
Disciplining Orchestration
and Conversation

 in Service-Oriented
Computing

Ivan Lanese (Bologna), Vasco T.
Vasconcelos (Lisbon), Francisco Martins

(Lisbon), Antonio Ravara (Lisbon)

The problem: change

The problem: change

• Ubiquitous in business:

The problem: change

• Ubiquitous in business:

New technologies, acquisitions,
mergers.

The problem: change

• Ubiquitous in business:

New technologies, acquisitions,
mergers.

• Evil to programmers:

The problem: change

• Ubiquitous in business:

New technologies, acquisitions,
mergers.

• Evil to programmers:

Separation of soft development and
soft maintenance is vanishing.

Existing technologies
won’t do

Existing technologies
won’t do

• Objects incapable to cope with the
rapidly change of software systems

Existing technologies
won’t do

• Objects incapable to cope with the
rapidly change of software systems

• Components are usually delivered
physically; do not take advantage of
internet-based computing

Accommodating change:
software services

• Definitions abound. Here’s a recent
one:

A coarse grain, discoverable
entity that [..] interacts with

applications and other services.
Elfatatry, CACM, Aug 2007

Aim

• Develop formal bases for Service
Oriented Computing (SOC):

• including models and techniques

• allowing for safe development of
applications

• check that systems provide the
required functionalities

What this talk in not
about

What this talk in not
about

• Web services

What this talk in not
about

• Web services

• XML, SOAP, WSDL, ...

What this talk in not
about

• Web services

• XML, SOAP, WSDL, ...

• Service discovery, negotiation,
brokerage

Outline

• A motivating example

• Semantics

• Analyses

• Conclusion

Example: booking an
hotel

• A process

(date) {query-the-hotel-db}.price

Example: booking an
hotel

• A process
receive
a value

(date) {query-the-hotel-db}.price

Example: booking an
hotel

• A process
receive
a value

some
computation

(date) {query-the-hotel-db}.price

Example: booking an
hotel

• A process
receive
a value

some
computation send a

value

(date) {query-the-hotel-db}.price

Example: booking an
hotel

• A process
receive
a value

some
computation send a

value

(date) {query-the-hotel-db}.price

• A service

Example: booking an
hotel

• A process
receive
a value

some
computation send a

value

(date) {query-the-hotel-db}.price

bologna => (date) {query-the-hotel-db}.price
• A service

Example: booking an
hotel

• A process
receive
a value

some
computation send a

value

(date) {query-the-hotel-db}.price

bologna => (date) {query-the-hotel-db}.price

service
name

• A service

Example: booking an
hotel

• A process
receive
a value

some
computation send a

value

(date) {query-the-hotel-db}.price

bologna => (date) {query-the-hotel-db}.price

service
name

right
arrow indicates

provider

• A service

Example: the client

• A service consumer

bologna <= 31Jul2007.(price) {use-price}

Example: the client

• A service consumer

bologna <= 31Jul2007.(price) {use-price}

• An interaction

Example: the client

• A service consumer

bologna => ... | bologna <= ...

bologna <= 31Jul2007.(price) {use-price}

• An interaction

Example: the client

• A service consumer

bologna => ... | bologna <= ...

bologna <= 31Jul2007.(price) {use-price}

provider

• An interaction

Example: the client

• A service consumer

bologna => ... | bologna <= ...

bologna <= 31Jul2007.(price) {use-price}

provider consumer

• An interaction

Example: the client

• A service consumer

bologna => ... | bologna <= ...

bologna <= 31Jul2007.(price) {use-price}

provider consumer

• An interaction parallel
composition

Example: a broker comes
and...

Example: a broker comes
and...

...calls three services

Example: a broker comes
and...

bologna <= date.(price1) ... |
azores <= date.(price2) ... |
lisbon <= date.(price3) ...

...calls three services

Example: a broker comes
and...

• How to collect the three prices in a
single process, for further processing?

bologna <= date.(price1) ... |
azores <= date.(price2) ... |
lisbon <= date.(price3) ...

...calls three services

Streams to the rescue

• A service orchestrator

stream
 bologna <= date.(price1).feed price1 |
 azores <= date.(price2).feed price2 |
 lisbon <= date.(price3).feed price3
as f in
 f(x).f(y).{publish-the-min-of-x-and-y}

Streams to the rescue

• A service orchestrator

stream
 bologna <= date.(price1).feed price1 |
 azores <= date.(price2).feed price2 |
 lisbon <= date.(price3).feed price3
as f in
 f(x).f(y).{publish-the-min-of-x-and-y}

write into
the stream

Streams to the rescue

• A service orchestrator

stream
 bologna <= date.(price1).feed price1 |
 azores <= date.(price2).feed price2 |
 lisbon <= date.(price3).feed price3
as f in
 f(x).f(y).{publish-the-min-of-x-and-y}

write into
the stream

read from the
stream

Common patterns
deserve abbreviations

(call bologna(date) |
 call azores(date) |
 call lisbon(date)) > x y >
 {publish-the-min-of-x-and-y}

Common patterns
deserve abbreviations

(call bologna(date) |
 call azores(date) |
 call lisbon(date)) > x y >
 {publish-the-min-of-x-and-y}

call service
bologna; write the result

into the pipe

Common patterns
deserve abbreviations

(call bologna(date) |
 call azores(date) |
 call lisbon(date)) > x y >
 {publish-the-min-of-x-and-y}

read two values
from the pipe; call

them x and y

call service
bologna; write the result

into the pipe

Common patterns
deserve abbreviations

(call bologna(date) |
 call azores(date) |
 call lisbon(date)) > x y >
 {publish-the-min-of-x-and-y}

read two values
from the pipe; call

them x and y

call service
bologna; write the result

into the pipe

Inspired
in Orc!

Example: service
composition

broker => (date).(
 (call bologna(date) |
 call azores(date) |
 call lisbon(date)) > x y >
 call min(x,y) > m > m)

Example: service
composition

broker => (date).(
 (call bologna(date) |
 call azores(date) |
 call lisbon(date)) > x y >
 call min(x,y) > m > m)

a service
definition

Example: service
composition

broker => (date).(
 (call bologna(date) |
 call azores(date) |
 call lisbon(date)) > x y >
 call min(x,y) > m > m)

a service
definition

call a service to
compute the min

Example: service
composition

broker => (date).(
 (call bologna(date) |
 call azores(date) |
 call lisbon(date)) > x y >
 call min(x,y) > m > m)

a service
definition

call a service to
compute the min

read the result

Example: service
composition

broker => (date).(
 (call bologna(date) |
 call azores(date) |
 call lisbon(date)) > x y >
 call min(x,y) > m > m)

a service
definition

call a service to
compute the min

read the result

return
it

Clients won’t notice the
difference

• The client

• Interaction as before

broker <= ... | broker => ...

broker <= 31Jul2007.(price) {use-price}

Clients won’t notice the
difference

• The client

• Interaction as before

broker <= ... | broker => ...

broker <= 31Jul2007.(price) {use-price}

Central
to

services!

Syntax
When the service provider (⇒) and the service client

(⇐) get together, by means, e.g., of parallel composition, a
conversation takes place, and values are exchanged in both
directions.

Now suppose that a broker comes to the market trying to
provide better deals for its clients. The broker asks prices
to three hotels that it knows of, waits for two results, and
publishes the best offer of the two. Calling the services for
a given date is as above:

bologna ⇐ date . (p r i ce1) . . . |
azores ⇐ date . (p r i ce2) . . . |
l i s b o n ⇐ date . (p r i ce3) . . .

In order to collect the prices, we introduce a stream con-
structor, playing the role of a service orchestrator. The var-
ious prices are fed into the stream; a different process reads
the stream. We write it as follows.

stream
bologna ⇐ date . (p r i ce1) . feed pr i ce1 |
azores ⇐ date . (p r i ce2) . feed pr i ce2 |
l i s b o n ⇐ date . (p r i ce3) . feed pr i ce3

as f in
f (x) . f (y). < publ ish−the−min−of−x−and−y>

To write price1 into a stream we use the syntax
feed price1. To read a value from stream f we use
f (x).<use−x>. Writing is an anonymous operation (feeds
to the nearest enclosing stream), whereas reading is named.
The above pattern is so common that we provide a spe-
cial syntax for it, inspired by Orc (the various abbreviations
used in this paper are summarized in Figure 7).

(c a l l bologna (date) |
c a l l azores (date) |
c a l l l i s b o n (date)) >2

x y > <publ ish−the−min−of−x−and−y>

To complete the example we rely on a min service, chain-
ing the first two answers, and publishing the result.

broker ⇒ (date) . (
(c a l l bologna (date) |

c a l l azores (date) |
c a l l l i s b o n (date)) >2

x y > c a l l min (x , y) >1 m > m)

Notice that a client interacts with the broker as if it was
interacting with a particular hotel. The downside is that the
client does not know which hotel offers the best price; we
leave it to the reader to adapt the example as required.

Further examples can be found in Section 4.

3 The SSCC calculus

This section presents the syntax and the operational se-
mantics of SSCC.

Processes are built using three kinds of identifiers: ser-
vice names ranged over by a, b, x, y, . . . , stream names
ranged over by f, g, . . . , and process variables ranged over

P,Q ::= Processes
P |Q Parallel composition

| (νa)P Name restriction
| 0 Terminated process
| X Process variable
| rec X.P Recursive process definition
| a⇒ P Service definition
| a⇐ P Service invocation
| v.P Value sending
| (x)P Value reception
| stream P as f inQ Stream
| feed v.P Feed the process’ stream
| f(x).P Read from a stream

u, v ::= Values
a Service name

| unit Unit value

Figure 1. The syntax of SSCC

by X, Y, The grammar in Figure 1 defines the syntax of
processes.

The first five cases of the grammar introduce standard
process calculi operators: parallel composition, restriction
(only for service names), the terminated process, and recur-
sion. We then have two constructs to build services: def-
inition (or provider) and invocation (or client). Both are
defined by their name a and protocol P . Service definition
and service invocation are symmetric (differently from [4]).
Service protocols are built using value sending and receiv-
ing, allowing bidirectional communication between clients
and servers. Finally there are the three constructs for service
orchestration, which constitute the main novelty of SSCC.
The stream construct declares a stream f for communica-
tion from P to Q. P can insert a value v into the stream
using feed v.P ′, and Q can read from there using f(x).Q′.
Notice that stream names cannot be communicated, thus
they model static channels.

Processes at runtime exploit an extended syntax: the in-
teraction of a service definition and a service invocation
produces an active session. Also, values in the stream are
stored together with the stream definition. We introduce
a fourth kind of identifier: session names, use r, s, . . . to
range over them, and use n, m, . . . to range over both ses-
sion and service names. The grammar in Figure 2 defines
the syntax of runtime processes.

We use r "# P to denote both r ! P and r " P , and
we assume that when multiple "# appear in the same rule
they are instantiated in the same way, and that if "# ap-
pears too then it denotes the opposite instantiation. The
constructor stream P as f inQ in Figure 1 is an abbrevia-

3

Stream

Protocol

Service

Process
calculus

Operational semantics:
service invocation

bologna =>
(date) {...date...}.price

bologna <=
31Jul2007.(price)

{...price...}

Operational semantics:
service invocation

bologna =>
(date) {...date...}.price

bologna <=
31Jul2007.(price)

{...price...}

nu r
r :> (date)

{...date...}.price

r :>
31Jul2007.(price)

{...price...}

Operational semantics:
service invocation

bologna =>
(date) {...date...}.price

bologna <=
31Jul2007.(price)

{...price...}

nu r
r :> (date)

{...date...}.price

r :>
31Jul2007.(price)

{...price...}

new
session
channel

Operational semantics:
protocol

r|>(date)
{...date...}.price

r|> 31Jul2007.
(price) {...price...}

Operational semantics:
protocol

r|>(date)
{...date...}.price

r|> 31Jul2007.
(price) {...price...}

r|> {...
31Jul2007...}.price

r|>(price)
{...price...}

Operational semantics:
streams

stream
 ... |feed 196 |...
as f in
 f(x).f(y).{...x...y...}

Operational semantics:
streams

stream
 ... |feed 196 |...
as f in
 f(x).f(y).{...x...y...}

stream
 ... |nil |...
as f=196 in
 f(x).f(y).{...x...y...}

Operational semantics:
streams

stream
 ... |feed 196 |...
as f in
 f(x).f(y).{...x...y...}

enqueue

stream
 ... |nil |...
as f=196 in
 f(x).f(y).{...x...y...}

Operational semantics:
streams

stream
 ... |nil|...
as f=196 in
 f(x).f(y).{...x...y...}

Operational semantics:
streams

stream
 ... |nil|...
as f=196 in
 f(x).f(y).{...x...y...}

stream
 ... |nil|...
as f in
 f(y).{...196...y...}

Operational semantics:
streams

dequeue

stream
 ... |nil|...
as f=196 in
 f(x).f(y).{...x...y...}

stream
 ... |nil|...
as f in
 f(y).{...196...y...}

Reduction semantics

• Structural congruence - allows the
syntactic rearrangement of terms

(νn)P |Q ≡ (νn)(P |Q) if n /∈ fn(Q) r "# (νa)P ≡ (νa)(r "# P) (S-EXTR-PAR, S-EXTR-SESS)
stream (νa)P as f = $v inQ ≡ (νa)(stream P as f = $v inQ) if a /∈ fn(Q) ∪ Set($v) (S-EXTR-STREAML)
stream P as f = $v in (νa)Q ≡ (νa)(stream P as f = $v inQ) if a /∈ fn(P) ∪ Set($v) (S-EXTR-STREAMR)

(νn)(νm)P ≡ (νm)(νn)P (νa)0 ≡ 0 rec X.P ≡ P [rec X.P/X] (S-SWAP, S-COLLECT, S-REC)

Figure 3. Structural congruence

D!, " does not bind r or a r /∈ fn(P) ∪ fn(Q) ∪ fn(D!, ")
D!a⇒ P, a⇐ Q"→ (νr)D!r ! P, r " Q" (R-SYNC)

D!, ", C!", and C′!" do not bind r or v
C!" and C′!" do not contain sessions around the •

(νr)D!r "# C!v.P ", r"#C′!(x)Q""→ (νr)D!r "# C!P ", r"#C′!Q[v/x]"" (R-COMM)

C!" does not bind w • does not occur in the left part of a stream context
stream C!feed w.P " as f = $v inQ→ stream C!P " as f = w : :$v inQ

(R-FEED)

C!" does not bind w or f

stream P as f = $v : : w in C!f(x).Q"→ stream P as f = $v in C!Q[w/x]" (R-READ)

P → P ′

C!P "→ C!P ′"
Q ≡ P → P ′ ≡ Q′

Q→ Q′ (R-CONG, R-STR)

Figure 5. Reduction relation

call a(x1 ,..., xn) # a ⇐ x1...xn.(y) feed y

P >n x1 ... xn > Q # stream P as f in f (x1)... f (xn)Q

P > x > Q # stream P as f in rec X.f (x)(P | X)

a * ⇒ P # rec X. a ⇒ (P | X)

Figure 7. Derived constructs

4 Further examples

This section explores examples that highlight the versa-
tility of SSCC. We start by discussing a few macros (see
Figure 7) that speed up modeling and suggest how Orc can
be mapped in SSCC. The first one invokes an activity (a
service which gives back one result) and makes the result
available via a feed. The second macro models sequential
composition, with parameter passing. The third one more
closely models Orc sequential composition, since an in-
stance of Q is executed for each value received from P .
The last macro allows to define permanent services.

Example 4.1 (Fork-join) This example shows that named
streams can be handy. Fork-join is a pattern that spawns
two threads, and resumes computation after receiving a
value from each thread. In the example below, services a
and b are run in parallel; call a feeds the first result pro-
duced by the service into stream f , and similarly for call b

and stream g.

fo rk−and− j o i n ∗⇒ (a) (b) (
stream c a l l a as f in

stream c a l l b as g in
f (x) . g (y) . x . y)

The example is inspired by Orc [13, 16] where, but here we
do not kill service invocations a and b, instead let them run
to completion. Orc is not able to match our semantics: only
the where construct can read a single value from an expres-
sion, and that necessarily means terminating the evaluation
of the expression. We feel that termination should be dis-
tinct from normal orchestration.

It is difficult to model the same pattern in SCC too, since
the two clients should use return to make their results avail-
able, but the two values would be mixed. Auxiliary services
are required to match this semantics.

Example 4.2 (Memory cell) Even if a memory cell is not
a common scenario in SOC, stateful services are. Examples
abound in the literature, from data-structures to weblog up-
date [4]. Contrary to SCC [4], our language allows writ-
ing stateful services without exploiting service termination.
Inspired in the encoding of objects in the pi-calculus [18],
we set up a simple, ephemeral, service to produce a value:
buffer ⇒ v. Service get calls the buffer service to obtain
its value (thus consuming the service provider), replies the
value to the client, and replaces the buffer service.

get ∗⇒ c a l l b u f f e r >1 v > (v | b u f f e r ⇒ v)

5

Reduction semantics

• Structural congruence - allows the
syntactic rearrangement of terms

(νn)P |Q ≡ (νn)(P |Q) if n /∈ fn(Q) r "# (νa)P ≡ (νa)(r "# P) (S-EXTR-PAR, S-EXTR-SESS)
stream (νa)P as f = $v inQ ≡ (νa)(stream P as f = $v inQ) if a /∈ fn(Q) ∪ Set($v) (S-EXTR-STREAML)
stream P as f = $v in (νa)Q ≡ (νa)(stream P as f = $v inQ) if a /∈ fn(P) ∪ Set($v) (S-EXTR-STREAMR)

(νn)(νm)P ≡ (νm)(νn)P (νa)0 ≡ 0 rec X.P ≡ P [rec X.P/X] (S-SWAP, S-COLLECT, S-REC)

Figure 3. Structural congruence

D!, " does not bind r or a r /∈ fn(P) ∪ fn(Q) ∪ fn(D!, ")
D!a⇒ P, a⇐ Q"→ (νr)D!r ! P, r " Q" (R-SYNC)

D!, ", C!", and C′!" do not bind r or v
C!" and C′!" do not contain sessions around the •

(νr)D!r "# C!v.P ", r"#C′!(x)Q""→ (νr)D!r "# C!P ", r"#C′!Q[v/x]"" (R-COMM)

C!" does not bind w • does not occur in the left part of a stream context
stream C!feed w.P " as f = $v inQ→ stream C!P " as f = w : :$v inQ

(R-FEED)

C!" does not bind w or f

stream P as f = $v : : w in C!f(x).Q"→ stream P as f = $v in C!Q[w/x]" (R-READ)

P → P ′

C!P "→ C!P ′"
Q ≡ P → P ′ ≡ Q′

Q→ Q′ (R-CONG, R-STR)

Figure 5. Reduction relation

call a(x1 ,..., xn) # a ⇐ x1...xn.(y) feed y

P >n x1 ... xn > Q # stream P as f in f (x1)... f (xn)Q

P > x > Q # stream P as f in rec X.f (x)(P | X)

a * ⇒ P # rec X. a ⇒ (P | X)

Figure 7. Derived constructs

4 Further examples

This section explores examples that highlight the versa-
tility of SSCC. We start by discussing a few macros (see
Figure 7) that speed up modeling and suggest how Orc can
be mapped in SSCC. The first one invokes an activity (a
service which gives back one result) and makes the result
available via a feed. The second macro models sequential
composition, with parameter passing. The third one more
closely models Orc sequential composition, since an in-
stance of Q is executed for each value received from P .
The last macro allows to define permanent services.

Example 4.1 (Fork-join) This example shows that named
streams can be handy. Fork-join is a pattern that spawns
two threads, and resumes computation after receiving a
value from each thread. In the example below, services a
and b are run in parallel; call a feeds the first result pro-
duced by the service into stream f , and similarly for call b

and stream g.

fo rk−and− j o i n ∗⇒ (a) (b) (
stream c a l l a as f in

stream c a l l b as g in
f (x) . g (y) . x . y)

The example is inspired by Orc [13, 16] where, but here we
do not kill service invocations a and b, instead let them run
to completion. Orc is not able to match our semantics: only
the where construct can read a single value from an expres-
sion, and that necessarily means terminating the evaluation
of the expression. We feel that termination should be dis-
tinct from normal orchestration.

It is difficult to model the same pattern in SCC too, since
the two clients should use return to make their results avail-
able, but the two values would be mixed. Auxiliary services
are required to match this semantics.

Example 4.2 (Memory cell) Even if a memory cell is not
a common scenario in SOC, stateful services are. Examples
abound in the literature, from data-structures to weblog up-
date [4]. Contrary to SCC [4], our language allows writ-
ing stateful services without exploiting service termination.
Inspired in the encoding of objects in the pi-calculus [18],
we set up a simple, ephemeral, service to produce a value:
buffer ⇒ v. Service get calls the buffer service to obtain
its value (thus consuming the service provider), replies the
value to the client, and replaces the buffer service.

get ∗⇒ c a l l b u f f e r >1 v > (v | b u f f e r ⇒ v)

5

(νn)P |Q ≡ (νn)(P |Q) if n /∈ fn(Q) r "# (νa)P ≡ (νa)(r "# P) (S-EXTR-PAR, S-EXTR-SESS)
stream (νa)P as f = $v inQ ≡ (νa)(stream P as f = $v inQ) if a /∈ fn(Q) ∪ Set($v) (S-EXTR-STREAML)
stream P as f = $v in (νa)Q ≡ (νa)(stream P as f = $v inQ) if a /∈ fn(P) ∪ Set($v) (S-EXTR-STREAMR)

(νn)(νm)P ≡ (νm)(νn)P (νa)0 ≡ 0 rec X.P ≡ P [rec X.P/X] (S-SWAP, S-COLLECT, S-REC)

Figure 3. Structural congruence

D!, " does not bind r or a r /∈ fn(P) ∪ fn(Q) ∪ fn(D!, ")
D!a⇒ P, a⇐ Q"→ (νr)D!r ! P, r " Q" (R-SYNC)

D!, ", C!", and C′!" do not bind r or v
C!" and C′!" do not contain sessions around the •

(νr)D!r "# C!v.P ", r"#C′!(x)Q""→ (νr)D!r "# C!P ", r"#C′!Q[v/x]"" (R-COMM)

C!" does not bind w • does not occur in the left part of a stream context
stream C!feed w.P " as f = $v inQ→ stream C!P " as f = w : :$v inQ

(R-FEED)

C!" does not bind w or f

stream P as f = $v : : w in C!f(x).Q"→ stream P as f = $v in C!Q[w/x]" (R-READ)

P → P ′

C!P "→ C!P ′"
Q ≡ P → P ′ ≡ Q′

Q→ Q′ (R-CONG, R-STR)

Figure 5. Reduction relation

call a(x1 ,..., xn) # a ⇐ x1...xn.(y) feed y

P >n x1 ... xn > Q # stream P as f in f (x1)... f (xn)Q

P > x > Q # stream P as f in rec X.f (x)(P | X)

a * ⇒ P # rec X. a ⇒ (P | X)

Figure 7. Derived constructs

4 Further examples

This section explores examples that highlight the versa-
tility of SSCC. We start by discussing a few macros (see
Figure 7) that speed up modeling and suggest how Orc can
be mapped in SSCC. The first one invokes an activity (a
service which gives back one result) and makes the result
available via a feed. The second macro models sequential
composition, with parameter passing. The third one more
closely models Orc sequential composition, since an in-
stance of Q is executed for each value received from P .
The last macro allows to define permanent services.

Example 4.1 (Fork-join) This example shows that named
streams can be handy. Fork-join is a pattern that spawns
two threads, and resumes computation after receiving a
value from each thread. In the example below, services a
and b are run in parallel; call a feeds the first result pro-
duced by the service into stream f , and similarly for call b

and stream g.

fo rk−and− j o i n ∗⇒ (a) (b) (
stream c a l l a as f in

stream c a l l b as g in
f (x) . g (y) . x . y)

The example is inspired by Orc [13, 16] where, but here we
do not kill service invocations a and b, instead let them run
to completion. Orc is not able to match our semantics: only
the where construct can read a single value from an expres-
sion, and that necessarily means terminating the evaluation
of the expression. We feel that termination should be dis-
tinct from normal orchestration.

It is difficult to model the same pattern in SCC too, since
the two clients should use return to make their results avail-
able, but the two values would be mixed. Auxiliary services
are required to match this semantics.

Example 4.2 (Memory cell) Even if a memory cell is not
a common scenario in SOC, stateful services are. Examples
abound in the literature, from data-structures to weblog up-
date [4]. Contrary to SCC [4], our language allows writ-
ing stateful services without exploiting service termination.
Inspired in the encoding of objects in the pi-calculus [18],
we set up a simple, ephemeral, service to produce a value:
buffer ⇒ v. Service get calls the buffer service to obtain
its value (thus consuming the service provider), replies the
value to the client, and replaces the buffer service.

get ∗⇒ c a l l b u f f e r >1 v > (v | b u f f e r ⇒ v)

5

• Allows reduction at certain places in a
term

Reduction semantics

• Structural congruence - allows the
syntactic rearrangement of terms

(νn)P |Q ≡ (νn)(P |Q) if n /∈ fn(Q) r "# (νa)P ≡ (νa)(r "# P) (S-EXTR-PAR, S-EXTR-SESS)
stream (νa)P as f = $v inQ ≡ (νa)(stream P as f = $v inQ) if a /∈ fn(Q) ∪ Set($v) (S-EXTR-STREAML)
stream P as f = $v in (νa)Q ≡ (νa)(stream P as f = $v inQ) if a /∈ fn(P) ∪ Set($v) (S-EXTR-STREAMR)

(νn)(νm)P ≡ (νm)(νn)P (νa)0 ≡ 0 rec X.P ≡ P [rec X.P/X] (S-SWAP, S-COLLECT, S-REC)

Figure 3. Structural congruence

D!, " does not bind r or a r /∈ fn(P) ∪ fn(Q) ∪ fn(D!, ")
D!a⇒ P, a⇐ Q"→ (νr)D!r ! P, r " Q" (R-SYNC)

D!, ", C!", and C′!" do not bind r or v
C!" and C′!" do not contain sessions around the •

(νr)D!r "# C!v.P ", r"#C′!(x)Q""→ (νr)D!r "# C!P ", r"#C′!Q[v/x]"" (R-COMM)

C!" does not bind w • does not occur in the left part of a stream context
stream C!feed w.P " as f = $v inQ→ stream C!P " as f = w : :$v inQ

(R-FEED)

C!" does not bind w or f

stream P as f = $v : : w in C!f(x).Q"→ stream P as f = $v in C!Q[w/x]" (R-READ)

P → P ′

C!P "→ C!P ′"
Q ≡ P → P ′ ≡ Q′

Q→ Q′ (R-CONG, R-STR)

Figure 5. Reduction relation

call a(x1 ,..., xn) # a ⇐ x1...xn.(y) feed y

P >n x1 ... xn > Q # stream P as f in f (x1)... f (xn)Q

P > x > Q # stream P as f in rec X.f (x)(P | X)

a * ⇒ P # rec X. a ⇒ (P | X)

Figure 7. Derived constructs

4 Further examples

This section explores examples that highlight the versa-
tility of SSCC. We start by discussing a few macros (see
Figure 7) that speed up modeling and suggest how Orc can
be mapped in SSCC. The first one invokes an activity (a
service which gives back one result) and makes the result
available via a feed. The second macro models sequential
composition, with parameter passing. The third one more
closely models Orc sequential composition, since an in-
stance of Q is executed for each value received from P .
The last macro allows to define permanent services.

Example 4.1 (Fork-join) This example shows that named
streams can be handy. Fork-join is a pattern that spawns
two threads, and resumes computation after receiving a
value from each thread. In the example below, services a
and b are run in parallel; call a feeds the first result pro-
duced by the service into stream f , and similarly for call b

and stream g.

fo rk−and− j o i n ∗⇒ (a) (b) (
stream c a l l a as f in

stream c a l l b as g in
f (x) . g (y) . x . y)

The example is inspired by Orc [13, 16] where, but here we
do not kill service invocations a and b, instead let them run
to completion. Orc is not able to match our semantics: only
the where construct can read a single value from an expres-
sion, and that necessarily means terminating the evaluation
of the expression. We feel that termination should be dis-
tinct from normal orchestration.

It is difficult to model the same pattern in SCC too, since
the two clients should use return to make their results avail-
able, but the two values would be mixed. Auxiliary services
are required to match this semantics.

Example 4.2 (Memory cell) Even if a memory cell is not
a common scenario in SOC, stateful services are. Examples
abound in the literature, from data-structures to weblog up-
date [4]. Contrary to SCC [4], our language allows writ-
ing stateful services without exploiting service termination.
Inspired in the encoding of objects in the pi-calculus [18],
we set up a simple, ephemeral, service to produce a value:
buffer ⇒ v. Service get calls the buffer service to obtain
its value (thus consuming the service provider), replies the
value to the client, and replaces the buffer service.

get ∗⇒ c a l l b u f f e r >1 v > (v | b u f f e r ⇒ v)

5

Sample
rules!

(νn)P |Q ≡ (νn)(P |Q) if n /∈ fn(Q) r "# (νa)P ≡ (νa)(r "# P) (S-EXTR-PAR, S-EXTR-SESS)
stream (νa)P as f = $v inQ ≡ (νa)(stream P as f = $v inQ) if a /∈ fn(Q) ∪ Set($v) (S-EXTR-STREAML)
stream P as f = $v in (νa)Q ≡ (νa)(stream P as f = $v inQ) if a /∈ fn(P) ∪ Set($v) (S-EXTR-STREAMR)

(νn)(νm)P ≡ (νm)(νn)P (νa)0 ≡ 0 rec X.P ≡ P [rec X.P/X] (S-SWAP, S-COLLECT, S-REC)

Figure 3. Structural congruence

D!, " does not bind r or a r /∈ fn(P) ∪ fn(Q) ∪ fn(D!, ")
D!a⇒ P, a⇐ Q"→ (νr)D!r ! P, r " Q" (R-SYNC)

D!, ", C!", and C′!" do not bind r or v
C!" and C′!" do not contain sessions around the •

(νr)D!r "# C!v.P ", r"#C′!(x)Q""→ (νr)D!r "# C!P ", r"#C′!Q[v/x]"" (R-COMM)

C!" does not bind w • does not occur in the left part of a stream context
stream C!feed w.P " as f = $v inQ→ stream C!P " as f = w : :$v inQ

(R-FEED)

C!" does not bind w or f

stream P as f = $v : : w in C!f(x).Q"→ stream P as f = $v in C!Q[w/x]" (R-READ)

P → P ′

C!P "→ C!P ′"
Q ≡ P → P ′ ≡ Q′

Q→ Q′ (R-CONG, R-STR)

Figure 5. Reduction relation

call a(x1 ,..., xn) # a ⇐ x1...xn.(y) feed y

P >n x1 ... xn > Q # stream P as f in f (x1)... f (xn)Q

P > x > Q # stream P as f in rec X.f (x)(P | X)

a * ⇒ P # rec X. a ⇒ (P | X)

Figure 7. Derived constructs

4 Further examples

This section explores examples that highlight the versa-
tility of SSCC. We start by discussing a few macros (see
Figure 7) that speed up modeling and suggest how Orc can
be mapped in SSCC. The first one invokes an activity (a
service which gives back one result) and makes the result
available via a feed. The second macro models sequential
composition, with parameter passing. The third one more
closely models Orc sequential composition, since an in-
stance of Q is executed for each value received from P .
The last macro allows to define permanent services.

Example 4.1 (Fork-join) This example shows that named
streams can be handy. Fork-join is a pattern that spawns
two threads, and resumes computation after receiving a
value from each thread. In the example below, services a
and b are run in parallel; call a feeds the first result pro-
duced by the service into stream f , and similarly for call b

and stream g.

fo rk−and− j o i n ∗⇒ (a) (b) (
stream c a l l a as f in

stream c a l l b as g in
f (x) . g (y) . x . y)

The example is inspired by Orc [13, 16] where, but here we
do not kill service invocations a and b, instead let them run
to completion. Orc is not able to match our semantics: only
the where construct can read a single value from an expres-
sion, and that necessarily means terminating the evaluation
of the expression. We feel that termination should be dis-
tinct from normal orchestration.

It is difficult to model the same pattern in SCC too, since
the two clients should use return to make their results avail-
able, but the two values would be mixed. Auxiliary services
are required to match this semantics.

Example 4.2 (Memory cell) Even if a memory cell is not
a common scenario in SOC, stateful services are. Examples
abound in the literature, from data-structures to weblog up-
date [4]. Contrary to SCC [4], our language allows writ-
ing stateful services without exploiting service termination.
Inspired in the encoding of objects in the pi-calculus [18],
we set up a simple, ephemeral, service to produce a value:
buffer ⇒ v. Service get calls the buffer service to obtain
its value (thus consuming the service provider), replies the
value to the client, and replaces the buffer service.

get ∗⇒ c a l l b u f f e r >1 v > (v | b u f f e r ⇒ v)

5

• Allows reduction at certain places in a
term

Labeled transition
system

• Sample rule:

• Correspondence

• Leads to bisimulation-based
equivalences

v.P
↑v−→ P (x)P ↓v−→ P [v/x] feed v.P

⇑v−→ P f(x).P f⇓v−−→ P [v/x]
(L-SEND, L-RECEIVE, L-FEED, L-READ)

r /∈ fn(P)

a ⇐ P
a⇐(r)−−−→ r ! P

r /∈ fn(P)

a ⇒ P
a⇒(r)−−−→ r " P

(L-CALL, L-DEF)

P
µ−→ P ′ µ &=⇑v bn(µ) ∩ (fn(Q) ∪ Set(!w)) = ∅

stream P as f = !w inQ
µ−→ stream P ′ as f = !w inQ

Q
µ−→ Q′ µ &= f ⇓v bn(µ) ∩ (fn(P) ∪ Set(!w)) = ∅

stream P as f = !w inQ
µ−→ stream P as f = !w inQ′

(L-STREAM-PASS-P, L-STREAM-PASS-Q)

P
⇑v−→ P ′

stream P as f = !w inQ
τ−→ stream P ′ as f = v : : !w inQ

Q
f⇓v−−→ Q′

stream P as f = !w : : v inQ
τ−→ stream P as f = !w inQ′

(L-STREAM-FEED, L-STREAM-CONS)

P
µ−→ P ′ bn(µ) ∩ fn(Q) = ∅

P |Q µ−→ P ′|Q
P

(v−→ P ′

r "# P
r"#(v−−−→ r "# P ′

P
µ−→ P ′ µ &=, v r /∈ bn(µ)

r "# P
µ−→ r "# P ′

(L-PAR, L-SESS-VAL, L-SESS-PASS)

P
r"#↑v−−−→ P ′ Q

r"#↓v−−−→ Q′

stream P as f = !w inQ
rτ−→ stream P ′ as f = !w inQ′

P
a⇒(r)−−−→ P ′ Q

a⇐(r)−−−→ Q′

stream P as f = !w inQ
τ−→ (νr)stream P ′ as f = !w inQ′

(L-SESS-COM-STREAM,L-SERV-COM-STREAM)

P
r"#↑v−−−→ P ′ Q

r"#↓v−−−→ Q′

P |Q rτ−→ P ′|Q′
P

a⇒(r)−−−→ P ′ Q
a⇐(r)−−−→ Q′

P |Q τ−→ (νr)(P ′|Q′)
P

µ−→ P ′, P ≡ Q, P ′ ≡ Q′

Q
µ−→ Q′

(L-SESS-COM-PAR, L-SERV-COM-PAR, L-STRUCT)

P
µ−→ P ′ n /∈ n(µ)

(νn)P µ−→ (νn)P ′
P

rτ−→ P ′

(νr)P τ−→ (νr)P ′
P

µ−→ P ′ µ ∈ {↑a, r "#↑a,⇑a}

(νa)P
(a)µ−−−→ P ′

(L-RES,L-SESS-RES,L-EXTR)

Figure 6. Labeled transition system

Service set calls the buffer service (in order to consume it),
then gets the new value from the client and creates a buffer
with this value.

set ∗⇒ c a l l b u f f e r >1 > (w) (b u f f e r ⇒ w)

Finally, the cell service sets up three services—get, set, and
buffer—sends the first two to the client, and keeps buffer
locally with initial value 0.

c e l l ∗⇒ (ν bu f fe r , get , se t) . get . se t .
(b u f f e r ⇒ 0 |

get ∗⇒ c a l l b u f f e r >1 v >
(v | b u f f e r ⇒ v) |

set ∗⇒ c a l l b u f f e r >1 > (w) (b u f f e r ⇒ w))

Example 4.3 (Interleaved parallel routing) The work-
flow patterns of van der Aalst [20] provide a well-known
benchmark of orchestration scenarios. Even if these
are aimed at workflow languages (and thus, e.g., do not
consider conversations or dynamic creation of services), it
is interesting to look at them. All the patterns that do not
require killing ongoing computations can be implemented.
See [14] for a complete description.

In interleaved parallel routing workflow pattern, a set of
activities is executed in arbitrary order, and no two activi-
ties are executed at the same moment.

We assume that each service (a1 to an) signals termina-
tion by sending a value.

Contrary to Orc [8], SSCC is expressive enough to de-
scribe the pattern within the language. This requires a back-
ward communication w.r.t. the direction of the stream, and
shows that unidirectional streams are expressive enough. A
back service relays the values from the right to the left part
of a stream construct, where they are fed into the stream.

i n t e r l e a v e ⇒ (a1) . . . (an) (ν back) (
stream

back ∗⇒ (x) feed x
as l ock in

back ⇐ unit |
l ock () . a1 ⇐ (x) (back ⇐ unit) | . . . |
l ock () . an ⇐ (x) (back ⇐ unit))

Example 4.4 (Complex protocols) One of the main limi-
tations of other proposals, e.g. Orc, is that they allow just
very simple kinds of client-server interactions. We show
here how sessions can be used to overcome this limitation.

6

read v from
stream f

P,Q ::= Processes
. . . as in Figure 1

| r ! P Server session
| r " P Client session
| (νr)P Session restriction
| stream P as f = "v inQ Stream with values

Figure 2. The run-time syntax of SSCC

C!" ::= • | C!"|Q | P |C!"
| (νn)C!" | stream C!" as f = "v inQ

| stream P as f = "v in C!" | r #$ C!"
D!, " ::= C′!"|C′′!" | stream C′!" as f = "v in C′′!"

Figure 4. Active and double contexts

tion of stream P as f = 〈〉 inQ in Figure 2.
Streams can be considered either ordered or unordered.

An unordered stream is a multiset, while an ordered one
is a queue. In most cases the difference is not important.
We write w :: "v for the stream obtained by adding w to "v,
and "v :: w for a stream from which w can be removed.
In the latter case "v is what we get after removing w. The
semantics that we present can deal with both ordered and
unordered streams, by just changing the definition of ‘::’.

As for bindings, name x is bound in (x)P and in
f(x).P ; name n is bound in (νn)P ; stream f is bound in
stream P as f inQ with scope Q; and process variable X is
bound in rec X.P . All bound identifiers are α-convertible.
Notation fn(P) denotes the set of free (service or session)
names in P . Similarly, bn(P) is the set of bound names.
We require processes to have no free process variables.

SSCC exploits a standard structural congruence, simply
adding to that of the π-calculus axioms that deal with scope
extrusion for sessions and streams.

Definition 3.1 (Structural congruence) The rules in Fig-
ure 3, together with the commutative monoid rules for
(P, |,0), inductively define the structural congruence rela-
tion on processes.

Interactions can happen in different active contexts.
Since all our interactions are binary, we introduce also two-
holes contexts, which we call double contexts. The gram-
mar in Figure 4 generates active and double contexts. Ap-
plying a double context to two processes P1 and P2 pro-
duces the process obtained by replacing the first (in the pre-
fix visit of the syntax tree) hole • with P1 and the second
hole • with P2.

Definition 3.2 (Reduction semantics) The rules in Fig-
ure 5, together with symmetric rules of R-COMM and of

R-SYNC (swapping the processes in the two holes of D!, "),
inductively define the reduction relation on processes.

Rule R-SYNC allows a service invocation and a service
definition to interact. This interaction produces a pair of
complementary sessions, distinguished by a fresh restricted
name r. Notice that both the service invocation and the ser-
vice definition disappear. Rule R-COMM allows commu-
nication between corresponding sessions. Then there are
the two rules dealing with streams: rule R-FEED puts a
value in the stream while rule R-READ takes a value from
the stream. Finally rule R-CONG allows reductions to hap-
pen inside arbitrary active contexts, and rule R-STR exploits
structural congruence.

The reduction semantics is intuitive, but one based on
a labeled transition system (LTS, for short) is more conve-
nient for some proofs and allows to exploit bisimulation-
based techniques.

Definition 3.3 (LTS semantics) The rules in Figure 6, to-
gether with symmetric versions of rules L-SESS-COM-
STREAM and L-SERV-COM-STREAM, inductively define the
labeled transition system on processes.

We highlight some aspects that may be less clear, ex-
plaining at the same time the labels used. We use µ as
metavariable for labels. Label ↑ v denotes the output of
value v. Dually, ↓ v is the input of value v. We use % v
to denote either ↑ v or ↓ v. Also, a ⇒ (r) and a ⇐ (r)
denote respectively the invocation and the reception of an
invocation of a service a. Here r is the name of the new
session to be created and it is bound. Also, ⇑ v denotes
the feeding of v to a stream, while f ⇓ v is the read of
value v from stream f . Notice that the value taken in in-
put in rules L-RECEIVE and L-READ is guessed: this is an
early semantics. When an input or an output label crosses
a session construct (rule L-SESS-VAL), we have to add to
the label its name and whether it is a server or client session
(for example ↓ v may become r " ↓v). Notice that we can
have two contexts causing interaction: parallel composition
and stream. The label denoting a conversation step in a free
session r is rτ , and a label τ is obtained only when r is re-
stricted (rule L-SESS-RES). Thus a τ action can be obtained
in four cases: a communication inside a restricted session,
a service invocation, a feed or a read from a stream. Fi-
nally, bound actions (a)µ are like the respective free coun-
terparts µ, but here a is extruded. There is no need to deal
explicitly with these actions since, if the interaction is in-
ternal to the system, structural congruence can be used to
broaden the scope of a.

We conclude this section with a theorem relating the re-
duction and the LTS semantics.

Theorem 3.1 (Correspondence theorem) For each P
and Q, P → Q if and only if P

τ−→ Q.

4

What can go wrong?
I: thread sync

25.P 39.Q

What can go wrong?
I: thread sync

two
outputs -> no

sync

25.P 39.Q

What can go wrong?
I: thread sync

two
outputs -> no

sync

25.P 39.Q

25.P nil

What can go wrong?
I: thread sync

two
outputs -> no

sync

nobody
listening -> no

sync

25.P 39.Q

25.P nil

What can go wrong?
I: thread sync

two
outputs -> no

sync

nobody
listening -> no

syncplus duals of
the above

25.P 39.Q

25.P nil

What can go wrong?
II: intra-thread comm

25.P | (x).Q

What can go wrong?
II: intra-thread comm

am I
writing or
reading?

25.P | (x).Q

What can go wrong?
II: intra-thread comm

am I
writing or
reading?

25.P | (x).Q

25.P | 39.Q

What can go wrong?
II: intra-thread comm

am I
writing or
reading?

am I
writing or
writing?

25.P | (x).Q

25.P | 39.Q

What can go wrong?
II: intra-thread comm

am I
writing or
reading?

am I
writing or
writing?

plus duals of
the above

25.P | (x).Q

25.P | 39.Q

The type of a protocol

(date) {query-the-hotel-db}.price

The type of a protocol

(date) {query-the-hotel-db}.price

?Date.!Int.end

The type of a protocol

(date) {query-the-hotel-db}.price

?Date.!Int.end
end of the

protocol

The type of a protocol

(date) {query-the-hotel-db}.price

?Date.!Int.end
end of the

protocol

no input or
output here

The type of a protocol

(date) {query-the-hotel-db}.price

?Date.!Int.end
end of the

protocol

no input or
output here

31Jul2007.(price) {use-price}

The type of a protocol

(date) {query-the-hotel-db}.price

?Date.!Int.end
end of the

protocol

no input or
output here

31Jul2007.(price) {use-price}

!Date.?Int.end

Compatible protocols

?Date.!Int.end

!Date.?Int.end

Compatible protocols

?Date.!Int.end

the type
of the service

provider

!Date.?Int.end

Compatible protocols

?Date.!Int.end

the type
of the service

provider

!Date.?Int.end

the type of
the client

Compatible protocols

?Date.!Int.end

the type
of the service

provider

!Date.?Int.end

the type of
the client

Compatible protocols

?Date.!Int.end

the type
of the service

provider

!Date.?Int.end

the type of
the client

Compatible
protocols ->

type safe

Types for streams

stream
 ...feed price1 |
 ...feed price2 |
 ...feed price3
as f in
 f(x).f(y).{publish-the-min-of-x-and-y}

Types for streams

stream
 ...feed price1 |
 ...feed price2 |
 ...feed price3
as f in
 f(x).f(y).{publish-the-min-of-x-and-y}

all feeds of
the same type

Types for streams

stream
 ...feed price1 |
 ...feed price2 |
 ...feed price3
as f in
 f(x).f(y).{publish-the-min-of-x-and-y}

all feeds of
the same type

all reads of
the same type

Types for streams

stream
 ...feed price1 |
 ...feed price2 |
 ...feed price3
as f in
 f(x).f(y).{publish-the-min-of-x-and-y}

all feeds of
the same type

all reads of
the same type

Streams
are

monomorphic

The type of a process is a
pair

(date).
stream
 ... |...feed price2 |...
as f in
 f(x).f(y).{publish-the-min-of-x-and-y}

The type of a process is a
pair

(?Date.!Int.end, Int)

(date).
stream
 ... |...feed price2 |...
as f in
 f(x).f(y).{publish-the-min-of-x-and-y}

The type of a process is a
pair

(?Date.!Int.end, Int)

(date).
stream
 ... |...feed price2 |...
as f in
 f(x).f(y).{publish-the-min-of-x-and-y}

The type of a process is a
pair

(?Date.!Int.end, Int)

the type
of the protocol

(date).
stream
 ... |...feed price2 |...
as f in
 f(x).f(y).{publish-the-min-of-x-and-y}

The type of a process is a
pair

(?Date.!Int.end, Int)

the type
of the protocol

the type of
the stream

(date).
stream
 ... |...feed price2 |...
as f in
 f(x).f(y).{publish-the-min-of-x-and-y}

Γ, x : T ′ ! P : (U, T)
Γ ! (x)P : (?T ′.U, T)

Γ ! P : (U, T) Γ ! a : [U]
Γ ! a ⇒ P : (end, T)

Γ ! P : (U, T) Γ ! Q : (end, T)
Γ ! P |Q : (U, T)

Γ ! P : (U, T) Γ, f : 〈T 〉 ! Q : (end, T ′)
Γ ! stream P as f inQ : (U, T ′)

Figure 1: The type system

1

Sample rules

Γ, x : T ′ ! P : (U, T)
Γ ! (x)P : (?T ′.U, T)

Γ ! P : (U, T) Γ ! a : [U]
Γ ! a ⇒ P : (end, T)

Γ ! P : (U, T) Γ ! Q : (end, T)
Γ ! P |Q : (U, T)

Γ ! P : (U, T) Γ, f : 〈T 〉 ! Q : (end, T ′)
Γ ! stream P as f inQ : (U, T ′)

Figure 1: The type system

1

Sample rulesinput
within a
session

Γ, x : T ′ ! P : (U, T)
Γ ! (x)P : (?T ′.U, T)

Γ ! P : (U, T) Γ ! a : [U]
Γ ! a ⇒ P : (end, T)

Γ ! P : (U, T) Γ ! Q : (end, T)
Γ ! P |Q : (U, T)

Γ ! P : (U, T) Γ, f : 〈T 〉 ! Q : (end, T ′)
Γ ! stream P as f inQ : (U, T ′)

Figure 1: The type system

1

Sample rulesinput
within a
session

service
definition

Γ, x : T ′ ! P : (U, T)
Γ ! (x)P : (?T ′.U, T)

Γ ! P : (U, T) Γ ! a : [U]
Γ ! a ⇒ P : (end, T)

Γ ! P : (U, T) Γ ! Q : (end, T)
Γ ! P |Q : (U, T)

Γ ! P : (U, T) Γ, f : 〈T 〉 ! Q : (end, T ′)
Γ ! stream P as f inQ : (U, T ′)

Figure 1: The type system

1

Sample rulesinput
within a
session

service
definition

parallel
composition

Γ, x : T ′ ! P : (U, T)
Γ ! (x)P : (?T ′.U, T)

Γ ! P : (U, T) Γ ! a : [U]
Γ ! a ⇒ P : (end, T)

Γ ! P : (U, T) Γ ! Q : (end, T)
Γ ! P |Q : (U, T)

Γ ! P : (U, T) Γ, f : 〈T 〉 ! Q : (end, T ′)
Γ ! stream P as f inQ : (U, T ′)

Figure 1: The type system

1

Sample rulesinput
within a
session

service
definition

parallel
composition

(empty)
stream

Type safety

• Subject reduction

• Type safety

“Well typed programs do not go
wrong”

If Γ ! P : (U, T) and P → P ′, then Γ ! P ′ : (U, T).

1

types
for the free
identifiers

thread-sync
 +

intra-thread comm

Further analyses
• Program equivalence (mentioned

before)

• congruence; axiomatic laws

• Deadlock avoidance:

• communication errors within a
session (addressed before)

• no service for a particular consumer
(several proposals in process calculi)

• read from an empty stream (see
paper)

Summary

• Presented language

“Stream-based Service Centered
Calculus”

describing services, conversations,
and orchestration

• Amenable to different sort of analyses

• Encoded all van der Aalst workflow
patterns -> expressiveness “test”

Future

http://www.sensoria-ist.eu/

• Develop bisimulation techniques

• Extend the language with some form of
failure/exception and corresponding
compensation mechanism

http://www.sensoria-ist.eu
http://www.sensoria-ist.eu

