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Sequential Reversibility and Debugging

Reversibility is the ability to execute a program not only in the
canonical forward direction but in a backward manner as well

Useful in debugging: one can chase bugs to their roots rather than
executing the same program several times

read(x) x < 0

P1 P2 P3 P4
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Concurrent Reversibility

P1 P2 P3 P4

Q1 Q2 Q3 Q4

R1 R2 R3 R4

Causal consistency: an action can be undone provided that all of
its consequences have been already undone.
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Limitations

Reversibility has been investigated in various settings, like ccs,
π-calculus, Petri-nets, Erlang, µ-klaim, etc.

The majority of the reversible semantics have always been devised
ad-hoc. A process that is error-prone, time-consuming and not
scalable.

Lanese et al. recently proposed a general method to produce a
reversible semantics given a non-reversible one. The pros are
symmetric to the cons listed above.
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Contributions

The general method proposed by Lanese et al. lacked an
implementation which we propose here, by using the Maude
programming language.

Then, we tested it on a novel formalization of Erlang in Maude.

Finally, we developed a novel causal-consistent rollback operator
on top of the reversible semantics.

Hence our three main contributions are:

I A new mechanized formalization of Erlang in Maude

I A concrete implementation in Maude that generates reversible
semantics

I A novel generalized rollback operator
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Ingredients

Before diving into the details of our contribution let us discuss the
various ingredients required:

I Erlang

I Maude

I The general method
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Erlang
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The Erlang language

Erlang, developed in 1986 by Ericsson, is a concurrent, distributed,
functional programming language, based on message passing.

It is probably the most popular programming language that
implements the actor model.

Here we are mostly interested in the main concurrent primitives:

I spawn

I send

I receive
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Maude

Maude is a programming language that efficiently implements
conditional rewriting logic.

A rewriting logic theory is a tuple (Σ,E ,R) where:

I Σ is a collection of typed operators

I E is a set of equations

I R is a set of rewriting rules
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Maude: an example

fmod BOOL is

sort Bool .

op true : -> Bool .

op false : -> Bool .

op _and_ : Bool Bool -> Bool .

var A : Bool

eq true and A = A .

eq false and A = false .

eq A and A = A .

endfm
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General Method
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Input

The general method takes in input a formalism equipped with a
syntax and a reduction semantics

Then, causal dependencies are captured in terms of resources
produced and consumed.

t → t ′

Above t is consumed to produce t ′.
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Syntax

The formalism must have a two level syntax. On the lower level
there are no constraints, the upper level must be of the following
shape.

S ::= P | opn(S1, . . . ,Sn) | 0
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Rules

The rules of the reduction semantics must fit the following
schemas.

(Scm-Act)
P1 | . . . | Pn � T [Q1, . . . ,Qm ]

(Eqv)
S ≡c S′ S � S1 S1 ≡c S′1

S′ � S′1

(Scm-Opn)
Si � S′i

opn(S0, . . . , Si , . . . , Sn) � opn(S0, . . . , S
′
i , . . . , Sn)

(Par)
S � S′

S | S1 � S′ | S1
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Keys and Memories

To make the semantics reversible we resort to the use of keys and
memories.

Keys are attached to each entity of the lower level and are used to
uniquely identify them.

Memories are produced each time a step forward is taken, they are
used to bind two states of the system and to store configurations
so that they can be restored later on.
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Reversible Syntax

The reversible syntax has the following shape.

R ::= k : P | opn(R1, . . . ,Rn) | 0 | [R ;C ]

C ::= T [k1 : •1, . . . , km : •m]
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Forward Rules

The forward reversible rules of the reduction semantics have the
following shape.

(F-Scm-Act)
j1, . . . , jm are fresh keys

k1 : P1 | . . . | kn : Pn � T [j1 : Q1, . . . , jm : Qm ] | [k1 : P1 | . . . | kn : Pn ;T [j1 : •1, . . . , jm : •m ]]

(F-Scm-Opn)
Ri � R′i (keys(R′i ) \ keys(Ri )) ∩ (keys(R0, . . . , Ri−1, Ri+1, . . . , Rn) = ∅

opn(R0, . . . , Ri , . . . , Rn) � opn(R0, . . . , R
′
i , . . . , Rn)

(F-Eqv)
R ≡c R′ R � R1 R1 ≡c R′1

R′ � R′1
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Backward Rules

The backward reversible rules of the reduction semantics have the
following shape.

(B-Scm-Act)
µ = [k1 : P1 | . . . | kn : Pn ;T [j1 : •1, . . . , jm : •m ]]

T [j1 : Q1, . . . , jm : Qm ] | µ k1 : P1 | . . . | kn : Pn

(B-Scm-Opn)
R′i Ri

opn(R0, . . . , R
′
i , . . . , Rn) opn(R0, . . . , Ri , . . . , Rn)

(B-Eqv)
R ≡c R′ R R1 R1 ≡c R′1

R′ R′1
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A Concrete Example

(non-reversible rule)
〈pid : p1, env : θ, exp : p2 ! hello〉 →
〈pid : p1, env : θ, exp : hello〉 | 〈sender : p1, receiver : p2, payload : hello〉

(forward reversible rule)
k : 〈pid : p1, env : θ, exp : p2 ! hello〉�
k1 : 〈pid : p1, env : θ, exp : hello〉 | k2 : 〈sender : p1, receiver : p2, payload : hello〉 |
[k : 〈pid : p1, env : θ, exp : p2 ! hello〉 ; k1 : •1 | k2 : •2]
(backward rule)
k1 : 〈pid : p1, env : θ, exp : hello〉 | k2 : 〈sender : p1, receiver : p2, exp : hello〉 |
[k : 〈pid : p1, env : θ, exp : p2 ! hello〉 ; k1 : •1 | k2 : •2]

k : 〈pid : p1, env : θ, exp : p2 ! hello〉
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Automatic Generation of the
Reversible Semantics
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Input Format: Entities

mod SYSTEM is

...

sort Sys .

subsort Entity < Sys .

op #empty-system : -> Sys [ctor] .

op _||_ : Sys Sys -> Sys [ctor assoc comm .. ] .

...

endm
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Reversible Entities

mod SYSTEM is

...

sorts Memory Context Sys .

subsort EntityWithKey Memory Context < Sys .

op @:_ : Key -> Context [ctor] .

op [_;_] : Sys Context -> Memory [ctor frozen .. ] .

op #empty-system : -> Sys [ctor] .

op _||_ : Sys Sys -> Sys [ctor assoc comm .. ] .

...

endm
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Rewriting Rules: Send

crl [sys-send] :

< P | exp: EXSEQ, env-stack: ENV, ASET > =>

< P | exp: EXSEQ’, env-stack: ENV’, ASET > ||

< sender: P, receiver: DEST, payload: GVALUE >

if < DEST ! GVALUE, ENV’, EXSEQ’ > :=

< req-gen, ENV, EXSEQ > .
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Rewriting Rules: Forward and Backward Send

crl [fwd sys-send]:

< P | ASET, exp: EXSEQ, env-stack: ENV > * key(L) =>

< sender: P, receiver: DEST, payload: GVALUE > * key(0 L) ||

< P | exp: EXSEQ’, env-stack: ENV’, ASET > * key(1 L) ||

[< P | ASET, exp: EXSEQ, env-stack: ENV > * key(L) ;

@: key(0 L) || @: key(1 L)]

if < DEST ! GVALUE, ENV’, EXSEQ’ > :=

< req-gen, ENV, EXSEQ > .

crl [bwd sys-send]:

< sender: P, receiver: DEST, payload: GVALUE > * key(0 L) ||

< P | exp: EXSEQ’, env-stack: ENV’, ASET > * key(1 L) ||

[< P | ASET, exp: EXSEQ, env-stack: ENV > * key(L) ;

@: key(0 L) || @: key(1 L)] =>
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Correctness

Sch R-Sch this paper

Ins R-Ins general approach

→I,E

 s

 g→φ

→I,E

Figure: Schema of the proof of correctness.



29/39

Rollback

Causal-consistent rollback semantics allows to undo a past action
by undoing only actions that have a causal dependency with it.

Thanks to the uniformity of the reversible semantics produced we
were able to build a rollback operator which works on all of them.
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Rollback: Idea

1. We pinpoint the action we wish to undo by using the key of
one of the entity of such state.

2. I If such key is contained in the left-hand side of another
memory [R;C ] then we have found a dependency and we
recursively call the procedure on the keys of the C

I if we cannot find other occurrences of the key then it means
that there are no dependencies.

3. Once computed the dependencies it suffices to undo them in a
causal-consistent order.
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Future Work

Still many directions to be explored, one could for instance:

I Optimize and improve the implementation of the Erlang
semantics

I Introduce support for read dependencies in the general
method and in the tool as well to extend the set of semantics
correctly captured.
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The end

Thank you for the attention!
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Erlang semantics
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A Two Layer Semantics

We implemented the Erlang semantics as a two layer semantics:

I A set of equations for the expression semantics, defined over
the tuples <LABEL, ENV, EXPR>

I A set of rewriting rules for the system semantics defined over
system configurations, i.e., processes running in parallel with
messages
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Example of Equations

eq [match] :

< REQLABEL, ENVSTACK, GVALUE = GVALUE > =

< tau, ENVSTACK, GVALUE > .

ceq [receive] :

< req-receive(PAYLOAD), ENV : ENVSTACK, receive CLSEQ end> =

< received, ENV’ : (ENV : ENVSTACK), begin EXSEQ end>

if #entityMatchSuccess(EXSEQ | ENV’) :=

#entityMatch(CLSEQ | PAYLOAD | ENV ) .
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Expression Handling

While managing expressions we need to be careful as a naive
handling could cause unwanted effects.

pow and sub(N,M)→ Z = N ∗ N,Z −M.

X = pow and sub(N,M)⇒wrong X = Z = N ∗ N,Z −M.

X = pow and sub(N,M)⇒ X = begin Z = N ∗ N,Z −M end.
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Rewriting Rules

crl [sys-send] :

< P | exp: EXSEQ, env-stack: ENV, ASET > =>

< P | exp: EXSEQ’, env-stack: ENV’, ASET > ||

< sender: P, receiver: DEST, payload: GVALUE >

if < DEST ! GVALUE, ENV’, EXSEQ’ > :=

< req-gen, ENV, EXSEQ > .

crl [sys-self] :

< P | exp: EXSEQ, env-stack: ENV, ASET > =>

< P | exp: EXSEQ’, env-stack: ENV’, ASET >

if < tau, ENV’, EXSEQ’ > :=

< self(P), ENV, EXSEQ > .
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Bug General Approach

Let us consider a configuration:

R = νb(k1 : a〈b〈P〉〉 | k2 : a(X ) B X )

R can reduce to:

R1 = νb(j1 : b〈P〉 | [k1 : a〈b〈P〉〉 | k2 : a(X ) B X ; j1 : •1])

We can now use näıf projection to α-convert b into c to obtain:

R1 ≡n R2 = νc(j1 : c〈P〉 | [k1 : a〈b〈P〉〉 | k2 : a(X ) B X ; j1 : •1])

One can notice that occurrences of b inside memories have not
been affected, since they were not part of the term to which
α-conversion has been applied.


	Introduction
	Reversible Semantics and Limitations
	Contributions

	Background
	Ingredients
	Erlang
	Maude
	General Method

	Contribution
	Maude Transformation

	Conclusion
	Future Work
	Erlang Semantics


