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Motivation

I Modern applications are increasingly designed as distributed
systems that cooperates to achieve a common goal.

I They must face dynamically changing requirements and
unpredictable behaviour by the environment

I Applications and systems need to be updated, statically or
dynamically:

I changing business rules
I changing environment conditions
I bug �xes
I specialize the application to user preferences
I . . .



Which Updates

We consider a simple but general update mechanism:

I The application is composed by a context C,
and a component to be updated A

I The component A is replaced by B
I We go from C[A] to C[B]



Property preservation

I Many approaches:
I Model checking,
I testing,
I abstract interpretation,
I . . .

I We do not want to redo
the checking again

If C[A] satis�es a given
property Φ, which is the
most general B that

guarantees that also C[B]
satis�es Φ?



One property
one context

All properties
one context

One property
all contexts

All properties
all contexts



Constraint Automata

We model contexts and components as constraint automata

A = 〈Q,N, q0,−→〉

I Automata that communicates via
(internal and external) nodes N

I Transitions are labelled with
functions from N to data ∪ {⊥}

I We consider embeddings:
I The component communicates

only with the context

I We consider both synchronous and
asynchronous composition



Two register example

Consider a system composed by two 1 bit registers, A and B

I Registers can be read and written

I A scheduler decides which register can be accessed from
outside

I A synchronizer that exposes to the outside world the nodes r
(read) and w (write) to access the active register
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The complete system

I We consider the Scheduler as
the component to be updated

I The contex is then given by the
Registers and Synchronizer

I The complete system is
obtained by asynchronous
composition
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Properties

We adopt a general de�nition of property. . .

I for us, a property is a pre�x-closed sets of traces . . .

I . . . that can be accepted by some Constraint Automaton

I we represent a property by the automaton Φ that accepts it

I A satis�es the property Φ i� L (A) ⊆ L (Φ)

. . . to exploit the link between automata and logic:

I Constraint Automata are as expressive as the safety linear
µ-calculus

I our approach can cope with any safety property written in
some temporal logic
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One property, one context

Problem
Given a context C, a component A and a property Φ, �nd a most
general B such that if C[A] satis�es Φ, then also C[B] satis�es Φ.

I This is equivalent to �nding the largest B (w.r.t. language
containment) that solve the equation

L (C[B]) ⊆ L (Φ)

I We know from automata theory that

L (B) = L (C[Φ])



One property, one context

We cannot directly apply the equation:

I The solution may not be pre�x-closed
I we restrict to pre�x-closed solutions

I Constraint Automata are not closed under complementation
I we need to add �nal states and an acceptance condition

I We are dealing with in�nite traces, where complementation is
expensive

I can we avoid Safra's construction?
I what about determinization and subset construction?



A (somehow) simpler way to the solution

1. Φ can be easily complemented:
I all states of Φ are �nal
I complete the automaton and add a unique, non-�nal, sink state
I determinize with the subset construction
I complement by switching �nal and non-�nal states

Φ = Switch(Subset(Φ))

2. Then the maximal pre�x closed B is

B = Pre�x(Switch(Subset(C[Φ])))
I this is a solution of the equation, but non necessarily the most

general one
I every other pre�x-closed solution is contained in B



One property, one context � example

P1: �if w=1 is executed at the �rst step, then at the third step
r=0 cannot be executed�
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I The solution accepts traces that ends before the third step, or
longer traces that starts with either s = a, s = b, s = a or
s = b, s = a, s = b



One property
one context

All properties
one context

One property
all contexts

All properties
all contexts



All properties, one context

Problem
Given a context C and component A, �nd a most general B such
that for every property Φ, if C[A] satis�es Φ, then also C[B]
satis�es Φ.

I This is equivalent to �nding the largest B (w.r.t. language
containment) that solve the equation

L (C[B]) ⊆ L (C[A])

I We know from automata theory that

L (B) = L (C[C[A]])



All properties, one context

Problem
Given a context C and component A, �nd a most general B such
that for every property Φ, if C[A] satis�es Φ, then also C[B]
satis�es Φ.

I By the same argument of the �one property, one context� case
we can show that the maximal pre�x closed B is

B = Pre�x(Switch(Subset(C[C[A]])))



All properties, one context � example

We can apply the construction to obtain the most general
scheduler that replaces the original one.
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I The solution accepts only traces of the form
s = a, s = b, s = a, s = b, . . . or
s = b, s = a, s = b, s = a, . . .



Complexity

I The same construction can be used for both the �one property,
one context� and �all properties, one context� cases

I The problem is in 2-EXPTIME, since it requires a double
complementation

I even though the �nal result may be much smaller in practical

cases

I Solving the �one property, one context� case is
EXPSPACE-hard

I Proved by reducing a suitable three-player game to it
I The component and the property play against the context
I Hardness of the �all properties, one context� case is open
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One property, all contexts

Problem
Given a component A and a property Φ, �nd a most general B such
that for all contexts C, if C[A] satis�ed Φ then also C[B] satis�es Φ.

I For asynchronous embedding, unless the formula is true or
false, we need:

L (B) ⊆ L (A)

and thus we have that A is the most general solution we are
looking for



One property, all contexts

Problem
Given a component A and a property Φ, �nd a most general B such
that for all contexts C, if C[A] satis�ed Φ then also C[B] satis�es Φ.

I For synchronous embedding we need:

L (B) ⊆ L (A) ∪R(Φ)

where R(Φ) is the observation-point language of Φ that
contains all the words of lengths n such that there exists zc of
length n such that z is in Φ and zc is not in Φ.

I Once again, the most general solution MGU(A,Φ) can be
built by a double complementation
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All properties, all contexts

Problem
Given a component A, �nd a most general B such that for all
contexts C and for all properties Φ, if C[A] satis�ed Φ then also
C[B] satis�es Φ.

I Given two distinct A and B, it is always possible to �nd a
context and a property that distinguish them

I Hence, we need:
L (B) ⊆ L (A)

and thus we have that A is the most general solution we are
looking for
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Conclusions

Results:

I We studied under which conditions updates preserve properties

I We have show how to build a most general update

I We generalized to all properties and/or all contexts

Future Work:

I Consider the same problem in di�erent settings
I More expressive automata automata
I More expressive properties
I More e�cient constructions

I What happens when multiple updates are considered?




