
Compensations in
Orchestration Languages

Gianluigi Zavattaro

Joint work with
C. Guidi, I. Lanese, F. Montesi

Joint FOCUS Research Team
INRIA / University of Bologna

178 Business Process Model and Notation, v2.0

Figure 10.32 provides an example of a Sub-Process that includes three Event Sub-Processes. The first Event Sub-
Process is triggered by a Message, does not interrupt the Sub-Process, and can occur multiple times. The second
Event Sub-Process is used for compensation and will only occur after the Sub-Process has completed. The third
Event Sub-Process handles errors that occur while the Sub-Process is active and will stop (interrupt) the Sub-
Process if triggered.

Figure 10.32 - An example that includes Event Sub-Processes

Transaction

A Transaction is a specialized type of Sub-Process that will have a special behavior that is controlled through a
transaction protocol (such as WS-Transaction). The boundary of the Sub-Process will be double-lined to indicate that it
is a Transaction (see Figure 10.33).

Book Flight

Book Hotel

Booking
Booking

Get Credit
Card

Information

Notify
Customer

Failed
Booking

Update Credit Card Information

Booking

Booking
Error 1

Cancel
Flight

Cancel
Hotel

Charge
Credit Card

Update
Credit Card

Info

Handle Compensation

Flight

Hotel

Update
Customer

Record

Handle Booking Error

Flight

Hotel

Booking
Error 2

Notify
Customer
Invalid CCRetry Limit

Exceeded

Retry Limit
Exceeded

Booking
Error 2

REVER - Paris 19/1/2012

Plan of the Talk

u Long-Running Transactions (LRTs)
[NestedSagas]

u A renewed interest in LRTs
[BPMN,WS-BPEL]

u The JOLIE orchestration language
u Dynamic compensations in JOLIE

REVER - Paris 19/1/2012

Plan of the Talk

u Long-Running Transactions (LRTs)
[NestedSagas]

u A renewed interest in LRTs
[BPMN,WS-BPEL]

u The JOLIE orchestration language
u Dynamic compensations in JOLIE

REVER - Paris 19/1/2012

Data Processing Application:
an example

u Purchase order
n  A transaction composed of sub-transactions

phone
call

enter
order

inventory

billing

shipping

REVER - Paris 19/1/2012

A First Solution

u Use of nested (standard) transactions
u  Standard transactions are ACID

n  A = atomic (all or nothing)
n  C = consistent (w.r.t. the application logic)
n  I = isolated (unobservable)
n  D = durable (persistent)

u ACIDity implies a perfect roll-back
u Not satisfactory

n  The whole transaction may require a long period:
resources may be locked for the whole transaction

REVER - Paris 19/1/2012

Nested Sagas (1)

u Compensations are provided
n  No perfect roll-back
n  No isolation

phone
call

billing

inventory

enter
order shipping

trigger

compensation

compensation

compensation

REVER - Paris 19/1/2012

Nested Sagas (2)

u Sagas can be nested

phone
call

billing

inventory

enter
order

enter
order trigger

compensation

compensation

compensation

REVER - Paris 19/1/2012

Nested Sagas (3)

u  An exception handler can be associated to each Saga

phone
call

billing

inventory

enter
order

enter
order

monitor

trigger

compensation

compensation

compensation

REVER - Paris 19/1/2012

Plan of the Talk

u Long-Running Transactions (LRTs)
[NestedSagas]

u A renewed interest in LRTs
[BPMN,WS-BPEL]

u The JOLIE orchestration language
u Dynamic compensations in JOLIE

REVER - Paris 19/1/2012

Internet Technologies

XML

Programmability Connectivity

HTML

Presentation
TCP/IP

Web Pages

Browse
the Web

Program
the Web

REVER - Paris 19/1/2012

Web Service Orchestration

u WS-BPEL [OASIS standard]:
Language for Web Service
Orchestration
n  Description of the message exchanged

among Web Services that cooperate in a
business process

u BPMN [OMG standard]:
n  Graphical notation for business procedures

REVER - Paris 19/1/2012

BPMN: Business Process
Modeling Notation !
"#

$
%
&
'(
)
*
&
+',
-./
&
',
-)
0
&
1
1
'2
.3
4
-3
5

''#
6
''!!"

#
$
%
!&
'(
!)
*
!+
,
-
.
/
01
2!3
1
45
67
8
!9
'(
!

:7./01;1<!

%7.68-;678!=74.5

%
7
)
1
0!
:
7
.
.
6;
;1
1
!>
7
4!
$
1
<
6?
68
1

%
7
.
68
-
;7
4

+
,
/
1
4;

!@1/;1.)14

A1-4!

8B9

@18<!

%7.68-;678!

=74.

C<18;6>*!

#7;18;6-0!

%7.6811D5E

@18<!%7.6811!

:7./01;1<!

=74.D5E

:7001?;!

:7./01;1<!

=74.5

%7.68-;678!

C8F6;-;678 %7.68-;678!=74.

@?4118!G!@101?;!

#4106.68-4*!

:-8<6<-;15

@18<!H65;!7>!

@101?;1<!

#4106.68-4*!

:-8<6<-;15

I55155!

:-8<6<-;15!J74K

@18<!

:-8<6<-;15!

I55155.18;!

L1/74;

:7001?;!

:-8<6<-;15!J74K!

I55155.18;

L1/74;5

%7.68-;74!.-*!87.68-;1!

781!74!.741!%7.68115

I47M8<!N(((!68F6;-;6785O

?78>6<18;6-0!87.68-;678!>74.5!

-41!518;!;7!5101?;1<!%7.68-;745

#4106.68-4*!

:-8<6<-;15

:-8<6<-;15!

I55155.18;5

+,/14;!

I5565;-8?1!

L1PM641<Q

A15

H65;!7>!:-8<6<-;15!

;7!)1!I551551<
I55155.18;

%7

%7.68-;678!

=74.D5E!@18;

R1;14.681!

%11<!>74!

+,/14;!

I5565;-8?1

I55155.18;5!

:7./01;1<

%7.68-;745

J46;1!

L1?7..18<-;6785!

L1/74;

@M).6;!L1/74;!S6;T!

L1?7..18<-;6785

U70<!%7)10!

#46V1!IS-4<!

:141.78*

L1/74;!S6;T!

L1?7..18<-;6785

%
7
)
1
0!
I
5
5
1
.
)
0*

I887M8?1!

%7)10!#46V1!

H-M41-;15

I887M8?1.18;!

$-<1

R65?M55!

%7.68-;6785

D$11;68W!9E

@101?;!

H-M41-;15

D$11;68W!&E

%7)10!#46V1!H-M41-;1

I887M8?1.18;

L1/74;!S6;T!

L1?7..18<-;6785

@101?;!=68-0!

:-8<6<-;15!

-8<!;T164!S74K5

I!5101?;1<!+,/14;!65!-5K1<!;7!

-55155!;T1!S74K!7>!;T1!

#4106.68-4*!:-8<6<-;15!68!;T1!

065;

u Selection of a Nobel Prize laureate

REVER - Paris 19/1/2012

BPMN: Long Running
Transactions
u An activity can

have a
corresponding
compensation
activity

u  This is triggered
by a “compensate”
event

REVER - Paris 19/1/2012

BPMN: Long Running
Transactions
u Also user defined

compensation
handlers can be
programmed

304 Business Process Model and Notation, v2.0

Figure 10.122 - Monitoring Class Diagram

It is possible to specify that a Sub-Process can be compensated without having to define the compensation handler. The
Sub-Process attribute compensable, when set, specifies that default compensation is implicitly defined, which
recursively compensates all successfully completed Activities within that Sub-Process.

The example in Figure 10.122, above contains a custom Compensation Event Sub-Process, triggered by a
Compensation Start Event. Note that this compensation handler deviates from default compensation in that it runs
Compensation Activities in an order different from the order in the forward case; it also contains an additional
Activity adding Process logic that cannot be derived from the body of the Sub-Process itself.

10.6.2 Compensation Triggering

Compensation is triggered using a compensation throw Event, which can either be an Intermediate or an End
Event. The Activity that needs to be compensated is referenced. If the Activity is clear from the context, it doesn’t have
to be specified and defaults to the current Activity. A typical scenario for that is an inline error handler of a Sub-
Process that cannot recover the error, and as a result would trigger compensation for that Sub-Process. If no Activity
is specified in a “global” context, all completed Activities in the Process are compensated.

By default, compensation is triggered synchronously, that is, the compensation throw Event waits for the completion of
the triggered compensation handler. Alternatively, compensation can just be triggered without waiting for its completion,
by setting the throw Compensation Event’s waitForCompletion attribute to false.

Multiple instances typically exist for Loop or Multi-Instance Sub-Processes. Each of these has its own instance of
its Compensation Event Sub-Process, which has access to the specific snapshot data that was current at the time of
completion of that particular instance. Triggering compensation for the Multi-Instance Sub-Process individually

Booking

Boo k F lig ht

B ook Ho tel

C ancel
F li ght

C an ce l
Hote l

Bo oking

Handle Com pensation

F lig ht H otel

Up date
Custo me r

Re co rd

REVER - Paris 19/1/2012

LRTs in WS-BPEL
<scope name="mainScope">
 <faultHandlers>
 <catchAll>
 <compensateScope target="invoiceSubmissionScope" />
 </catchAll>
 </faultHandlers>
 <sequence>
 ...
 <scope name="invoiceSubmissionScope">
 ...
 <compensationHandler>
 <invoke name="withdrawInvoiceSubmission" ... />
 </compensationHandler>
 <invoke name="submitInvoice" ... />
 </scope>
 ...
 <!-- do additional work -->
 <!-- a fault is thrown here;
 results of invoiceSubmissionScope must be undone -->
 </sequence>
</scope>

REVER - Paris 19/1/2012

Plan of the Talk

u Long-Running Transactions (LRTs)
[NestedSagas]

u A renewed interest in LRTs
[BPMN,WS-BPEL]

u The JOLIE orchestration language
u Dynamic compensations in JOLIE

JOLIE: programming orchestrators
with a C / Java like syntax
execution { concurrent }

cset { request.id }

interface myInterface {
 OneWay: login
 RequestResponse: get_data
}

inputPort myPort {
 Protocol: http
 Location: “socket://localhost:2000”
 Interfaces: myInterface
}

main
{
 login(request) ;
 get_data(request)(response) {
 response.data = “your data” + request.id
 }
}

REVER - Paris 19/1/2012

JOLIE: basic communication
primitives

REVER - Paris 19/1/2012

main
{
 sendNumber@B(5)
}

Data are exchanged by means of operations

Two types of operations:

One-Way: receives a message;
Request-Response: receives a message and sends a
response to the caller.

main
{
 sendNumber(x)
}

 A sends 5 to B through the sendNumber operation.

A: B:

JOLIE: basic communication
primitives

REVER - Paris 19/1/2012

Data are exchanged by means of operations

Two types of operations:

One-Way: receives a message;
Request-Response: receives a message and sends a
response to the caller.

A: B:
main
{

 twice@B(5)(x)
}

main
{

 twice(x)(result) {
 result = x * 2
 }

} A sends 5 to B;
 B doubles the received value;
 B sends the result back to A.

JOLIE: communication ports

REVER - Paris 19/1/2012

main
{

 twice@B(5)(x)
}

A should know how to contact B
B should expose the operation “twice”
Two types of ports:

Input ports: expose operations
Output ports: bind output operations to input operations

A: B:

main
{

 twice(x)(result)
 {result = x * 2}

}

JOLIE: communication ports

REVER - Paris 19/1/2012

main
{

 twice@B(5)(x)
}

A should know how to contact B
B should expose the operation “twice”
Two types of ports:

Input ports: expose operations
Output ports: bind output operations to input operations

A:

inputPort MyInput {
Location:
 “socket://localhost:8000/”
Protocol:
 soap
RequestResponse:
 twice(int)(int)
}

main
{

 twice(x)(result)
 {result = x * 2}

}

Location

Protocol

Interface

JOLIE: communication ports

REVER - Paris 19/1/2012

A should know how to contact B
B should expose the operation “twice”
Two types of ports:

Input ports: expose operations
Output ports: bind output operations to input operations

inputPort MyInput {
Location:
 “socket://localhost:8000/”
Protocol:
 soap
RequestResponse:
 twice(int)(int)
}

main
{

 twice(x)(result)
 {result = x * 2}

}

Location

Protocol

Interface

outputPort B {
Location:
 “socket://192.168.1.2:8000/”
Protocol:
 soap
RequestResponse:
 twice(int)(int)
}

main
{

 twice@B(5)(x)
}

JOLIE: work- and control-flow

REVER - Paris 19/1/2012

Basic activities can be combined with sequence, parallel and
choice constructs…

send@S(x) ; receive(msg)

send@S(x) | receive(msg)

[recv1(x)] { … }
[recv2(x)] { … }

 sequence:

parallel:

choice:

… as well as the usual control flow constructs

if (x > 1) { … } else { … }

for(i = 0, i < n, i++) { … }

 if then else:

for:

while:

while(i < 0) { … }

REVER - Paris 19/1/2012

Plan of the Talk

u Long-Running Transactions (LRTs)
[NestedSagas]

u A renewed interest in LRTs
[BPMN,WS-BPEL]

u The JOLIE orchestration language
u Dynamic compensations in JOLIE

Statically Defined
Hierarchy of Scopes

REVER - Paris 19/1/2012

main
{

 scope(carRepair){
 { scope(carRental){
 ...
 } |
 scope(garage){
 ...
 }

 } ;
 scope(towingTrack){
 ...
 }

}

carRepair

carRental

garage

towingTrack

Fault handling

REVER - Paris 19/1/2012

main
{

 scope(carRepair){
 { scope(carRental){
 ...
 } |
 scope(garage){
 ...
 }

 } ;
 scope(towingTrack){
 ...
 throw(noTowTrack);
 }

}

carRepair

carRental

garage

towingTrack

Fault handling

REVER - Paris 19/1/2012

l Scopes have a name q,
an activity P, and a set of
fault handlers H
l They are organized in a
hierarchy
l When a fault is raised, it
goes up in the hierarchy
until it reaches a handler
l While going up, parallel
scopes are interrupted

P H

q

Fault handling

REVER - Paris 19/1/2012

l Scopes have a name q,
an activity P, and a set of
fault handlers H
l They are organized in a
hierarchy
l When a fault is raised, it
goes up in the hierarchy
until it reaches a handler
l While going up, parallel
scopes are interrupted

P H

q

P H

q

P H

q

P H

q

P H

q

Fault handling

REVER - Paris 19/1/2012

l Scopes have a name q,
an activity P, and a set of
fault handlers H
l They are organized in a
hierarchy
l When a fault is raised, it
goes up in the hierarchy
until it reaches a handler
l While going up, parallel
scopes are interrupted

throw(f) (q2,T2)

q2

(q1,T1)

q1

(f,Q)

Fault handling

REVER - Paris 19/1/2012

l Scopes have a name q,
an activity P, and a set of
fault handlers H
l They are organized in a
hierarchy
l When a fault is raised, it
goes up in the hierarchy
until it reaches a handler
l While going up, parallel
scopes are interrupted

throw(f) (q2,T2)

q2

(q1,T1)

q1

(f,Q)

Fault handling

REVER - Paris 19/1/2012

l Scopes have a name q,
an activity P, and a set of
fault handlers H
l They are organized in a
hierarchy
l When a fault is raised, it
goes up in the hierarchy
until it reaches a handler
l While going up, parallel
scopes are interrupted

throw(f) (q2,T2)

q2

(q1,T1)

q1

(f,Q)

T2

Fault handling

REVER - Paris 19/1/2012

l Scopes have a name q,
an activity P, and a set of
fault handlers H
l They are organized in a
hierarchy
l When a fault is raised, it
goes up in the hierarchy
until it reaches a handler
l While going up, parallel
scopes are interrupted

throw(f) (q2,T2)

q2

(q1,T1)

q1

(f,Q)

T2

T1

Fault handling

REVER - Paris 19/1/2012

l Scopes have a name q,
an activity P, and a set of
fault handlers H
l They are organized in a
hierarchy
l When a fault is raised, it
goes up in the hierarchy
until it reaches a handler
l While going up, parallel
scopes are interrupted

throw(f) (q2,T2)

q2

(q1,T1)

q1

(f,Q)

T2

T1

Q

Dynamic fault handling

u In Nested SAGAS, WS-BPEL, BPMN, etc.
the fault handlers are statically defined

u In JOLIE fault handlers can be
dynamically modified
n  We use an installation primitive that

explicitly installs the handlers
n  The new handlers can be defined as

modifications of the previous ones

REVER - Paris 19/1/2012

Dynamic installation
of handlers

REVER - Paris 19/1/2012

q

inst(f,Q)

q

(f,Q)

q

inst(f,R;cH)

q

(f,R;Q) (f,Q)

Example

u  Consider:
{throw(f) |
 while (i <100) if i%2=0 then P else Q, H}q

u  When f is thrown, execute P’ and Q’ to undo the
instances of P and Q in the order in which they have
been executed
{ throw(f) |
 while (i <100) if i%2=0
 then P;inst(cH;P’)
 else Q;inst(cH;Q’), H}q

REVER - Paris 19/1/2012

Compensation handler

REVER - Paris 19/1/2012

q

(q,Q)

 q successfully
terminates

q’ q’

(q,Q)

 Handlers in q’
activates Q

performing comp(q)

u When a scope terminates, its last
termination handler becomes its
compensation handler

Example

REVER - Paris 19/1/2012

C. Guidi et al. / Dynamic Error Handling in Service Oriented Applications 25

scope as compensation handler. This feature allows for the updating of the compensation handler within
a fault handler. In order to clarify this aspect, consider the following example, where we want to book a
hotel and a public transport service, which can be a train or, if the train is not available, a bus.

{ inst([fT !→ Bus; inst([q !→ cH; revBus])]);
Hotel; inst([q !→ revHotel]);
Train; inst([q !→ cH; revTrain])}q

Hotel, Train and Bus are the processes in charge of performing the booking of the hotel, the train and
the bus, respectively. Process Bus is executed only if process Train raises the fault fT . In this case, the
booking procedure for the bus is executed, and the compensation handler for scope q is updated. Thus, if
compensation is required, processes revHotel and revBus, which are in charge of reversing the booking
of the hotel and of the bus, are executed. On the contrary, if a train is available, the compensation handler
will execute processes revHotel and revTrain, where the last one is in charge of reversing the booking
of the train. In BPEL this scope could be represented as follows3, where we assume that each scope
(Hotel, Train and Bus) has its own compensation handler, reversing the corresponding activity:

<scope name="q">

<compensationHandler>Compensate Hotel, Train and Bus </compensationHandler>
<sequence>
<scope name="Hotel">...</scope>
<scope name="Train">...</scope>
if Train failed then <scope name="Bus">...</scope>

</sequence>

</scope>

In BPEL it is necessary to test if the scope Train has finished successfully or not, in order to execute
the scope Bus only in the second case. To implement this test, one needs to use an auxiliary variable, to
be set within the fault handler of the scope Train. In fact, if scope Train fails, we cannot rethrow the
fault at the level of scope q, since we want q to complete with success if either a train or a bus has been
booked.

BPEL and SOCK differ also in how the order of compensation of different activities is specified. In
BPEL it is possible either to compensate single scopes or to compensate groups of activities in a default
order. In the latter case, the construct <compensate> asks to execute the compensations available in
an order that depends on the static structure of activities, e.g. in reverse order for activities in sequence
and in parallel for activities in parallel. In SOCK instead the compensation is built according to the
order of execution of the install primitives, which is only known at runtime. However the programmer
may specify how to build the handler, thus implementing different policies, as outlined in the example
at the end of Section 2.2. The BPEL approach is enough to implement the backward recovery case of
that example. To do that, processes P and Q have to be enclosed into subscopes with compensation
handlers P ′ and Q′. If triggered, the default compensation at the level of the parent scope q will execute
all the installed compensation handlers in reverse order. In SOCK, no default compensation order is
needed since the desired order of compensation can be defined using the install primitive in a much more
flexible way.
3For the sake of brevity we use a simplified version of the BPEL syntax.

u Reserve a hotel and a public
transportation
n  Take the train, or in case of failure

(notified with fT) take a bus

Faults and Request-responses

u The JOLIE fault handling mechanism
does not spoil request-responses

u In this way non-trivial distributed fault
handling policies can be programmed

REVER - Paris 19/1/2012

Faults on server side
u A client asks a payment to the bank, the bank

fails
u  In ActiveBPEL (a largely used BPEL engine)

the client receives a generic “missing-reply”
exception

u Our approach
n  The exact fault is notified to the client
n  The notification acts as a fault for the client
n  Suitable actions can be taken to manage the

remote fault

Faults on client side
u A client asks a payment to the bank, then fails

before the answer
u  In BPEL the return message is discarded
u Our approach

n  The return message is waited for
n  The handlers can be updated according to whether

or not a non-faulty message is received
n  The remote activity can be compensated if

necessary

Conclusion and Future work….

REVER - Paris 19/1/2012

u We have seen some model for compensation
u  Future work:

n  How to combine reversibility and compensation?...

