | r ⊲ (R |Q)

Replication can then be coded as follows:

!P = (ν rec)
(

rec ⇒ (−)(return P | rec{} ⇐ •) | rec{} ⇐ •
)

Roberto Bruni (Pisa) $$$: $ervices, $essions and $treams THEME 1 (FLorence) 56 / 58

PSC Examples: Stream Connection - II

Trivial recursion does not work!
One might think to exploit recursion to deploy local receivers of the form
(x)return x , but the implicit nesting of sessions would cause all such receivers to
collect values only from different sessions than the original one.

No Replicator!

Extending the syntax with π-calculus like replicator !P :

pipe = (−)!(x)return x

No Code Passing!

Extending the syntax with return P .Q, whose semantics is:

r ⊲ (R |return P .Q) → P | r ⊲ (R |Q)

Replication can then be coded as follows:

!P = (ν rec)
(

rec ⇒ (−)(return P | rec{} ⇐ •) | rec{} ⇐ •
)

Roberto Bruni (Pisa) $$$: $ervices, $essions and $treams THEME 1 (FLorence) 56 / 58

PSC Examples: Stream Connection - III

Conference announcements

For instance, if EATCS and EAPLS return streams of conference
announcements on the received service name, then

emailMe{} ⇐

pub ⇒ (s)return s

| EATCS{} ⇐ pub

| EAPLS{} ⇐ pub

will send you all the announcements collected from EATCS and EAPLS .
More concisely, this can be equivalently written as

EATCS{} ⇐ emailMe | EAPLS{} ⇐ emailMe.

Roberto Bruni (Pisa) $$$: $ervices, $essions and $treams THEME 1 (FLorence) 57 / 58

PSC Examples: Stream Connection - III

Conference announcements

For instance, if EATCS and EAPLS return streams of conference
announcements on the received service name, then

emailMe{} ⇐

pub ⇒ (s)return s

| EATCS{} ⇐ pub

| EAPLS{} ⇐ pub

will send you all the announcements collected from EATCS and EAPLS .
More concisely, this can be equivalently written as

EATCS{} ⇐ emailMe | EAPLS{} ⇐ emailMe.

Roberto Bruni (Pisa) $$$: $ervices, $essions and $treams THEME 1 (FLorence) 57 / 58

PSC Examples: Stream Connection - III

Conference announcements

For instance, if EATCS and EAPLS return streams of conference
announcements on the received service name, then

emailMe{} ⇐

pub ⇒ (s)return s

| EATCS{} ⇐ pub

| EAPLS{} ⇐ pub

will send you all the announcements collected from EATCS and EAPLS .
More concisely, this can be equivalently written as

EATCS{} ⇐ emailMe | EAPLS{} ⇐ emailMe.

Roberto Bruni (Pisa) $$$: $ervices, $essions and $treams THEME 1 (FLorence) 57 / 58

PSC Examples: News Streaming

Programming Pattern

The service pub (or alike) can be useful in many applications.

In fact, in PSC sessions cannot be closed and therefore recursive invocations on
the client-side are nested at increasing depth (while the return instruction can
move values only one level up).

News Streaming (client side)

A recursive process that repeatedly invokes service s on value x with publishing
service p is shown below:

rec ⇒ (s, x , p)s

{

(−)

(

(y)p{} ⇐ y

| rec{} ⇐ 〈s, x , p〉

) }

⇐ x

Sample of invocation of the service rec :

rec{} ⇐ 〈ANSA, •, pub〉 | pub ⇒ (x)return x

that returns the stream of news obtained from the ANSA service.
Roberto Bruni (Pisa) $$$: $ervices, $essions and $treams THEME 1 (FLorence) 58 / 58

	Introduction
	SCC Overview
	Termination handlers
	Services, Sessions ... and STREAMS
	The Evidence

