
Most General Property-Preserving Updates

Davide Bresolin � University of Padova, Italy
Ivan Lanese � Focus Team, University of Bologna/INRIA, Italy

DB

LATA 2017, 9 March 2017



Motivation

I Modern applications are increasingly designed as distributed
systems that cooperates to achieve a common goal.

I They must face dynamically changing requirements and
unpredictable behaviour by the environment

I Applications and systems need to be updated, statically or
dynamically:

I changing business rules
I changing environment conditions
I bug �xes
I specialize the application to user preferences
I . . .



Which Updates

We consider a simple but general update mechanism:

I The application is composed by a context C,
and a component to be updated A

I The component A is replaced by B
I We go from C[A] to C[B]



Property preservation

I Many approaches:
I Model checking,
I testing,
I abstract interpretation,
I . . .

I We do not want to redo
the checking again

If C[A] satis�es a given
property Φ, which is the
most general B that

guarantees that also C[B]
satis�es Φ?



One property
one context

All properties
one context

One property
all contexts

All properties
all contexts



Constraint Automata

We model contexts and components as constraint automata

A = 〈Q,N, q0,−→〉

I Automata that communicates via
(internal and external) nodes N

I Transitions are labelled with
functions from N to data ∪ {⊥}

I We consider embeddings:
I The component communicates

only with the context

I We consider both synchronous and
asynchronous composition



Two register example

Consider a system composed by two 1 bit registers, A and B

I Registers can be read and written

I A scheduler decides which register can be accessed from
outside

I A synchronizer that exposes to the outside world the nodes r
(read) and w (write) to access the active register

0 1

ra = 0

wa = 0

wa = 1

wa = 0

ra = 1

wa = 1

s0 s1
s = a

s = b

q0

s = a; ra = 0; r = 0
s = a; ra = 1; r = 1
s = a;wa = 0;w = 0
s = a;wa = 1;w = 1
s = b; rb = 0; r = 0
s = b; rb = 1; r = 1
s = b;wb = 0;w = 0
s = b;wb = 1;w = 1



The complete system

I We consider the Scheduler as
the component to be updated

I The contex is then given by the
Registers and Synchronizer

I The complete system is
obtained by asynchronous
composition

(s0, 0, 0)

(s1, 1, 0)(s1, 0, 0)

(s0, 1, 1)

(s0, 1, 0)

(s0, 0, 1)

(s1, 0, 1)

(s1, 1, 1)

w = 1

r = 0
w = 0

w = 1

r = 0
w = 0

r = 0
w = 0

w = 1

w = 0

r = 1
w = 1

r = 1
w = 1

w = 0

r = 0
w = 0

w = 1

w = 0

r = 1
w = 1 r = 1

w = 1

w = 0



Properties

We adopt a general de�nition of property. . .

I for us, a property is a pre�x-closed sets of traces . . .

I . . . that can be accepted by some Constraint Automaton

I we represent a property by the automaton Φ that accepts it

I A satis�es the property Φ i� L (A) ⊆ L (Φ)

. . . to exploit the link between automata and logic:

I Constraint Automata are as expressive as the safety linear
µ-calculus

I our approach can cope with any safety property written in
some temporal logic



One property
one context

All properties
one context

One property
all contexts

All properties
all contexts



One property, one context

Problem
Given a context C, a component A and a property Φ, �nd a most
general B such that if C[A] satis�es Φ, then also C[B] satis�es Φ.

I This is equivalent to �nding the largest B (w.r.t. language
containment) that solve the equation

L (C[B]) ⊆ L (Φ)

I We know from automata theory that

L (B) = L (C[Φ])



One property, one context

We cannot directly apply the equation:

I The solution may not be pre�x-closed
I we restrict to pre�x-closed solutions

I Constraint Automata are not closed under complementation
I we need to add �nal states and an acceptance condition

I We are dealing with in�nite traces, where complementation is
expensive

I can we avoid Safra's construction?
I what about determinization and subset construction?



A (somehow) simpler way to the solution

1. Φ can be easily complemented:
I all states of Φ are �nal
I complete the automaton and add a unique, non-�nal, sink state
I determinize with the subset construction
I complement by switching �nal and non-�nal states

Φ = Switch(Subset(Φ))

2. Then the maximal pre�x closed B is

B = Pre�x(Switch(Subset(C[Φ])))
I this is a solution of the equation, but non necessarily the most

general one
I every other pre�x-closed solution is contained in B



One property, one context � example

P1: �if w=1 is executed at the �rst step, then at the third step
r=0 cannot be executed�

q0

q1

q2

q3

w = 1; r =?

r = 0
r = 1

w = 0; r =?

r =?;w =?

r =?;w =?

r = 1;w =?
w = 0
w = 1

r0

r1

r2 r3

r4 r5

r6

s = a

s = b

s = a

s = b

s = a

s = b s = b

s = a
s = b

s = a

I The solution accepts traces that ends before the third step, or
longer traces that starts with either s = a, s = b, s = a or
s = b, s = a, s = b



One property
one context

All properties
one context

One property
all contexts

All properties
all contexts



All properties, one context

Problem
Given a context C and component A, �nd a most general B such
that for every property Φ, if C[A] satis�es Φ, then also C[B]
satis�es Φ.

I This is equivalent to �nding the largest B (w.r.t. language
containment) that solve the equation

L (C[B]) ⊆ L (C[A])

I We know from automata theory that

L (B) = L (C[C[A]])



All properties, one context

Problem
Given a context C and component A, �nd a most general B such
that for every property Φ, if C[A] satis�es Φ, then also C[B]
satis�es Φ.

I By the same argument of the �one property, one context� case
we can show that the maximal pre�x closed B is

B = Pre�x(Switch(Subset(C[C[A]])))



All properties, one context � example

We can apply the construction to obtain the most general
scheduler that replaces the original one.

s0

s1

s2

s = a

s = b

s = b

s = a

I The solution accepts only traces of the form
s = a, s = b, s = a, s = b, . . . or
s = b, s = a, s = b, s = a, . . .



Complexity

I The same construction can be used for both the �one property,
one context� and �all properties, one context� cases

I The problem is in 2-EXPTIME, since it requires a double
complementation

I even though the �nal result may be much smaller in practical

cases

I Solving the �one property, one context� case is
EXPSPACE-hard

I Proved by reducing a suitable three-player game to it
I The component and the property play against the context
I Hardness of the �all properties, one context� case is open



One property
one context

All properties
one context

One property
all contexts

All properties
all contexts



One property, all contexts

Problem
Given a component A and a property Φ, �nd a most general B such
that for all contexts C, if C[A] satis�ed Φ then also C[B] satis�es Φ.

I For asynchronous embedding, unless the formula is true or
false, we need:

L (B) ⊆ L (A)

and thus we have that A is the most general solution we are
looking for



One property, all contexts

Problem
Given a component A and a property Φ, �nd a most general B such
that for all contexts C, if C[A] satis�ed Φ then also C[B] satis�es Φ.

I For synchronous embedding we need:

L (B) ⊆ L (A) ∪R(Φ)

where R(Φ) is the observation-point language of Φ that
contains all the words of lengths n such that there exists zc of
length n such that z is in Φ and zc is not in Φ.

I Once again, the most general solution MGU(A,Φ) can be
built by a double complementation



One property
one context

All properties
one context

One property
all contexts

All properties
all contexts



All properties, all contexts

Problem
Given a component A, �nd a most general B such that for all
contexts C and for all properties Φ, if C[A] satis�ed Φ then also
C[B] satis�es Φ.

I Given two distinct A and B, it is always possible to �nd a
context and a property that distinguish them

I Hence, we need:
L (B) ⊆ L (A)

and thus we have that A is the most general solution we are
looking for



One property
one context

All properties
one context

One property
all contexts

All properties
all contexts



Conclusions

Results:

I We studied under which conditions updates preserve properties

I We have show how to build a most general update

I We generalized to all properties and/or all contexts

Future Work:

I Consider the same problem in di�erent settings
I More expressive automata automata
I More expressive properties
I More e�cient constructions

I What happens when multiple updates are considered?




