
Forward-Reverse Observational Equivalences
in CCSK

Ivan Lanese

University of Bologna, Italy/INRIA, France

Joint work with Iain Phillips (Imperial College)

1

Outline

Behavioural equivalences for reversible systems

CCSK

Our insights and results

Conclusion

2

Reversible computation

Reversible computation allows computation to proceed not only in
the standard, forward direction, but also backwards, recovering
past states.

Applications in di�erent areas:

• low-power computing (Landauer 1961)
• optimistic parallel simulation (Carothers et al 1999)
• error recovery in robot assembly operations (Laursen et al 2015)
• debugging (GDB since 2009, WinDbg)
• . . .

3

Reversible models of concurrent systems

In many of these areas, concurrent systems are of interest.

Reversible extensions of concurrent models and languages have
been proposed

Seminal one, RCCS (Danos & Krivine 2004) is a reversible form of
CCS (Milner 1980)

Another reversible CCS, CCSK, has been proposed by Phillips &
Ulidowski in 2006

Reversible extensions of π-calculus, Petri Nets, Erlang and others
exist

Main idea: add memories so that computation can be reversed

4

Reversibility and concurrency

In a sequential setting actions are undone in reverse order:

P a−→ Q b−→ R R b−→ Q a−→ P

In concurrent systems, the total order of actions is not relevant and
may not even exist.

Causal-consistent reversibility (Danos & Krivine 2004)
An action can be reversed i� all its consequences (if any) have
been already reversed.

If P a−→ Q causes Q b−→ R then we cannot reverse a before b.

But if P a−→ Q and Q b−→ R are concurrent then we can reverse them in
any order:

P a−→ Q b−→ R R a−→ Q′ b−→ P

5

The need for analysis techniques

(Reversible) models allow one to describe systems

We also want to reason on such systems

Many analysis techniques in the literature: (behavioural) types,
model checking, behavioural equivalences, . . .

6

Behavioural equivalences

Equivalence relations on processes

Equivalent processes are not distinguishable by some form of
observation

Barbed congruence: relation closed under reductions (that is,
internal steps), basic observations (called barbs), and
contexts

Bisimulation: relation closed under transitions (that is interactions
with the environment)

From the concurrency theory community:

• Barbed congruence is more natural and straightforward to
de�ne;

• It is di�cult to work with barbed congruence due to the
universal quanti�cation over contexts;

• Bisimulation is frequently used as a tool to prove barbed
congruence. 7

Framing the problem

We want to �nd suitable behavioural equivalences:

for causal-consistent reversibility, since we are interested in
concurrent systems (and behavioural equivalences
are tailored for them);

direction sensitive, that is distinguishing forward from backward
steps;

for uncontrolled reversibility: no policy on whether to go forward
or backward, or which action to take if many are
enabled;

strong equivalences: distinguish processes that produce the same
observation a�er a di�erent number of internal steps.

Controlled reversibility and weak equivalences are interesting, but
�rst the more basic setting we consider needs to be understood.

8

Selecting the target language

We will work on CCSK

CCS is a simple starting point, yet it is very used

A number of works already tackled this setting (Phillips & Ulidowski
2006, ...)

RCCS has too much redundancy, making axioms very di�cult to
write (we will come back to this)

9

Outline

Behavioural equivalences for reversible systems

CCSK

Our insights and results

Conclusion

10

CCSK

CCSK syntax

X, Y := π.X | X + Y | (X | Y) | (νa)X | 0

π := α | α[k]

α =: a | a | τ

a,b, · · · : communication channels
k,m, · · · : keys

Keys highlight when the corresponding pre�x has been executed,
processes without keys are CCS processes.

11

CCSK semantics: sample rules

Forward Backward

std(X)

α.X α[m]−−−→f α[m].X

std(X)

α[m].X α[m]−−−→r α.X

X β[n]−−→f X′

α[m].X β[n]−−→f α[m].X′
m 6= n X β[n]−−→r X′

α[m].X β[n]−−→r α[m].X′
m 6= n

X α[m]−−−→f X′ Y α[m]−−−→f Y′

X | Y τ [m]−−−→f X′ | Y′
α 6= τ

X α[m]−−−→r X′ Y α[m]−−−→r Y′

X | Y τ [m]−−−→r X′ | Y′
α 6= τ

12

Reachable processes

In reversible calculi only processes which have consistent history
information are of interest.
De�nition (Reachable process)
A process is reachable if there is a derivation leading to it from a
process with no keys (standard process).

Side result
In the paper you can �nd a correct and complete syntactic
characterisation of reachable processes. We are not aware of
similar characterisations in the literature.

13

Starting point for bisimulation de�nition

We start from the de�nition in [Phillips & Ulidowski, 2007]:

De�nition (Forward-reverse bisimulation)

A symmetric relation R is a forward-reverse bisimulation if
whenever X R Y:

1. keys(X) = keys(Y);

2. if X µ−→f X′ then there is Y′ such that Y
µ−→f Y′ and X′ R Y′;

3. if X µ−→r X′ then there is Y′ such that Y
µ−→r Y′ and X′ R Y′.

14

Outline

Behavioural equivalences for reversible systems

CCSK

Our insights and results

Conclusion

15

On keys

Keys serve two purposes:

• to distinguish executed from non-executed pre�xes;
• to link actions which have synchronised.

A key may be free in a process (one occurrence, not attached to a τ)
or bound (two occurrences, or one attached to a τ).

If a key is free then the other occurrence should be in the context.
Key insight
Identity of free keys matters, identity of bound keys does not. E.g.,
we want:

a[n] |a[n] R a[m] |a[m]

a[n] 6R a[m]

The processes in the latter will behave di�erently in a context
· |a[n].

16

Our solution

We add rules for α-conversion of bound keys.

X ≡ X[n/m] m bound in X,n /∈ keys(X)

Y ≡ X X α[m]−−−→f X′ X′ ≡ Y′

Y α[m]−−−→f Y′
Y ≡ X X α[m]−−−→r X′ X′ ≡ Y′

Y α[m]−−−→r Y′

Without changing the semantics we would have:

a[n] |a[n] |b 6R a[m] |a[m] |b

since the former could choose m as new key to execute b.

17

Revised FR bisimulation

De�nition (Revised forward-reverse bisimulation)

A symmetric relation R is a revised forward-reverse bisimulation if
whenever X R Y:

1. if X µ−→f X′ then there is Y′ such that Y
µ−→f Y′ and X′ R Y′;

2. if X µ−→r X′ then there is Y′ such that Y
µ−→r Y′ and X′ R Y′.

Revised FR bisimilarity, written ∼, is the largest revised FR
bisimulation.

Matching bound keys is irrelevant thanks to α-conversion.

18

Barbed congruence

De�nition (Forward-reverse barbed congruence)
A symmetric relation R is a forward-reverse (FR) barbed
bisimulation if whenever X R Y:

• X ↓a implies Y ↓a;
• X ↑α[n] implies Y ↑α[n];

• if X τ [n]−−→f X′ then there is Y′ such that Y
τ [n]−−→f Y′ and X′ R Y′;

• if X τ [n]−−→r X′ then there is Y′ such that Y
τ [n]−−→r Y′ and X′ R Y′.

A forward-reverse (FR) barbed congruence is a FR barbed
bisimulation such that X R Y implies C[X] R C[Y] for each C such
that C[X] and C[Y] are both reachable.

19

On barbs

De�nition (Barbs)

Forward output barb at a: ↓a i� X
a[n]−−→f X′ for some n and X′.

Backward barb at α[n]: ↑α[n] i� X
α[n]−−→r X′ for some X′ (α 6= τ).

Having forward barbs as detailed as the backward ones will not
change the equivalence.

Why do we need so detailed backward barbs?

We would like a[n] 6R b[n].

If a context C[•] is able to interact with a[n] then C[b[n]] is not
reachable, since occurences of the same key should be attached to
complementary pre�xes.

20

Main results

Theorem
Revised FR bisimilarity is a congruence (provided that the
compositions are reachable).

Theorem
Revised FR bisimilarity coincides with the largest FR barbed
congruence.

Theorem
Revised FR bisimilarity on standard processes is strictly �ner than
CCS bisimilarity.

Indeed a.b+ b.a and a |b are equivalent in CCS (this is an instance
of the Expansion Law) but not for revised FR bisimilarity.

21

Sound axioms

A number of axioms can be easily proved sound, e.g.:
Sound axioms

X | Y ∼ Y | X
X |0 ∼ X

(νa)(νb)X ∼ (νb)(νa)X
(νa)(X | Y) ∼ X | (νa)Y iff a /∈ fn(X)

(...)

X + P ∼ X iff toStd(X) = P

(νa)(a.P |a.Q) ∼ τ.(νa)(P |Q)
(νa)(a[n].X |a[n].Y) ∼ τ [n].(νa)(X | Y)

τ | τ ∼ τ.τ

22

Why not RCCS?

Example (In CCSK)

a.(P |Q) + a.(P |Q) a[n]−−→f a[n].(P |Q) + a.(P |Q)

The simple axiom X + P ∼ X (if toStd(X) = P) allows us to prove:

a[n].(P |Q) + a.(P |Q) ∼ a[n].(P |Q)

Example (In RCCS)

∅ . a.(P |Q) + a.(P |Q) ∅:a−−→
RCCS
f [∗,a,a.(P |Q)] · ∅ . (P |Q) ≡

(< 1 > ·[∗,a,a.(P |Q)] · ∅ . P) | (< 2 > ·[∗,a,a.(P |Q)] · ∅ . Q)

You are welcome to try to write down axiom(s) to prove:

(< 1 > ·[∗,a,a.(P |Q)] · ∅ . P) | (< 2 > ·[∗,a,a.(P |Q)] · ∅ . Q) ∼
(< 1 > ·[∗,a,0] · ∅ . P) | (< 2 > ·[∗,a,0] · ∅ . Q)

23

Outline

Behavioural equivalences for reversible systems

CCSK

Our insights and results

Conclusion

24

Summary

• We de�ned a new form of bisimulation for causal-consistent
systems.

• We proved it equivalent to a form of barbed congruence.
• We proved correct a number of axioms.

25

Future work

• Consider weak equivalences and controlled reversibility.
• Tackle more complex calculi (it requires modelling them with
no redundancy).

• Characterising the equivalence induced on CCS (hereditary
history-preserving bisimilarity?).

26

	Behavioural equivalences for reversible systems
	CCSK
	Our insights and results
	Conclusion

