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Data Processing Application:

N

an example

phone enter
call order

+ Purchase order
= A transaction composed of sub-transactions
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A First Solution

+ Use of nested (standard) transactions

+ Standard transactions are ACID
= A = atomic (all or nothing)
= C = consistent (w.r.t. the application logic)

= [ = isolated (unobservable)
= D = durable (persistent)

+ ACIDity implies a perfect roll-back

+ Not satisfactory

= The whole transaction may require a long period:
resources may be locked for the whole transaction
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¢ Compensations are provided

= No perfect roll-back
= No isolation
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Nested Sagas (2)
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+ Sagas can be nested
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Nested Sagas (3)
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Internet Technologies

XML

Browse
the Web

Program ™
the Web
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Web Service Orchestration

N

¢ WS-BPEL [OASIS standard]:
Language for Web Service
Orchestration

= Description of the message exchanged
among Web Services that cooperate in a
business process

+ BPMN [OMG standard]:

= Graphical notation for business procedures
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BPMN: Business Process
Modeling Notation

¢ Selection of a Nobel Prize laureate
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BPMN: Long Running

Transactions

N

/o An activity can

have a
corresponding
compensation

activity
¢ This is triggered

by a “compensate”

event

Online Retailer
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BPMN: Long Running

Transactions

¢ Also user defined
compensation
handlers can be
programmed

Booking
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LRTS in WS-BPEL

/\\

<scope name="mainScope">
<faultHandlers>
<catchAll>
<compensateScope target="invoiceSubmissionScope" />
</catchAll>
< /faultHandlers>
<sequence>

<scope name="invoiceSubmissionScope">

<compensationHandler>
<invoke name="withdrawInvoiceSubmission" ... />
</compensationHandler>
<invoke name="submitInvoice" ... />
</scope>

<!-- do additional work -->
<I-- a fault is thrown here;
results of invoiceSubmissionScope must be undone -->
</sequence>
</scope>
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¢ The JOLIE orchestration language
¢ Dynamic compensations in JOLIE
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JOLIE: programming orchestrators
with a C / Java like syntax

execution { concurrent }
cset { request.id }

interface myInterface {
OneWay: login
RequestResponse: get data
}

inputPort myPort ({
Protocol: http
Location: “socket://localhost:2000"
Interfaces: myInterface

}

main
{
login( request ) ;
get data( request ) ( response ) {
response.data = “your data” + request.id

} REVER - Paris 19/1/2012



JOLIE: basic communication
primitives
Data are exchanged by means of operations

Two types of operations:
One-Way: receives a message;
Request-Response: receives a message and sends a
response to the caller.

A: B:
| | | |
main main

{ {
sendNumber@B( 5 ) s sendNumber ( x )

} }

A sends 5 to B through the sendNumber operation.
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JOLIE: basic communication
primitives
Data are exchanged by means of operations

Two types of operations:
One-Way: receives a message;
Request-Response: receives a message and sends a
response to the caller.

A: B:
| | | |
main main

{ | t v
twice@B( 5 ) ( x ) twice( x ) ( result ) {

} T result = x|* 2

A sends 5 to B;
B doubles the received value;
B sends the result back to A.
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JOLIE: communication ports

A should know how to contact B

B should expose the operation “twice”
Two types of ports:

Input ports: expose operations
Output ports: bind output operations to input operations

A: B:

main main

twice@B( 5 ) ( x ) twice( x ) ( result )
} {result = x * 2}
} REVER - Paris 19/1/2012



JOLIE: communication ports

A should know how to contact B

B should expose the operation “twice”
Two types of ports:

Input ports: expose operations
Output ports: bind output operations to input operations

A:

main

twice@B( 5 ) ( x )

inputPort MyInput ({ Location
Location: <«
“socket://localhost:8000/”

Protocol: ¢« Protocol
soap

RequestResponse: < Interface
twice (int) (int)

}
main
twice( x ) ( result )

{result = x * 2}
} REVER - Paris 19/1/2012



JOLIE: communication ports

A should know how to contact B
B should expose the operation “twice”
Two types of ports:
Input ports: expose operations
Output ports: bind output operations to input operations

outputPort B ({ 1nputl-?ort MyInput { Location

Location: Location: <«
“socket://192.168.1.2:8000/” “socket://localhost:8000/”

Protocol: Protocol: ¢« Protocol
soap soap

RequestResponse: RequestResponse: < Interface
twice (int) (int) twice (int) (int)

} }

main main

{ {

twice@B( 5 ) ( x ) twice( x ) ( result )
} {result = x * 2}

} REVER - Paris 19/1/2012



JOLIE: work- and control-flow

Basic activities can be combined with sequence, parallel and
choice constructs...

sequence. send@S( x ) ; receive( msg )

paraIIeI: send@S( x ) | receive( msg )

choice: [ recvl( x ) ] { ..}
[ recv2( x ) 1 { ..}

... as well as the usual control flow constructs

ifthenelse: if (x>1) { .. } else { .. }
for: for(i=0, i<n, i++ ) { .. }

while: while( i <0 ) { ..}

REVER - Paris 19/1/2012



Plan of the Talk

N

4

\ 4

&
+ Dynamic compensations in JOLIE
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Statically Defined
Hierarchy of Scopes

main carRepair
{
scope (carRepair) { —
{ scope (carRental) { carRental garage
} o
scope (garage) {
} . \\\\\\>$%/””,
b towingTrack

scope (towingTrack) {

}
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Fault handling

main

scope (carRepair) {
{ scope (carRental) {

o

scope (garage) {

}
}

scope (towingTrack) {

throw (noTowTrack) ;

carRepair

/\

carRental garage

\>\l,</

towingTrack
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Fault handling

.Scopes have a name q,
an activity P, and a set of
fault handlers H

- They are organized in a
hierarchy

-When a fault is raised, it
goes up in the hierarchy
until it reaches a handler

-While going up, parallel
scopes are interrupted

REVER - Paris 19/1/2012




N

Fault handling

-Scopes have a name q,
an activity P, and a set of
fault handlers H

.They are organized in a
hierarchy

-When a fault is raised, it
goes up in the hierarchy
until it reaches a handler

-While going up, parallel
scopes are interrupted

REVER - Paris 19/1/2012



N

Fault handling

-Scopes have a name q,
an activity P, and a set of
fault handlers H

- They are organized in a
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(£, Q)

R

q4

throw(f)

(94,T4)

q;

(quTZ)
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Dynamic fault handling

¢ In Nested SAGAS, WS-BPEL, BPMN, etc.
the fault handlers are statically defined

¢ In JOLIE fault handlers can be

dynamically modified

= We use an installation primitive that
explicitly installs the handlers

= The new handlers can be defined as
modifications of the previous ones
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Dynamic installation
of handlers

q q
inst(f,Q) > (f,Q)
q q
inst(f,R;cH) | (f,Q) 5 (f,R;Q)
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Example

¢ Consider:

{throw (£f) |
while (i <100) if i%2=0 then P else Q, H}

¢ When £ is thrown, execute P’ and Q’ to undo the
instances of P and Q in the order in which they have
been executed

{ throw(£f) |
while (i <100) if i%2=0
then P;inst(cH;P’)
else Q;inst(cH;Q’'), H},
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Compensation handler
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L

¢ When a scope terminates, its last
termination handler becomes its
compensation handler

q q

(0,Q)

q successfully

terminates /

q

Handlers in g’
activates Q
performing comp(q)

(0,Q)
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Example

# Reserve a hotel and a public
transportation

= Take the train, or in case of failure

(notified with fT") take a bus

{ inst(|fT — Bus;inst(|q — cH;revBus])]);
Hotel; inst(|q — revHotell);
Train;inst([q — cH;revTrain])},
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Faults and Request-responses

¢ The JOLIE fault handling mechanism
does not spoil request-responses

¢ In this way non-trivial distributed fault
handling policies can be programmed
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Faults on server side

¢ A client asks a payment to the bank, the bank
fails

¢ In ActiveBPEL (a largely used BPEL engine)
the client receives a generic “missing-reply”
exception

¢ Our approach
= The exact fault is notified to the client
= The notification acts as a fault for the client

= Suitable actions can be taken to manage the
remote fault

N




Faults on client side

N

¢ A client asks a payment to the bank, then fails
before the answer

¢ In BPEL the return message is discarded

+ Our approach
= The return message is waited for

= The handlers can be updated according to whether
or not a non-faulty message is received

= The remote activity can be compensated if
necessary
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Conclusion and Future work....

¢ We have seen some model for compensation

¢ Future work:
= How to combine reversibility and compensation?...

REVER - Paris 19/1/2012




