
A MAPE-K Approach
to Autonomic
Microservices

Antonio Bucchiarone, Fondazione Bruno Kessler

Claudio Guidi, italianaSoftware s.r.l.

Ivan Lanese, University of Bologna

Nelly Bencomo, Aston University

Josef Spillner, Zurich University of Applied Sciences

Microservice Conference 2022
Paris, 10-12 May 2022

Outline

• A brief introduction
Where this paper comes from

• Present and future scenarios
Why investigating autonomic microservices?

• A MAPE-K approach
Our contribution

• Examples and challenges
How a MAPE-K approach can be useful

• Conclusions

A brief
introduction

A step forward
In the previous edition of Microservices Conference 2020...

• Microservices 2020 Conference :

• Started a collaboration with Antonio Buchiarone (FBK), Ivan Lanese (UniBo),
Nelly Bencomo (Aston University) and Josef Spillner (Zurich University of Applied Sciences)

• Accepted as a poster at ICSA 2022 New and Emerging Ideas Track

• Accepted for a presentation at Microservices 2022 Conference

• Today we are sharing our ideas with the community in order to stimulate the debate and
triggering new research opportunitites

Autonomic Microservices

Kephart, Jeffrey & Chess, D.M.. (2003). The Vision Of Autonomic Computing. Computer.
36. 41- 50. 10.1109/MC.2003.1160055

Autonomic Microservices means applying the concepts of autonomic computing to
microservices architectures.

Systems manage themselves according to an administrator’s goals. New components integrate as
effortlessly as a new cell establishes itself in the human body. These ideas are not science fiction, but
elements of the grand challenge to create self-managing computing systems.

Concept Current Computing (2003) Autonomic computing

Self-configuration Corporate data centers have multiple vendors and
platforms. Installing, configuring, and integrating systems
is time consuming and error prone.

Automated configuration of components and systems follows high-
level policies. Rest of system adjusts automatically and seamlessly.

Self-optimization Systems have hundreds of manually set, nonlinear tuning
parameters, and their number increases with each release.

Components and systems continually seek opportunities to improve
their own performance and efficiency.

Self-healing Problem determination in large, complex systems can take
a team of programmers weeks.

System automatically detects, diagnoses, and repairs
localized software and hardware problems

Self-protection Detection of and recovery from attacks and cascading
failures is manual.

System automatically defends against malicious attacks or cascading
failures. It uses early warning to anticipate and prevent systemwide
failures.

Present and
future scenarios

Digital
economy

Modern
Architectures

Cloud
Computing

From DevOps to
NoOps

Autonomic
Microservices

Depicting the scenario
Why investigating autonomic microservices?

Here we identify four main forces that allow us to say that it is
important to investigate autonomic microservices:

• Since IT and software infrastructures are assets for the
Digital economy, it is fundamental to lower their
maintenance costs.

• Cloud Computing is growing day by day. AI will play an
important role in optimizing resources.

• Modern Architectures (e.g. microservices) are more and
more distributed. The main idea is that, distributed
architecture are more resilient, flexible and scalable

• From DevOps to NoOps the main idea behind NoOps is to
completely automatize the software environment

Digital economy
Digital economy is shaping our societies

• There are huge investments of all the countries for addressing the
challenges of digital economy. Both public institutions and private
players, are pushing towards process digitization

• Lowering the costs of developing and maintaining software assets is a
competitive leverage.
• Reducing energy consumption
• Reducing the need of human presence

FUTURE SCENARIO:
Software infrastructures become so intelligent to self adjust themselves
automatically in order to reduce the need of human presence

We need software infrastructures designed on top of Autonomic
Computing foundations

Cloud computing
Multi cloud and cognitive cloud are the new frontiers

The cloud is the de facto target infrastructure for
deploying applications today and in the future, both in
the private and public case

• Cognitive Cloud: new research directions for
equipping cloud computing with artificial
intelligence used for optimizing resource and
energy consumption

FUTURE SCENARIO
Cloud infrastructures will be so intelligent to manage
running applications in order to optimize the energy
consumption by keeping the same quality

Making the cloud infrastructure so intelligent could
be insufficient if the applications are not intelligent
too.

Modern architectures
Distributed architectures are taking place everywhere

Microservices and serverless architectures are taking place for
designing and developing new applications.

The main objectives are:
• creating scalable and flexible applications;
• creating reusable components;
• technology agnosticism.

See also the vision of «The composable Enterprise» from
Gartner

FUTURE SCENARIO
All the applications will be developed as a composition of
distributed components deployed in a multi cloud
infrastructure

The overall complexity will increase dramatically.
Autonomic distributed applications will help in the
management of such a complexity.

From DevOps to NoOps
Full automatization of software production chain

DevOps processes automatize several aspects of the software production chain.
The next step is NoOps.

With NoOps the software environment is completely automated that there’s no
need for an operations team to manage it.

FUTURE SCENARIO
The NoOps dream comes true, the software environment does not need to
human intervention anymore.

Autonomic computing is a fundamental piece of NoOps, because it allows to
program the maintenance tasks as the autonomic behavior of the applications.

Waiting for the future…
Research on autonomic microservices can bring other benefits

• Autonomic microservices can help in defining and standardizing non-
functional requirements for microservices, thus permitting to avoid
cloud vendor lock-in.
As an example, some of the following features are often coupled with the underlying
infrastructure:

• Observability
• Scalability
• Configurability
• …

• Autonomic microservices can help in standardizing the
containerization layer of cloud infrastructure, thus facilitating the
adoption of standard API for automatically negotiating resources with
cloud providers

A MAPE-K
approach for
autonomic

microservices

Autonomic computing and microservices
Visualizing the idea of autonomic computing in a microservices environment

sys admin System to be managed

deploy

metrics

update

Start/Stop

alarm

The standard way for managing a system

The management of a running system can be seen as a
continuous set of interactions between the sys admin and
the target infrastructure in order to keep the applications
running with a high level of quality targeting the business
requirements.

analytics

Change
configuration

Change
configuration

A lot of interactions between admin and the execution environment are automatically managed
by the system itself

sys admin

deploy

metrics

Change
configuration

update

Start/Stop

alarm

Ideally, an autonomic system is able to self-configure, self-heal, self-
protect and self-organize itself depending on its status.

The main target is reducing human interactions in order to reducing
time cost and increasing efficiency.

Change
configuration

analytics

Autonomic computing and microservices (2)

Autonomic System

The execution environment can be seen as the composition of a specialized
container management infrastructure and the actual containers.

sys admin Container Infrastructure
(e.g. docker+kubernetes)

Containerization enables component
abstraction to containers and changes the
rules on how a system is managed today. A
system is just a set of interacting containers.

Sys admins can automatize a lot of operations
by configuring the orchestration platform.

.

Containers

System to be managed

This is the working layer for
managing a system of containers

Autonomic computing and microservices (3)

Autoscaling
It is an autonomic feature

sys admin Container Infrastructure.

deploy

metrics

Change configuration
(autoscale)

The autoscaling is maybe the first autonomic
feature a containerization system can
provide. As an example, Kubernetes is able
to autoscale a system depending on some
metrics extracted from single components.

Containers are just components that cannot
play any actions for changing their own
structure. They are manipulated by the
infrastructure. They are not autonomic.

Containers

deploy

deploy

Start/Stop/Remove

Autonomic system

configure

They are not autonomic

The risk of coupling
The final application configuration strictly depend on the target infrastructure

sys admin Container Infrastructure.

deploy

metrics

Change configuration
(autoscale)

Containers

deploy

deploy

Start/Stop/Remove

Autonomic system

configure

developer

Prepare image and
scaling requirements.

When the autonomic feature is in charge to the containerization
environment, application metrics must be prepared in order to
be compatible with the target infrastructure autoscaling feature

The risk of coupling (2)
The final application configuration strictly depend on the target infrastructure

sys admin Container Infrastructure.

deploy

metrics

Change configuration
(autoscale)

Containers

deploy

deploy

Start/Stop/Remove

Autonomic System

configure

developer

Prepare image and
scaling requirements

Thanks to containerization, development is
agnostic w.r.t. the microservice technology,
but the deployment is coupled to the target
infrastructure if we want to enable an
autonomic feature like autoscaling.

Autonomic microservices
The main idea is to have a transparent infrastructure by enabling final microservices to change
themselves

Container standardized
Infrastructure.

Change
configuration
(autoscale)

Autonomic system

deploy

Deploy/Start/Stop/Remove

Target System

developer

Prepare and deploy image

All the activities are performed at developing
time. Developers can rely upon a
standardized infrastructure which enables
the possibility to self-reconfigure
microservices applications.

Deploy/Start/Stop/Remove

The main concepts we extract
These concepts are at the basis of our proposal

Environment Microservices

1. There are different responsibilites: human, environment and microservices

2. There are different actions to be taken:
1. Monitoring
2. Analyzing metrics
3. Planning the next action
4. Executing the action

admin

A MAPE-K approach
A proposal for catching the complexity

In our proposal we exploit the feedback loops approach used in the area of self-adaptive systems, as a
means for describing the different responsibilities.

The MAPE-K feedback control loop performs Monitor-Analyze-Plan-Execute phases over a shared
Knowledge.

• The Monitoring (M) phase acquires data from the system and its environment.
• Analysis (A)of the monitored data involves activities such as filtering or transforming data, e.g. to

reduce noise or to put them in a form suitable for elaboration.
• Then, Planning (P) of future actions is done, keeping into account the result of the analysis as well

as the knowledge of the system held in the model.
• Finally, the Execution (E) of the planned actions should be performed. This consists of changing

the values on the actuator(s) in the system according to the developed plan.
• A MAPE-K loop stores the Knowledge (K) required for decision-making in what is called the

Knowledge Base (KB).

Introducing the graphical notation
Depicting the responsibilities

When integrating a MAPE-K loop in a microservice architecture there
are various options related to which part of the system performs the
different phases involved in the loop.

Possibilities include having phases performed by the infrastructure (e.g.,
Containers, the Cloud, etc.), by each microservice in addition to its
functionalities, by ad-hoc microservices, or by groups of microservices.

In order to better discuss the various possibilities, we introduce a
graphical notation to provide at-a-glance an informative view of the main
design decisions, in particular hinting who is in charge of the different
phases of the MAPE-K loop. It does not aim at conveying all the details of
the chosen approach but more at highlighting the main design choices.

Introducing the graphical notation
Detailing the responsibilities in a MAPE loop

Essentially, each area of the figure represents whether
the actor corresponding to the circle takes some
responsibility for the activity corresponding to the MAPE
sector:

• if the sector is white then it takes no responsibility;
• if it is colored then the actor has some responsibility.
• for each MAPE sector at least one segment (i.e.,

portion of circle in the sector) needs to be colored
since at least one actor must take the responsibility
for the activity.

• more than one segment can be colored in a sector,
since multiple actors can cooperate in taking
responsibility for the activity.

Note that we do not explicitly represent the knowledge
base: in many cases it is under the responsibility of the
entity that takes care of the planning.

Special cases
Capturing the autonomic degree of a system at a glance

Let’s note that systems more colored towards the center are more autonomic than systems more
colored at the border.

We argue that such a diagram can help architects, developers and sysadmins to grasp at the glance the degree
of autonomicity of a running microservice system, as well as the main responsibilities involved in the chosen
approach. Further, the same notation can also be used at the level of system design to highlight the
main requirements

Self scaling with Kubernetes
Auto scaling is a feature of Kubernetes

Referring to a Kubernetes-based scenario, auto-scaling would be represented in
our scale diagram as an environment-based scenario, where:

• Monitoring is performed by Kubernetes only, which continuously collects
metrics from the deployed pods.

• Analysis is also performed by Kubernetes, which extracts statistics from the
metrics.

• Planning is performed by Kubernetes as well, depending on the initial
customization provided by the sysadmin. Here we highlight also the sector of
human responsibility, as planning requires a previous configuration
performed by a human actor. Only when the applied planning is standard and
always applied without customization, planning can be put in charge
exclusively to the environment.

• Execution is provided by Kubernetes, which autonomously scales the
components and takes care of load balancing.

A proof of concept
At Microservices 2020, a jolie based proof of concept was presented

Here a functionality is originally provided by a single jolie microservice deployed with
a docker environment. Then, a load increment and a corresponding slow down in
the response time are simulated on its listening endpoints. The microservice, that is
autonomously able to detect a deterioration of the response time of its operations,
then invokes the environment to scale up one of its core microservices into the
current infrastructure. After some delay, the load is simulated to decrease thus
improving the response time, resulting in the microservice asking for scaling down
the extra instances.

• the microservice implements a simple monitor of its operations. In particular, it collects the
response time average. Thus, phase M is under its responsibility;
• the microservice detects a decrease in response time due to high load. Thus, phase A is under
its responsibility;
• the microservice decides when to ask for a new instance for scaling the load. Thus, phase P is
under its responsibility;
• the microservice negotiates with the environment the release of a new instance. Thus, phase
E is under shared responsibility of the microservice and the environment.
• the microservice holds all the knowledge about the component to be deployed. The
infrastructure is not aware of the new component to be deployed neither it is aware of its
container image, which is built at runtime.

Challenges and opportunities
We identify four main challenges that must be overcome in order to implement our approach

1. Standardised discoverable APIs. Autonomic Microservices require in many cases interaction between the services
and the infrastructure. This is the case at least every time a phase is a shared responsibility between the two.
Such an interaction should take place via well-defined APIs. In order to allow deployment on multiple
infrastructures and to reduce vendor-lockin such APIs should be standardized, so that the same interface would
be available on different platforms. Ideally, custom implementations of the required functionalities could be
provided whenever the infrastructure does not cover them. We remark that a decision to use the MAPE-K control
loop to approach autonomicity could give guidelines on how to define such a standardized API, which should
reasonably involve functionalities for each of the 4 phases and for sharing the knowledge base K.

2. Intent-based specification of autonomicity. Rather than specifying imperatively all technical instructions on which
change to perform under which condition, high-level intents or rules (i.e. described instead of prescribed) that
keep into account both technical aspects (e.g., throughput) and economic concerns (e.g., price of resources) are
to be preferred. This allows one to state objectives such as ”any change is allowed as long as the cost of service
operation does not exceed a maximum threshold”. As usual, moving from an imperative to a declarative approach
makes the description of the autonomic behaviour more flexible and easy to understand, yet the translation of
such a specification to code executable on top of the available API becomes more complex.

Challenges and opportunities
We identify four challenges that must be overcome in order to implement our approach

3. Multi-cloud support. If autonomous services are meant to automate human logic on what to run where, this
includes necessarily decisions on when to activate additional providers or migrate between providers. For this to
be technically feasible, the following information needs to be available: shared knowledge on what providers exist
and what as-a-service models they support with which non-functional properties

4. Ecosystem of MAPE-K logic. Many problems that are addressed by autonomy are shared across application
domains. Engineers will benefit from accessing libraries and repositories containing custom logic for the analysis
of monitoring data and the planning of next steps. This logic could itself be offered in the form of microservices,
such as stateless functions delivering analytical results and planning decisions, for technological coherence and
increased chance of adoption.

Conclusions

Conclusions
Triggerring a discussion within the microservices community

Autonomic microservices are very challenging. Our contribution is to
provide a general framework for addressing their design and
development by highlighting some important aspects to be taken into
account:

• A clear definition of the involved actors and their responsibilities
• A reference model to be used (MAPE-K loop)

Thanks

