Compensations in
Orchestration Languages

ookin:
Book Flight
iy Cancel
Flight

Gianluigi Zavattaro Joint FOCUS Research Team

Joint work with INRIA / University of Bologna

C. Guidi, 1. Lanese, F. Montesi

N

Plan of the Talk

¢ Long-Running Transactions (LRTS)
[NestedSagas]

¢ A renewed interest in LRTs

[BPMN,WS-BPEL]
¢ The JOLIE orchestration language
¢ Dynamic compensations in JOLIE

REVER - Paris 19/1/2012

N

Plan of the Talk

¢+ Long-Running Transactions (LRTSs)
[NestedSagas]

¢ A renewed interest in LRTs

[BPMN,WS-BPEL]
¢ The JOLIE orchestration language
¢ Dynamic compensations in JOLIE

REVER - Paris 19/1/2012

Data Processing Application:

N

an example

phone enter
call order

+ Purchase order
= A transaction composed of sub-transactions

REVER - Paris 19/1/2012

N

A First Solution

+ Use of nested (standard) transactions

+ Standard transactions are ACID
= A = atomic (all or nothing)
= C = consistent (w.r.t. the application logic)

= [= isolated (unobservable)
= D = durable (persistent)

+ ACIDity implies a perfect roll-back

+ Not satisfactory

= The whole transaction may require a long period:
resources may be locked for the whole transaction

REVER - Paris 19/1/2012

N

compensation

compensation

T

L]
©

O I

9 o

- 3
(]

1
X

L] enter
order

——————m—
Q
(¢}
1

1 bitling [1\

shipping []

compensation
inventory[‘/

¢ Compensations are provided

= No perfect roll-back
= No isolation

REVER - Paris 19/1/2012

Nested Sagas (2)

§ \ |

N r ,,, 1

1

: |

I compensation

|

|

|

L. phone enter

| — >

i :l ~call [:l order

[
,,,,, trigger| " | | %Y o
| ‘
I | |
: | inventory
I]]
|

+ Sagas can be nested

REVER - Paris 19/1/2012

Nested Sagas (3)

D

el iR R 8

!

[— o
—
Q
()
1

~ & An exception handler can be associated to each Saga

REVER - Paris 19/1/2012

N

Plan of the Talk

4

¢ A renewed interest in LRTs

[BPMN,WS-BPEL]
¢ The JOLIE orchestration language
¢ Dynamic compensations in JOLIE

REVER - Paris 19/1/2012

N

Internet Technologies

XML

Browse
the Web

Program ™
the Web

REVER - Paris 19/1/2012

Web Service Orchestration

N

¢ WS-BPEL [OASIS standard]:
Language for Web Service
Orchestration

= Description of the message exchanged
among Web Services that cooperate in a
business process

+ BPMN [OMG standard]:

= Graphical notation for business procedures

REVER - Paris 19/1/2012

BPMN: Business Process
Modeling Notation

¢ Selection of a Nobel Prize laureate

Around 3000 invitations/ R Report ‘Zm;_
confidential nomination forms ecommenaations
are sent to selected Nominators ﬁ
® - - \/
s M ™
k] i i]
3 Send Collect %creen & Select &Determlne ‘gend List of _Collect &elect Final Write . N Hold Nobel
N o Need for Selected Candidates Work " " Submit Report with :
= Nomination Completed Preliminary E S Candidates Recommendations " Prize Award
= . xpert Preliminary Assessment . Recommendations
S Form Forms Candidates N . and their works Report Ceremony
by Assistance Candidates Reports
e 1] 0
'ré September /. T ZP . A - Assistance /’\ T
g Year .] | : s : Required? : | | . :
3 n-1 : : .- : . | Vo : |
2 D [- : I) : |
s e |3 : B PR S ﬁ : T . |
) | Candidat:
| | andidates |
| Completed N X A t
Nominat ! | Nomination Forms Preliminary List of Candidates E Ssessments !
ominators | | Candidates _to be Assessed N ¢ |
E Nomination ~ | : ssessmen E Report with
1 Invitation & Nomination Form I, ___________ - | | Recommendations
| |) | |
T T T
| e [P
i | [('
4 |) | }
I | I] 1
| S | 4 |
% Z 3
5 X 8 Identify “ \ 8 M send = g
‘g Potential Send Nominee 5 Assess Candidates o Discuss Select 'Announce
€ Nominee(s) Completed < Candidates Work Assessment 2 @ Nominations Laureates Nobel Prize
S Form(s) w m Report © (Meeting 1) (Meeting 2) Laureates
Nomination Assessments S Announcement
: lll Form(s) Sent : lll Completed z Made
: |
. . Announcement
‘.| Nominator may nominate .
one or more Nominees A selected Expert is asked to AV4

assess the work of the
Preliminary Candidates in the

Nobel Prize Laureate

list

REVER - Paris 19/1/2012

BPMN: Long Running

Transactions

N

/o An activity can

have a
corresponding
compensation

activity
¢ This is triggered

by a “compensate”

event

Online Retailer

Confirm
Product
Availability

Fulfill Order

Record
Transaction

Fulfill Order

Record
Sales
Transaction

Record
Transaction
Recission

O

Ship Ordered
Product

Customer of
Failure

BPMN: Long Running

Transactions

¢ Also user defined
compensation
handlers can be
programmed

Booking

Book Flig ht]
............ Cancel
C FI|ght

Handle Com pensation

E Update
’ @ 1) <) Customer
' Booking Flight Hotel Record

L |
L |
L |
L]
]
O
-
:
:
:

REVER - Paris 19/1/2012

LRTS in WS-BPEL

/\\

<scope name="mainScope">
<faultHandlers>
<catchAll>
<compensateScope target="invoiceSubmissionScope" />
</catchAll>
< /faultHandlers>
<sequence>

<scope name="invoiceSubmissionScope">

<compensationHandler>
<invoke name="withdrawInvoiceSubmission" ... />
</compensationHandler>
<invoke name="submitInvoice" ... />
</scope>

<!-- do additional work -->
<I-- a fault is thrown here;
results of invoiceSubmissionScope must be undone -->
</sequence>
</scope>

REVER - Paris 19/1/2012

Plan of the Talk

N

4

\ 4

¢ The JOLIE orchestration language
¢ Dynamic compensations in JOLIE

REVER - Paris 19/1/2012

JOLIE: programming orchestrators
with a C / Java like syntax

execution { concurrent }
cset { request.id }

interface myInterface {
OneWay: login
RequestResponse: get data
}

inputPort myPort ({
Protocol: http
Location: “socket://localhost:2000"
Interfaces: myInterface

}

main
{
login(request) ;
get data(request) (response) {
response.data = “your data” + request.id

} REVER - Paris 19/1/2012

JOLIE: basic communication
primitives
Data are exchanged by means of operations

Two types of operations:
One-Way: receives a message;
Request-Response: receives a message and sends a
response to the caller.

A: B:
| | | |
main main

{ {
sendNumber@B(5) s sendNumber (x)

} }

A sends 5 to B through the sendNumber operation.

REVER - Paris 19/1/2012

JOLIE: basic communication
primitives
Data are exchanged by means of operations

Two types of operations:
One-Way: receives a message;
Request-Response: receives a message and sends a
response to the caller.

A: B:
| | | |
main main

{ | t v
twice@B(5) (x) twice(x) (result) {

} T result = x|* 2

A sends 5 to B;
B doubles the received value;
B sends the result back to A.

REVER - Paris 19/1/2012

JOLIE: communication ports

A should know how to contact B

B should expose the operation “twice”
Two types of ports:

Input ports: expose operations
Output ports: bind output operations to input operations

A: B:

main main

twice@B(5) (x) twice(x) (result)
} {result = x * 2}
} REVER - Paris 19/1/2012

JOLIE: communication ports

A should know how to contact B

B should expose the operation “twice”
Two types of ports:

Input ports: expose operations
Output ports: bind output operations to input operations

A:

main

twice@B(5) (x)

inputPort MyInput ({ Location
Location: <«
“socket://localhost:8000/”

Protocol: ¢« Protocol
soap

RequestResponse: < Interface
twice (int) (int)

}
main
twice(x) (result)

{result = x * 2}
} REVER - Paris 19/1/2012

JOLIE: communication ports

A should know how to contact B
B should expose the operation “twice”
Two types of ports:
Input ports: expose operations
Output ports: bind output operations to input operations

outputPort B ({ 1nputl-?ort MyInput { Location

Location: Location: <«
“socket://192.168.1.2:8000/” “socket://localhost:8000/”

Protocol: Protocol: ¢« Protocol
soap soap

RequestResponse: RequestResponse: < Interface
twice (int) (int) twice (int) (int)

} }

main main

{ {

twice@B(5) (x) twice(x) (result)
} {result = x * 2}

} REVER - Paris 19/1/2012

JOLIE: work- and control-flow

Basic activities can be combined with sequence, parallel and
choice constructs...

sequence. send@S(x) ; receive(msg)

paraIIeI: send@S(x) | receive(msg)

choice: [recvl(x)] { ..}
[recv2(x) 1 { ..}

... as well as the usual control flow constructs

ifthenelse: if (x>1) { .. } else { .. }
for: for(i=0, i<n, i++) { .. }

while: while(i <0) { ..}

REVER - Paris 19/1/2012

Plan of the Talk

N

4

\ 4

&
+ Dynamic compensations in JOLIE

REVER - Paris 19/1/2012

Statically Defined
Hierarchy of Scopes

main carRepair
{
scope (carRepair) { —
{ scope (carRental) { carRental garage
} o
scope (garage) {
} . \\\\\\>$%/””,
b towingTrack

scope (towingTrack) {

}

REVER - Paris 19/1/2012

Fault handling

main

scope (carRepair) {
{ scope (carRental) {

o

scope (garage) {

}
}

scope (towingTrack) {

throw (noTowTrack) ;

carRepair

/\

carRental garage

\>\l,</

towingTrack

REVER - Paris 19/1/2012

NN

Fault handling

.Scopes have a name q,
an activity P, and a set of
fault handlers H

- They are organized in a
hierarchy

-When a fault is raised, it
goes up in the hierarchy
until it reaches a handler

-While going up, parallel
scopes are interrupted

REVER - Paris 19/1/2012

N

Fault handling

-Scopes have a name q,
an activity P, and a set of
fault handlers H

.They are organized in a
hierarchy

-When a fault is raised, it
goes up in the hierarchy
until it reaches a handler

-While going up, parallel
scopes are interrupted

REVER - Paris 19/1/2012

N

Fault handling

-Scopes have a name q,
an activity P, and a set of
fault handlers H

- They are organized in a
hierarchy

-When a fault is raised, it
goes up in the hierarchy
until it reaches a handler

-While going up, parallel
scopes are interrupted

(£, Q)

R

q4

throw(f)

(94,T4)

q;

(quTZ)

REVER - Paris 19/1/2012

N

Fault handling

-Scopes have a name q,
an activity P, and a set of
fault handlers H

- They are organized in a
hierarchy

-When a fault is raised, it
goes up in the hierarchy
until it reaches a handler

-While going up, parallel
scopes are interrupted

(£, Q)

q4

throw(f)

(94,T4)

q;

(quTZ)

REVER - Paris 19/1/2012

N

Fault handling

-Scopes have a name q,
an activity P, and a set of
fault handlers H

- They are organized in a
hierarchy

-When a fault is raised, it
goes up in the hierarchy
until it reaches a handler

-While going up, parallel
scopes are interrupted

(£, Q)

throw(f)

q4

(94,T4)

q;

T,

(quTZ)

REVER - Paris 19/1/2012

N

Fault handling

-Scopes have a name q,
an activity P, and a set of
fault handlers H

- They are organized in a
hierarchy

-When a fault is raised, it
goes up in the hierarchy
until it reaches a handler

-While going up, parallel
scopes are interrupted

(£, Q)

throw(f)

q4

(94,T4)

q;

T,

(quTZ)

REVER - Paris 19/1/2012

N

Fault handling

-Scopes have a name q,
an activity P, and a set of
fault handlers H

- They are organized in a
hierarchy

-When a fault is raised, it
goes up in the hierarchy
until it reaches a handler

-While going up, parallel
scopes are interrupted

(£, Q)

throw(f)

q4

(94,T4)

q;

T,

(quTZ)

REVER - Paris 19/1/2012

N

Dynamic fault handling

¢ In Nested SAGAS, WS-BPEL, BPMN, etc.
the fault handlers are statically defined

¢ In JOLIE fault handlers can be

dynamically modified

= We use an installation primitive that
explicitly installs the handlers

= The new handlers can be defined as
modifications of the previous ones

REVER - Paris 19/1/2012

N

Dynamic installation
of handlers

q q
inst(f,Q) > (f,Q)
q q
inst(f,R;cH) | (f,Q) 5 (f,R;Q)

REVER - Paris 19/1/2012

Example

¢ Consider:

{throw (£f) |
while (i <100) if i%2=0 then P else Q, H}

¢ When £ is thrown, execute P’ and Q’ to undo the
instances of P and Q in the order in which they have
been executed

{ throw(£f) |
while (i <100) if i%2=0
then P;inst(cH;P’)
else Q;inst(cH;Q’'), H},

REVER - Paris 19/1/2012

Compensation handler

N

L

¢ When a scope terminates, its last
termination handler becomes its
compensation handler

q q

(0,Q)

q successfully

terminates /

q

Handlers in g’
activates Q
performing comp(q)

(0,Q)

REVER - Paris 19/1/2012

N

Example

Reserve a hotel and a public
transportation

= Take the train, or in case of failure

(notified with fT") take a bus

{ inst(|fT — Bus;inst(|q — cH;revBus])]);
Hotel; inst(|q — revHotell);
Train;inst([q — cH;revTrain])},

REVER - Paris 19/1/2012

Faults and Request-responses

¢ The JOLIE fault handling mechanism
does not spoil request-responses

¢ In this way non-trivial distributed fault
handling policies can be programmed

REVER - Paris 19/1/2012

Faults on server side

¢ A client asks a payment to the bank, the bank
fails

¢ In ActiveBPEL (a largely used BPEL engine)
the client receives a generic “missing-reply”
exception

¢ Our approach
= The exact fault is notified to the client
= The notification acts as a fault for the client

= Suitable actions can be taken to manage the
remote fault

N

Faults on client side

N

¢ A client asks a payment to the bank, then fails
before the answer

¢ In BPEL the return message is discarded

+ Our approach
= The return message is waited for

= The handlers can be updated according to whether
or not a non-faulty message is received

= The remote activity can be compensated if
necessary

N

Conclusion and Future work....

¢ We have seen some model for compensation

¢ Future work:
= How to combine reversibility and compensation?...

REVER - Paris 19/1/2012

