
Introduction
Extending reversible semantics in CauDEr

Case study
Future work

Reversibility in Erlang: Imperative Constructs

Pietro Lami1 Ivan Lanese2 Jean-Bernard Stefani1

Claudio Sacerdoti Coen3 Giovanni Fabbretti1

1Univ. Grenoble Alpes, INRIA, CNRS, Grenoble INP, LIG, 38000 Grenoble, France

2Focus Team, Univ. of Bologna, INRIA, 40126 Bologna, Italy

3Univ. of Bologna, 40126 Bologna, Italy

RC22, 05/07/2022

P. Lami, I. Lanese, J-B. Stefani, C. Sacerdoti Coen, G. Fabbretti Reversibility in Erlang: Imperative Constructs

Introduction
Extending reversible semantics in CauDEr

Case study
Future work

Reversibility
CauDEr
Contribution

Table of Contents

1 Introduction

2 Extending reversible semantics in CauDEr

3 Case study

4 Future work

P. Lami, I. Lanese, J-B. Stefani, C. Sacerdoti Coen, G. Fabbretti Reversibility in Erlang: Imperative Constructs

Introduction
Extending reversible semantics in CauDEr

Case study
Future work

Reversibility
CauDEr
Contribution

Reversibility

In a sequential system reversibility can be obtained by recursively
undoing the last action. This definition is not suitable in
concurrent systems, since the last action may not be well-defined.

Causal-consistent reversibility

Any action can be undone provided that all its effects (if any) have
been undone before

The idea is that each process saves all the information necessary to
restore past states.

P. Lami, I. Lanese, J-B. Stefani, C. Sacerdoti Coen, G. Fabbretti Reversibility in Erlang: Imperative Constructs

Introduction
Extending reversible semantics in CauDEr

Case study
Future work

Reversibility
CauDEr
Contribution

Causal dependencies

There is a dependency between two actions when:

they cannot be performed in the opposite order

executing them in the opposite order would change the result

Example (Dependency)

Receiving a message depends on its send.

Process1 Process2

Send to Process2

**
Receive

P. Lami, I. Lanese, J-B. Stefani, C. Sacerdoti Coen, G. Fabbretti Reversibility in Erlang: Imperative Constructs

Introduction
Extending reversible semantics in CauDEr

Case study
Future work

Reversibility
CauDEr
Contribution

CauDEr

CauDEr is a reversible causal-consistent debugger for the Erlang
programming language.

Erlang is a functional, concurrent and distributed programming
language based on the actor paradigm.

CauDEr implements:

a forward semantics

a backward semantics

a rollback semantics

P. Lami, I. Lanese, J-B. Stefani, C. Sacerdoti Coen, G. Fabbretti Reversibility in Erlang: Imperative Constructs

Introduction
Extending reversible semantics in CauDEr

Case study
Future work

Reversibility
CauDEr
Contribution

Our Contribution

We extend CauDEr and its underlying theory by adding the
support for some imperative primitives that have not been
considered before.

From the technical point of view, we show that the dependencies
introduced by shared memory are not trivial.

P. Lami, I. Lanese, J-B. Stefani, C. Sacerdoti Coen, G. Fabbretti Reversibility in Erlang: Imperative Constructs

Introduction
Extending reversible semantics in CauDEr

Case study
Future work

Reversibility
CauDEr
Contribution

Map

In our extension, atoms and pids are central:

an atom is a literal constant;

Pid is an abbreviation for process identifier

In Erlang, a pid can be associated to an atom.

Each Erlang node has a map associating atoms to pids

Both atoms and pids in the map must be unique.

P. Lami, I. Lanese, J-B. Stefani, C. Sacerdoti Coen, G. Fabbretti Reversibility in Erlang: Imperative Constructs

Introduction
Extending reversible semantics in CauDEr

Case study
Future work

Reversibility
CauDEr
Contribution

Imperative primitives

We extend CauDEr with support for the following built-in Erlang
functions (BIFs):
given an atom a and a pid p

register(a, p): inserts the pair 〈a, p〉 in the map;

unregister(a): removes the (unique) pair 〈a, p〉 from the
map;

whereis(a): returns the associated pid p;

registered(): returns the list of all the atoms in the map.

P. Lami, I. Lanese, J-B. Stefani, C. Sacerdoti Coen, G. Fabbretti Reversibility in Erlang: Imperative Constructs

Introduction
Extending reversible semantics in CauDEr

Case study
Future work

System components
Causal dependencies
Reversible semantics

Table of Contents

1 Introduction

2 Extending reversible semantics in CauDEr

3 Case study

4 Future work

P. Lami, I. Lanese, J-B. Stefani, C. Sacerdoti Coen, G. Fabbretti Reversibility in Erlang: Imperative Constructs

Introduction
Extending reversible semantics in CauDEr

Case study
Future work

System components
Causal dependencies
Reversible semantics

System definition

We define a reduction semantics with two types of reductions:

Forward
Γ; Π; M ⇀ Γ′; Π′; M′

stores history information

Backward
Γ; Π; M ↽ Γ′; Π′; M′

exploits the stored history information

Definition (System)

A system is a tuple Γ; Π; M.

Γ is the global mailbox,

Π is the pool of processes,

M is the map.

P. Lami, I. Lanese, J-B. Stefani, C. Sacerdoti Coen, G. Fabbretti Reversibility in Erlang: Imperative Constructs

Introduction
Extending reversible semantics in CauDEr

Case study
Future work

System components
Causal dependencies
Reversible semantics

Process definition

Definition (Process)

A process is a tuple 〈p, h, θ, e,S〉 ∈ Π, where:

p is the process pid,

h is the process history,

θ is the process environment,

e is the expression under evaluation,

S is a stack of process environments.

P. Lami, I. Lanese, J-B. Stefani, C. Sacerdoti Coen, G. Fabbretti Reversibility in Erlang: Imperative Constructs

Introduction
Extending reversible semantics in CauDEr

Case study
Future work

System components
Causal dependencies
Reversible semantics

Extended Map

M is a quadruple 〈a, p, t, s〉 where a and p are the atom-pid
registered, t is a unique identifier for the tuple and s can be either
> or ⊥.

Unique identifiers t are used to distinguish identical tuples existing
at different times.

Tuples whose last field is > match the ones in the standard
semantics, we call them alive tuples.

Those with ⊥ are ghost tuples, namely alive tuples that have been
removed from the map by a past forward action

P. Lami, I. Lanese, J-B. Stefani, C. Sacerdoti Coen, G. Fabbretti Reversibility in Erlang: Imperative Constructs

Introduction
Extending reversible semantics in CauDEr

Case study
Future work

System components
Causal dependencies
Reversible semantics

Causal dependencies

The causal dependencies of the imperative primitives are:

1 between write actions that involve the same atom or pid;

2 between a write action and a read action that involve the
same atom or pid;

Example

1 register(a, p) and unregister(a) are causally dependent

2 register(a, p) and whereis(a) are causally dependent

P. Lami, I. Lanese, J-B. Stefani, C. Sacerdoti Coen, G. Fabbretti Reversibility in Erlang: Imperative Constructs

Introduction
Extending reversible semantics in CauDEr

Case study
Future work

System components
Causal dependencies
Reversible semantics

Extended forward and backward semantics

Reg

θ, e,S
register(κ,a,p′)−−−−−−−−→ θ′, e′,S ′

t fresh Ma = ∅ Mp′ = ∅ isAlive(p′,Π)

Γ; 〈p, h, θ, e,S〉 | Π; M ⇀
Γ; 〈p, regS(θ, e,S , {〈a, p′, t,>〉}):h, θ′, e′{κ→ true},S ′〉 | Π; M ∪ {〈a, p′, t,>〉}

Reg
readop(t,Π) = ∅

Γ; 〈p, regS(θ, e, S , {〈a, p′, t,>〉}):h, θ′, e′, S ′〉 | Π; M ∪ {〈a, p′, t,>〉}
↽ Γ; 〈p, h, θ, e, S〉 | Π; M

P. Lami, I. Lanese, J-B. Stefani, C. Sacerdoti Coen, G. Fabbretti Reversibility in Erlang: Imperative Constructs

Introduction
Extending reversible semantics in CauDEr

Case study
Future work

System components
Causal dependencies
Reversible semantics

Extended forward and backward semantics

Reg

θ, e,S
register(κ,a,p′)−−−−−−−−→ θ′, e′,S ′

t fresh Ma = ∅ Mp′ = ∅ isAlive(p′,Π)

Γ; 〈p, h, θ, e,S〉 | Π; M ⇀
Γ; 〈p, regS(θ, e,S , {〈a, p′, t,>〉}):h, θ′, e′{κ→ true},S ′〉 | Π; M ∪ {〈a, p′, t,>〉}

Reg
readop(t,Π) = ∅

Γ; 〈p, regS(θ, e, S , {〈a, p′, t,>〉}):h, θ′, e′,S ′〉 | Π; M ∪ {〈a, p′, t,>〉}
↽ Γ; 〈p, h, θ, e, S〉 | Π; M

P. Lami, I. Lanese, J-B. Stefani, C. Sacerdoti Coen, G. Fabbretti Reversibility in Erlang: Imperative Constructs

Introduction
Extending reversible semantics in CauDEr

Case study
Future work

Introduction
Log analysis
Code analysis
CauDer

Table of Contents

1 Introduction

2 Extending reversible semantics in CauDEr

3 Case study

4 Future work

P. Lami, I. Lanese, J-B. Stefani, C. Sacerdoti Coen, G. Fabbretti Reversibility in Erlang: Imperative Constructs

Introduction
Extending reversible semantics in CauDEr

Case study
Future work

Introduction
Log analysis
Code analysis
CauDer

Case study

We consider a simple server
dispatching requests to various
mathematical services, and logging
the results of the evaluation on a
logger.

Each service is a process, and they
are created only when there is a
first request for them.

The logger keeps track of the values
it receives, and answers each
request with the sequential number
of the element in the log

P. Lami, I. Lanese, J-B. Stefani, C. Sacerdoti Coen, G. Fabbretti Reversibility in Erlang: Imperative Constructs

[{square, 10}, {adder, 20}, {log, 100},
{adder, 30}, {adder, 100}]

Introduction
Extending reversible semantics in CauDEr

Case study
Future work

Introduction
Log analysis
Code analysis
CauDer

Log of the server

SEND REQUEST :{square ,10}

SEND REQUEST :{adder ,20}

SEND REQUEST :{log ,100}

SEND REQUEST :{adder ,30}

LOGGED {square ,100} TIME:0

SEND REQUEST :{adder ,100}

LOGGED {adder ,20} TIME:1

LOGGED {adder ,50} TIME:2

LOGGED 100 TIME:3

LOGGED {adder ,150} TIME:4

LOGGED {log,2.0} TIME:3

LOGGED {adder ,150} TIME:4

We see that the there is an error in the behavior of the program.

P. Lami, I. Lanese, J-B. Stefani, C. Sacerdoti Coen, G. Fabbretti Reversibility in Erlang: Imperative Constructs

Expected

Happens

Introduction
Extending reversible semantics in CauDEr

Case study
Future work

Introduction
Log analysis
Code analysis
CauDer

History of the server in CauDER

In the server history we can see the send of the logarithm request
but we do not have the answer from the service as in the other
services (e.g. square). So we can do a rollback of message (11)

...

send with atom adder (30 ,13)

read of [{adder ,4,3,top}]

receive ({adder ,30} ,3)

send with atom log (100,11)

read of [{log,2,1,top}]

receive({log,100},2)
receive ({logged ,{{ square ,100} ,0}} ,10)

send with atom log ({square ,100} ,9)

receive ({reply ,{square ,100}} ,6)

send with atom square (10,4)

receive ({square ,10} ,0)

...

P. Lami, I. Lanese, J-B. Stefani, C. Sacerdoti Coen, G. Fabbretti Reversibility in Erlang: Imperative Constructs

Introduction
Extending reversible semantics in CauDEr

Case study
Future work

Introduction
Log analysis
Code analysis
CauDer

Bad behavior

After the rollback we arrive at:

...

case whereis(Atom) of

undefined ->

register(Atom , spawn(?MODULE , Atom , [])),

send(Atom ,Val);

_ ->

send(Atom,Val)

end

We are in the branch where the atom is already registered. But
this is the first time that we ask for the logarithm service.

P. Lami, I. Lanese, J-B. Stefani, C. Sacerdoti Coen, G. Fabbretti Reversibility in Erlang: Imperative Constructs

Introduction
Extending reversible semantics in CauDEr

Case study
Future work

Introduction
Log analysis
Code analysis
CauDer

Detect the error

So we can rollback the registration of atom log and we arrive at:

register(server , spawn(?MODULE , server , [])),

register(log, spawn(?MODULE, logger, [0, []])),

We understand that we use the same atom to identify two different
processes.
Then the behavior is incorrect because we use the atom log for the
logarithm service but also to send messages to the logger

log (logarithm) 6= log (logger)

P. Lami, I. Lanese, J-B. Stefani, C. Sacerdoti Coen, G. Fabbretti Reversibility in Erlang: Imperative Constructs

Introduction
Extending reversible semantics in CauDEr

Case study
Future work

Introduction
Log analysis
Code analysis
CauDer

Screenshot

P. Lami, I. Lanese, J-B. Stefani, C. Sacerdoti Coen, G. Fabbretti Reversibility in Erlang: Imperative Constructs

Introduction
Extending reversible semantics in CauDEr

Case study
Future work

Table of Contents

1 Introduction

2 Extending reversible semantics in CauDEr

3 Case study

4 Future work

P. Lami, I. Lanese, J-B. Stefani, C. Sacerdoti Coen, G. Fabbretti Reversibility in Erlang: Imperative Constructs

Introduction
Extending reversible semantics in CauDEr

Case study
Future work

Future work

in some cases sequences of transitions would commute, but
their composing transitions do not;

currently this creates dependencies since commuting is
possible only between single transitions

Example

A registered() operation does not commute with register(a,)
followed by unregister(a).

P. Lami, I. Lanese, J-B. Stefani, C. Sacerdoti Coen, G. Fabbretti Reversibility in Erlang: Imperative Constructs

Introduction
Extending reversible semantics in CauDEr

Case study
Future work

Thank you for the attention

P. Lami, I. Lanese, J-B. Stefani, C. Sacerdoti Coen, G. Fabbretti Reversibility in Erlang: Imperative Constructs

Introduction
Extending reversible semantics in CauDEr

Case study
Future work

Imperative primitives

We extend CauDEr with support for the following built-in Erlang
functions (BIFs):

register: given an atom a and a pid p, it inserts the pair
〈a, p〉 in the map and returns the atom true; if it is not
possible an exception is raised;

unregister: given an atom a, it removes the (unique) pair
〈a, p〉 from the map and returns true if the atom a is found,
raises an exception otherwise;

whereis: given an atom, it returns the associated pid if it
exists, the atom undefined otherwise;

registered: returns a list (possibly empty) of all the atoms
in the map.

P. Lami, I. Lanese, J-B. Stefani, C. Sacerdoti Coen, G. Fabbretti Reversibility in Erlang: Imperative Constructs

Introduction
Extending reversible semantics in CauDEr

Case study
Future work

Example (Register followed by delete)

Consider a process P doing a registered operation and another
process, Q, doing a (successful) register followed by a delete
operation of the same tuple.

Executing P first and the Q or vice versa would lead to the same
state.

We want to distinguish these two computations, since undoing the
registered should not always be possible.

Ghost tuples are our solution to this problem.

P. Lami, I. Lanese, J-B. Stefani, C. Sacerdoti Coen, G. Fabbretti Reversibility in Erlang: Imperative Constructs

Introduction
Extending reversible semantics in CauDEr

Case study
Future work

Rollback semantics

(U − Satisfy)
S ↽p,r ,Ψ′ S ′ ∧ ψ ∈ Ψ′

ddSee{p,ψ}:Ψ ddS ′eeΨ

(U − Act)
S ↽p,r ,Ψ′ S ′ ∧ {p, r} /∈ Ψ′

ddSee{p,ψ}:Ψ ddS ′ee{p,ψ}:Ψ

(Request)

S = Γ; 〈p, h, θ, e,S〉 | Π; M ∧ S 6↽p,r ,Ψ′ ∧
{p′, ψ′} = dep(〈p, h, θ, e,S〉,S)

ddSee{p,ψ}:Ψ ddS ′ee{p′,ψ′}:{p,ψ}:Ψ

P. Lami, I. Lanese, J-B. Stefani, C. Sacerdoti Coen, G. Fabbretti Reversibility in Erlang: Imperative Constructs

Introduction
Extending reversible semantics in CauDEr

Case study
Future work

Dependencies operator

dep(< , send(, , , {v , λ}):h, , , >, Γ ∪ {(p, p′, {v , λ})}; ;) = {p′, λ⇓}
dep(< p, sendS(, , , {v , λ},):h, , , >, Γ ∪ {(p, p′, {v , λ})}; ;) = {p′, λ⇓}
dep(< , sendS(, , , , {〈a, p, t,>〉}):h, , , >, ; ; M′) = {p′, del(t)} if 〈a, p, t,>〉 6∈ M′

dep(< , spawn(, , , p′):h, , , >, ; Π; ;) = {p′, s} if p′ ∈ Π
dep(< , readS(, , ,M ∪ {〈a, , t,>〉}):h, , , >, ; ; M′) = {p′, del(t)} if 〈a, , t,>〉 6∈ M′

dep(< , readS(, , ,M ∪ {〈 , p, t,>〉}):h, , , >, ; ; M′) = {p′, del(t)} if 〈 , p, t,>〉 6∈ M′

dep(< , readF(, , , a,M):h, , , >, ; ; M′ ∪ {〈a, , t, 〉}) = {p′, regS(t)} if 〈a, , t, 〉 /∈ M
dep(< , readM(, , ,M):h, , , >, ; ; M′ ∪ {〈 , , t,>〉}) = {p′, regS(t)} if 〈 , , t,>〉 /∈ M
dep(< , readM(, , ,M):h, , , >, ; ; M′ ∪ {〈 , , t,⊥〉}) = {p′, del(t)} if 〈 , , t,⊥〉 /∈ M
dep(< , regS(, , , {〈 , , t,>〉}):h, , , >, ; ; M′ ∪ {〈 , , t,⊥〉}) = {p′, del(t)} if 〈 , , t,>〉 /∈ M′

dep(< , regS(, , , {〈 , , t,>〉}):h, , , >, ; ;) = {p′, read(t)}
dep(< , del(, , , {〈a, , t,>〉},M):h, , , >, ; ; M′ ∪ {〈a, , ta, 〉}) = {p′, regS(ta)} if 〈a, , ta, 〉 /∈ M
dep(< , del(, , , {〈 , p, t,>〉},M):h, , , >, ; ; M′ ∪ {〈 , p, tp , 〉}) = {p′, regS(tp)} if 〈 , p, tp , 〉 /∈ M
dep(< , del(, , , {〈a, p, t,>〉},):h, , , >, ; ; M′) = {p′, readfail(t)}

P. Lami, I. Lanese, J-B. Stefani, C. Sacerdoti Coen, G. Fabbretti Reversibility in Erlang: Imperative Constructs

	Introduction
	Reversibility
	CauDEr
	Contribution

	Extending reversible semantics in CauDEr
	System components
	Causal dependencies
	Causal dependencies
	Reversible semantics

	Case study
	Introduction
	Log analysis
	Code analysis
	CauDer

	Future work

