
A reversible debugger for µOz

Claudio Antares Mezzina

SOA-FBK

December 10, 2012

joint work with Ivan Lanese

Mezzina (FBK) A reversible debugger for µOz December 10, 2012 1 / 21

Roadmap

1 µOz

2 Reversible Debuggers

3 µOz reversible debugger

µOz?

subset of Oz language [Van Roy et al.]

Higher-Order language

thread-based concurrency
asynchronous communication via ports (channels)

µOz advantages:

similar to HOπ
well-known stack-based abstract machine

Mezzina (FBK) A reversible debugger for µOz December 10, 2012 2 / 21

Syntax

S ::=

skip empty stm

S1 S2 sequence

let x = v in S end var declaration

if x then S1 else S2 end conditional

thread S end thread creation

let x = c in S end procedure declaration

{x ỹ} procedure call

let x = NewPort in S end port creation

{Send x y} send on a port

let x = { Receive y } in S end receive from a port

v ::= true | false
c ::= proc {x̃} S end

Mezzina (FBK) A reversible debugger for µOz December 10, 2012 3 / 21

µOz semantics

programs written as stacks of instructions

a rule transforms a pair (program,state) into a new pair

variables are always created fresh and never modified

sent values are variables names, not their contents

Mezzina (FBK) A reversible debugger for µOz December 10, 2012 4 / 21

µOz sample rules

R:var
〈let x = v in S end T 〉 〈S{x′

/x} T 〉
0 x′ = v

if x′ fresh

R:snd
〈{ Send x y } T 〉 T

x = ξ ‖ ξ : Q x = ξ ‖ ξ : y;Q

R:rcv
〈let x = { Receive y } in S end T 〉 〈S{x′

/x} T 〉

y = ξ ‖ ξ : Q; z ‖ z = w
y = ξ ‖ ξ : Q ‖
z = w ‖ x′ = w

if x′ fresh

Mezzina (FBK) A reversible debugger for µOz December 10, 2012 5 / 21

Reversing µOz

unique thread identifiers

threads endowed with a history

syntactic delimiters to statements, to delimit their scope

queues with histories

Mezzina (FBK) A reversible debugger for µOz December 10, 2012 6 / 21

Making let reversible

t[H]〈let x = v in S end T 〉 t[H ∗ x′]〈S{x′
/x} 〈esc T 〉〉

0 x′ = v
if x′ fresh

unique thread id and past history

history include the new action

scope delimiter

Mezzina (FBK) A reversible debugger for µOz December 10, 2012 7 / 21

Making let reversible

t[H]〈let x = v in S end T 〉 t[H ∗ x′]〈S{x′
/x} 〈esc T 〉〉

0 x′ = v
if x′ fresh

unique thread id and past history

history include the new action

scope delimiter

Mezzina (FBK) A reversible debugger for µOz December 10, 2012 7 / 21

Making let reversible

t[H]〈let x = v in S end T 〉 t[H ∗ x′]〈S{x′
/x} 〈esc T 〉〉

0 x′ = v
if x′ fresh

unique thread id and past history

history include the new action

scope delimiter

Mezzina (FBK) A reversible debugger for µOz December 10, 2012 7 / 21

Making let reversible

t[H]〈let x = v in S end T 〉 t[H ∗ x′]〈S{x′
/x} 〈esc T 〉〉

0 x′ = v
if x′ fresh

unique thread id and past history

history include the new action

scope delimiter

Mezzina (FBK) A reversible debugger for µOz December 10, 2012 7 / 21

Some rules

snd
t[H]〈{ Send x y } C〉 t[H ↑ x]C
x = ξ ‖ ξ : K|Kh x = ξ ‖ ξ : t :y;K|Kh

rcv
t[H]〈let y = { Receive x } in S end C〉 t[H ↓ x(y′)]〈S{y′/y} 〈esc C〉〉

θ ‖ ξ : K; t′ :z|Kh θ ‖ ξ : K|t′ :z, t;Kh ‖ y′ = w

if y′ fresh ∧ θ , x = ξ ‖ z = w

snd−1 t[H ↑ x]C t[H]〈{ Send x y } C〉
x = ξ ‖ ξ : t :y;K|Kh x = ξ ‖ ξ : K|Kh

rcv−1 t[H ↓ x(z)]〈S 〈esc C〉〉 t[H]〈let z = { Receive x } in S end C〉
z = w ‖ x = ξ ‖ ξ : K|t′ :y, t;Kh x = ξ ‖ ξ : K; t′ :y|Kh

Mezzina (FBK) A reversible debugger for µOz December 10, 2012 8 / 21

Roadmap

1 µOz

2 Reversible Debuggers

3 µOz reversible debugger

Motivations

From Omniscent Debugger

debugging is easier if you can go backward.

no “Whoops, I went too far” while debugging with breakpoints

no guessing where to put breakpoints

From UndoSoftware

Reversible debugging (also known as replay or historical debugging) allows
a developer to step or run an application backwards, and so quickly track
down the root-cause of even the most difficult bugs.

Mezzina (FBK) A reversible debugger for µOz December 10, 2012 9 / 21

Techniques

Three main techniques for reversible debugging:

Program instrumentation
ad-hoc function are added to the source code in order to revert it
instrumentation can be enabled/disabled for space reason
the programmer decides which code section to instrument = guessing

Replay [Bidirectional debugging]

instead of undoing the last n steps, the program is re-executed till a
point equivalent to going back of n steps

Checkpoint + replay [Igor]

periodically a checkpoint of the entire program is taken
restores a checkpoint + executes missing steps

Mezzina (FBK) A reversible debugger for µOz December 10, 2012 10 / 21

Cons of existing techniques

Usually is given to the user to trim the debugger

which portion of code to record/monitor?
what size of the buffer to use?

In multi-threaded system the execution is always the same (global
order among actions)

No causally consistent backward execution

What about using an interpreter of a reversible language?

program instrumentation “for free”

causally consistent

Mezzina (FBK) A reversible debugger for µOz December 10, 2012 11 / 21

Roadmap

1 µOz

2 Reversible Debuggers

3 µOz reversible debugger

µOz reversible debugger

Java based interpreter of both µOz forward and backward semantics

allows to roll-back a thread of n steps à la roll-π

causing the rollback of other threads

Mezzina (FBK) A reversible debugger for µOz December 10, 2012 12 / 21

Example of execution

let a = true in (1)

let b = false in (2)

let x = port in (3)

thread {send x a}; skip; {send x b} end; (4)

let y = {receive x} in skip end (5)

end (6)

end (7)

end (8)

at line (4) thread t1 is created from thread t0

t1 fully executes, then t0 fully executes

what should be the shape of t0 (and of the port) if t1 rolls of 3 steps?

Mezzina (FBK) A reversible debugger for µOz December 10, 2012 13 / 21

Desired execution

t0 let y = {receive x} in skip end

t1 {send x a}; skip; {send x b}
x ⊥

t0 is rolled-back enough in order to free the read value

No domino effect, causing t0 to fully roll-back

Mezzina (FBK) A reversible debugger for µOz December 10, 2012 14 / 21

Causal dependencies

send, receive and spawning operations create dependencies among
threads

sending on a channel makes values already present on it depending on
the send (FIFO queues)

reading from on a channel makes previous reads causally dependent
on it (LIFO history)

reading a value from a channel makes the reader causally dependent
from the sender

Mezzina (FBK) A reversible debugger for µOz December 10, 2012 15 / 21

Example: reversing a send

the red block depends on the pink ones and the blue ones

Mezzina (FBK) A reversible debugger for µOz December 10, 2012 16 / 21

Reverse Send

int reverse (· · ·)
{· · ·

if(history.get(t_name). isSend ())

if(chan.isEmpty ())

return reverse(chan.getReaders() U t name)

if(!chan.getValue (). isMine(t_name))

return reverse(chan.getSenders() U t name)

//code to consume the msg from the channel

· · ·
}

how do we know till when to reverse a dependant thread?

Mezzina (FBK) A reversible debugger for µOz December 10, 2012 17 / 21

Implementation tricks

Channels contain also the #inst (similar to roll-π gammas) of I/O
operations

#inst are unique

total order on #inst of the same thread (partial among threads)

act like pc

in chan history instead of (t0, a, t1) we have (t0, i, a, t1, j)

meaning that the i-th instruction of t0 has sent a that has been consumed
by the j-th instruction of t1

Mezzina (FBK) A reversible debugger for µOz December 10, 2012 18 / 21

Reversing a send: code snippet

if(ch.isEmpty ())

throw new WrongElementChannel(..,ch.getReaders(thread id));

IValue val =ch.reverseSend(thread_id);

if(val == null)

{

throw new WrongElementChannel(..,ch.getSenders(thread id));

}

if(val.getType () == ValueType.ID){

// reverse the action

}

getReaders and getSenders return a list of pair (thread id, i) with i being
the least instruction to which a thread should get back.

Mezzina (FBK) A reversible debugger for µOz December 10, 2012 19 / 21

Reversing: code snippet

p r i v a t e s t a t i c vo id r o l l T i l l (HashMap<St r i ng , I n t e g e r> map)
{

I t e r a t o r <St r i ng> i t = map . keySet () . i t e r a t o r () ;
whi le (i t . hasNext ())
{

S t r i n g i d = i t . nex t () ;
i n t gamma = map . ge t (i d) ;
whi le (t rue)
{
t r y {

i n t nro = stepBack (i d) ;
i f (nro == gamma) reversed thread till the right gamma

break ;
} catch (WrongElementChannel e) {

r o l l T i l l (e . ge tDependenc i e s ()) ;
} catch (ChildMissingException e) {

r o l l E n d (e . g e tCh i l d ()) ; generated if a child has not empty history
}
}

}

Mezzina (FBK) A reversible debugger for µOz December 10, 2012 20 / 21

Future work

improve the language

more data types
more constructs
add reversible pattern-matching [Yokoyama et al.]

improve the debugger

watch-points and breakpoints
GUI

study reversible jellyfishes

1 http://proton.inrialpes.fr/~mezzina/deb/

2 https://code.google.com/p/moz-reversible-debugger/

Mezzina (FBK) A reversible debugger for µOz December 10, 2012 21 / 21

http://proton.inrialpes.fr/~mezzina/deb/
https://code.google.com/p/moz-reversible-debugger/

Future work

improve the language

more data types
more constructs
add reversible pattern-matching [Yokoyama et al.]

improve the debugger

watch-points and breakpoints
GUI

study reversible jellyfishes

1 http://proton.inrialpes.fr/~mezzina/deb/

2 https://code.google.com/p/moz-reversible-debugger/

Mezzina (FBK) A reversible debugger for µOz December 10, 2012 21 / 21

http://proton.inrialpes.fr/~mezzina/deb/
https://code.google.com/p/moz-reversible-debugger/

Future work

improve the language

more data types
more constructs
add reversible pattern-matching [Yokoyama et al.]

improve the debugger

watch-points and breakpoints
GUI

study reversible jellyfishes

1 http://proton.inrialpes.fr/~mezzina/deb/

2 https://code.google.com/p/moz-reversible-debugger/

Mezzina (FBK) A reversible debugger for µOz December 10, 2012 21 / 21

http://proton.inrialpes.fr/~mezzina/deb/
https://code.google.com/p/moz-reversible-debugger/

	Oz
	Reversible Debuggers
	Oz reversible debugger

