Most General Property-Preserving Updates

Davide Bresolin — University of Padova, Italy
Ivan Lanese — Focus Team, University of Bologna/INRIA, Italy

DB

LATA 2017, 9 March 2017



Motivation

» Modern applications are increasingly designed as distributed
systems that cooperates to achieve a common goal.

» They must face dynamically changing requirements and
unpredictable behaviour by the environment

» Applications and systems need to be updated, statically or
dynamically:

v

changing business rules

changing environment conditions

bug fixes

specialize the application to user preferences



Which Updates

We consider a simple but general update mechanism:

» The application is composed by a context C,
and a component to be updated A

» The component A is replaced by B
» We go from C[A] to C[B]




Property preservation

» Many approaches:

Model checking, If C[A] satisfies a given

> testing, ) . property ®, which is the

» abstract interpretation,

S most general B that
guarantees that also C[B]

satisfies 7

v

» We do not want to redo
the checking again




One property
one context

All properties
one context

All properties
all contexts




Constraint Automata

We model contexts and components as constraint automata

A= <Qv N7q07_>>

v

Automata that communicates via
(internal and external) nodes N

v

Transitions are labelled with C
functions from N to dataU {1} B 10
We consider embeddings: -f . ~

» The component communicates
only with the context ) o |

v

v

We consider both synchronous and ) L
asynchronous composition P i



Two register example

Consider a system composed by two 1 bit registers, A and B
» Registers can be read and written

» A scheduler decides which register can be accessed from
outside

» A synchronizer that exposes to the outside world the nodes r
(read) and w (write) to access the active register

s=ar,=0;r=

r,=0 ra=1

s=ar=1,

s=a
—~(o——=(s) ~(wimh
s:b'rb:0'
=b ' '
s s=b;r=1,

s=bywp, =0;
s=b;wp, =1;

s=a,w,=0,w=

=0
w =
r=
r =
w=20
w=1



The complete system

» We consider the Scheduler as
the component to be updated

» The contex is then given by the
Registers and Synchronizer , _;

» The complete system is
obtained by asynchronous
composition



Properties

We adopt a general definition of property. ..

» for us, a property is a prefix-closed sets of traces ...

> ...that can be accepted by some Constraint Automaton

> we represent a property by the automaton @ that accepts it
A satisfies the property ® iff Z(A) C Z(d)

v

... to exploit the link between automata and logic:

» Constraint Automata are as expressive as the safety linear
p-calculus

» our approach can cope with any safety property written in
some temporal logic



One property
one context




One property, one context

Problem
Given a context C, a component A and a property @, find a most
general B such that if C[A] satisfies ®, then also C[B] satisfies ®.

» This is equivalent to finding the largest B (w.r.t. language
containment) that solve the equation

Z(C[B]) € Z(%)

» We know from automata theory that

Z(B) = Z(C[¢])



One property, one context

We cannot directly apply the equation:

» The solution may not be prefix-closed
> we restrict to prefix-closed solutions

» Constraint Automata are not closed under complementation
» we need to add final states and an acceptance condition

» We are dealing with infinite traces, where complementation is
expensive
» can we avoid Safra’s construction?
» what about determinization and subset construction?



A (somehow) simpler way to the solution

1. ® can be easily complemented:

all states of ® are final

complete the automaton and add a unique, non-final, sink state
determinize with the subset construction

complement by switching final and non-final states

® = Switch(Subset(®))

v

v vy

2. Then the maximal prefix closed B is
B = Prefix(Switch(Subset(C[®])))
» this is a solution of the equation, but non necessarily the most

general one
» every other prefix-closed solution is contained in 3




One property, one context — example

P1: “if w=1 is executed at the first step, then at the third step
r=0 cannot be executed”

» The solution accepts traces that ends before the third step, or
longer traces that starts with either s =a,s=b,s=aor
s=b,s=as=0>b



All properties
one context




All properties, one context

Problem
Given a context C and component A, find a most general B such

that for every property @, if C[.A] satisfies ®, then also C[B]
satisfies ®.

» This is equivalent to finding the largest B (w.r.t. language
containment) that solve the equation

Z(C[B]) € Z(C[A])
» We know from automata theory that

Z(B) = Z(C[CIA)



All properties, one context

Problem
Given a context C and component A, find a most general B such

that for every property @, if C[.A] satisfies ®, then also C[B]
satisfies ®.

» By the same argument of the “one property, one context” case
we can show that the maximal prefix closed B is

B = Prefix(Switch(Subset(C[M])))



All properties, one context — example

We can apply the construction to obtain the most general
scheduler that replaces the original one.

» The solution accepts only traces of the form
s=as=bs=as=b>b,... or
s=b,s=as=bs=a,...



Complexity

» The same construction can be used for both the “one property,
one context” and “all properties, one context” cases

» The problem is in 2-EXPTIME, since it requires a double
complementation
» even though the final result may be much smaller in practical
cases

» Solving the “one property, one context” case is
EXPSPACE-hard
» Proved by reducing a suitable three-player game to it
» The component and the property play against the context
» Hardness of the “all properties, one context” case is open



One property
one context

All properties
one context

One property ’ >
all contexts

-

All properties
all contexts




One property, all contexts

Problem
Given a component A and a property ®, find a most general B such
that for all contexts C, if C[A] satisfied ® then also C[B] satisfies ®.

» For asynchronous embedding, unless the formula is true or
false, we need:

Z(B) € Z(A)

and thus we have that A is the most general solution we are
looking for



One property, all contexts

Problem

Given a component A and a property ®, find a most general B such
that for all contexts C, if C[A] satisfied ® then also C[B] satisfies ®.

» For synchronous embedding we need:

Z(B) C Z(A) UR(®)

where R(®) is the observation-point language of ® that
contains all the words of lengths n such that there exists zc of
length n such that z is in ® and zc is not in ®.

» Once again, the most general solution MGU(A, ®) can be
built by a double complementation



One property
one context

All properties
one context

All properties
all contexts




All properties, all contexts

Problem
Given a component A, find a most general B such that for all
contexts C and for all properties ®, if C[A] satisfied ® then also
C[B] satisfies ®.
» Given two distinct A and B, it is always possible to find a
context and a property that distinguish them
> Hence, we need:

Z(B) C Z(A)

and thus we have that A is the most general solution we are
looking for



One property
one context

All properties
one context

All properties
all contexts




Conclusions

Results:
» We studied under which conditions updates preserve properties
» We have show how to build a most general update

» We generalized to all properties and/or all contexts

Future Work:
» Consider the same problem in different settings

» More expressive automata automata
» More expressive properties
» More efficient constructions

» What happens when multiple updates are considered?






