On the Expressiveness of Polyadic and Synchronous Communication in Higher-Order Process Calculi

Ivan Lanese Jorge A. Pérez Davide Sangiorgi Alan Schmitt

ICALP 20I0, Bordeaux.

On the Expressiveness of Polyadic and Synchronous Communication in
 Higher-Order Process Calculi

Ivan Lanese Jorge A. Pérez Davide Sangiorgi Alan Schmitt

ICALP 2010, Bordeaux.

Synchronous Communication

Synchronous Communication

Asynchronous Communication

Synchronous Communication

Polyadic Communication
Asynchronous Communication

Synchronous Communication

Polyadic Communication
Asynchronous Communication

+ Encodings of synchronous π-calculus without choice into asynchronous π [Honda-Tokoro9I, Boudol92]
+ Synchronous π-calculus with mixed choice is more expressive than the asynchronous π [Palamidessi96]

+ Encodings of synchronous π-calculus without choice into asynchronous π [Honda-Tokoro9I, Boudol92]
+ Synchronous π-calculus with mixed choice is more expressive than the asynchronous π [Palamidessi96]
+ The encoding of polyadic into monadic name passing [Milner93]

+ Encodings of synchronous π-calculus without choice into asynchronous π [Honda-Tokoro91, Boudol92]
+ Synchronous π-calculus with mixed choice is more expressive than the asynchronous π [Palamidessi96]
+ The encoding of polyadic into monadic name passing [Milner93] +The encoding of higher-order π-calculus (name AND process passing) into the π-calculus [Sangiorgi93]

Relies on private links by combining restriction and name passing

Relies on private links by combining restriction and name passing

Example: biadic into monadic name passing

Relies on private links by combining restriction and name passing

Example: biadic into monadic name passing

$$
\begin{aligned}
& \llbracket \bar{a}\langle m, n\rangle \cdot P \rrbracket=\nu r(\bar{a}\langle r\rangle \cdot \bar{r}\langle m\rangle \cdot \bar{r}\langle n\rangle \cdot \llbracket P \rrbracket) \\
& \llbracket a(x, y) \cdot Q \rrbracket=a(r) \cdot r(x) \cdot r(y) \cdot \llbracket Q \rrbracket
\end{aligned}
$$

Relies on private links by combining restriction and name passing

Example: biadic into monadic name passing

$$
\begin{aligned}
\llbracket \bar{a}\langle m, n\rangle \cdot P \rrbracket & =\nu r(\bar{a}\langle r\rangle \cdot \bar{r}\langle m\rangle \cdot \bar{r}\langle n\rangle \cdot \llbracket P \rrbracket) \\
\llbracket a(x, y) \cdot Q \rrbracket & =a(r) \cdot r(x) \cdot r(y) \cdot \llbracket Q \rrbracket
\end{aligned}
$$

Private links represent agreements on a restricted name

Relies on private links by combining restriction and name passing

Example: biadic into monadic name passing

$$
\begin{aligned}
& \llbracket \bar{a}\langle m, n\rangle \cdot P \rrbracket=\nu r(\bar{a}\langle y\rangle \cdot \bar{r}\langle m\rangle \cdot \bar{r}\langle n\rangle \cdot \llbracket P \rrbracket) \\
& \llbracket a(x, y) \cdot Q \rrbracket=a(r) \cdot r(x) \cdot r(y) \cdot \llbracket Q \rrbracket
\end{aligned}
$$

Private links represent agreements on a restricted name

Relies on private links by combining restriction and name passing

Example: biadic into monadic name passing

$$
\begin{aligned}
& \llbracket \bar{a}\langle m, n\rangle \cdot P \rrbracket=\nu r(\bar{a}\langle y\rangle \cdot \bar{T}\langle m\rangle \cdot \bar{r}\langle n\rangle \cdot \llbracket P \rrbracket) \\
& \llbracket a(x, y) \cdot Q \rrbracket=a(r) \cdot r(x) \cdot r(y) \cdot \llbracket Q \rrbracket
\end{aligned}
$$

Private links represent agreements on a restricted name Encodings are compact and robust wrt interferences

What about process passing?

Synchronous Communication

Polyadic Communication
Asynchronous Communication

What about process passing?

Synchronous Communication

Polyadic Communication
Asynchronous Communication

- No similar studies as in the name passing setting

What about process passing?

Synchronous Communication

Polyadic Communication
Asynchronous Communication

- No similar studies as in the name passing setting
- What if names are not considered?

What about process passing?

Synchronous Communication

Polyadic Communication
Asynchronous Communication

- No similar studies as in the name passing setting
- What if names are not considered?

Here: pure process passing

Processes as black boxes

Processes as black boxes

- They can only be executed, forwarded, or discarded

Processes as black boxes

- They can only be executed, forwarded, or discarded
- They can contain restricted names But a receiver cannot "dig into" the structure of a process. So it cannot actually use such names.

Processes as black boxes

- They can only be executed, forwarded, or discarded
- They can contain restricted names But a receiver cannot "dig into" the structure of a process. So it cannot actually use such names.
- "Hollow" scope extrusions: the scope expands but their effect is limited

Names actually used

Names actually used

Recall the encoding of biadic into monadic:

$$
\begin{aligned}
\llbracket \bar{a}\langle m, n\rangle \cdot P \rrbracket & =\nu r(\bar{a}\langle r\rangle \cdot \bar{r}\langle m\rangle \cdot \bar{r}\langle n\rangle \cdot \llbracket P \rrbracket) \\
\llbracket a(x, y) \cdot Q \rrbracket & =a(r) \cdot r(x) \cdot r(y) \cdot \llbracket Q \rrbracket
\end{aligned}
$$

Once received, r can be freely used

Names actually used

Recall the encoding of biadic into monadic:

$$
\begin{aligned}
\llbracket \bar{a}\langle m, n\rangle \cdot P \rrbracket & =\nu r(\bar{a}\langle r\rangle \cdot \bar{r}\langle m\rangle \cdot \bar{r}\langle n\rangle \cdot \llbracket P \rrbracket) \\
\llbracket a(x, y) \cdot Q \rrbracket & =a(r) \cdot r(x) \cdot r(y) \cdot \llbracket Q \rrbracket
\end{aligned}
$$

Once received, r can be freely used

Two interacting process passing terms:

$$
\nu n\left(\bar{a}\langle P\rangle \cdot S^{\prime}\right) \| a(x) \cdot R^{\prime}
$$

Names actually used

Recall the encoding of biadic into monadic:

$$
\begin{aligned}
\llbracket \bar{a}\langle m, n\rangle \cdot P \rrbracket & =\nu r(\bar{a}\langle r\rangle \cdot \bar{r}\langle m\rangle \cdot \bar{r}\langle n\rangle \cdot \llbracket P \rrbracket) \\
\llbracket a(x, y) \cdot Q \rrbracket & =a(r) \cdot r(x) \cdot r(y) \cdot \llbracket Q \rrbracket
\end{aligned}
$$

Once received, r can be freely used

Two interacting process passing terms:

$$
\nu n\left(\bar{a}\langle P\rangle \cdot S^{\prime}\right) \| a(x) \cdot R^{\prime} \longrightarrow \nu n\left(S^{\prime} \| R^{\prime}\{P / x\}\right)
$$

Names actually used

Recall the encoding of biadic into monadic:

$$
\begin{aligned}
\llbracket \bar{a}\langle m, n\rangle \cdot P \rrbracket & =\nu r(\bar{a}\langle r\rangle \cdot \bar{r}\langle m\rangle \cdot \bar{r}\langle n\rangle \cdot \llbracket P \rrbracket) \\
\llbracket a(x, y) \cdot Q \rrbracket & =a(r) \cdot r(x) \cdot r(y) \cdot \llbracket Q \rrbracket
\end{aligned}
$$

Once received, r can be freely used

Two interacting process passing terms:

$$
\nu n\left(\bar{a}\langle P\rangle \cdot S^{\prime}\right) \| a(x) \cdot R^{\prime} \longrightarrow \nu n\left(S^{\prime} \| R^{\prime}\{P / x\}\right)
$$

In R^{\prime}, name n can only be used as defined in P and S^{\prime}

Our Results

I. Synchronous communication can be encoded into asynchronous communication
2. Polyadic communication of arity n cannot be encoded into communication of arity n - $/$
3. Abstraction passing cannot be encoded into polyadic communication

The Languages

Synchronous pure process passing of arity $n\left(\mathrm{SHO}^{\mathrm{n}}\right)$

$$
P, Q::=a(\tilde{x}) \cdot P|\bar{a}\langle\tilde{Q}\rangle . P| P_{1} \| P_{2}|\nu r P| x \mid \mathbf{0}
$$

The Languages

Synchronous pure process passing of arity $n\left(\mathrm{SHO}^{\mathrm{n}}\right)$ $P, Q::=a(\tilde{x}) \cdot P \quad|\bar{a}\langle\tilde{Q}\rangle \cdot P| P_{1} \| P_{2}|\nu r P| x \mid$

$$
0
$$

In the asynchronous variant ($\mathrm{AHO}^{\mathrm{n}}$) outputs have no continuations

The Languages

Synchronous pure process passing of arity $n\left(\mathrm{SHO}^{\mathrm{n}}\right)$ $P, Q::=a(\tilde{x}) \cdot P|\bar{a}\langle\tilde{Q}\rangle \cdot R| P_{1} \| P_{2}|\operatorname{\nu r} P| x \mid \mathbf{0}$

In the asynchronous variant ($\mathrm{AHO}^{\mathrm{n}}$) outputs have no continuations

The Languages

Synchronous pure process passing of arity $n\left(\mathrm{SHO}^{\mathrm{n}}\right)$ $P, Q::=a(\tilde{x}) \cdot P \quad|\bar{a}\langle\tilde{Q}\rangle \cdot P| P_{1} \| P_{2}|\nu r P| x \mid$

$$
0
$$

In the asynchronous variant ($\mathrm{AHO}^{\mathrm{n}}$) outputs have no continuations

The Languages

Synchronous pure process passing of arity $n\left(\mathrm{SHO}^{n}\right)$ $P, Q::=a(\tilde{x}) \cdot P \quad|\bar{a}\langle\tilde{Q}\rangle \cdot P| P_{1} \| P_{2}|\nu r P| x \mid$

In the asynchronous variant ($\mathrm{AHO}^{\mathrm{n}}$) outputs have no continuations

The variant with abstraction passing extends SHO^{n} with λ-like abstractions and applications:

The Languages

Synchronous pure process passing of arity $n\left(\mathrm{SHO}^{n}\right)$

$$
\begin{equation*}
P, Q::=a(\tilde{x}) \cdot P|\bar{a}\langle\tilde{Q}\rangle \cdot P| P_{1} \| P_{2}|\nu r P| x \mid \tag{0}
\end{equation*}
$$

In the asynchronous variant ($\mathrm{AHO}^{\mathrm{n}}$) outputs have no continuations

The variant with abstraction passing extends SHO^{n} with λ-like abstractions and applications:

$$
P, Q::=\cdots \quad|\quad(x) P \quad| P_{1}\left\lfloor P_{2}\right\rfloor
$$

Semantics

- A Labeled Transition System (LTS) that enforces a closer look into synchronizations
- Two kinds of Internal behavior:
- internal synchronizations T
- public synchronizations aT

The LTS for SHOn

The LTS for SHOn

INP
 Act1 $\frac{P_{1} \xrightarrow{\alpha} P_{1}^{\prime} \operatorname{cond}\left(\alpha, P_{2}\right)}{P_{1}\left\|P_{2} \xrightarrow{\alpha} P_{1}^{\prime}\right\| P_{2}}$

$$
\operatorname{RES} \frac{P \xrightarrow{\alpha} P^{\prime} r \notin \mathrm{n}(\alpha)}{\nu r P \xrightarrow{\alpha} \nu r P^{\prime}}
$$

TAU1 $\xrightarrow[{P_{1} \xrightarrow{(\nu \widetilde{s}) \bar{a}\langle\widetilde{P}\rangle} P_{1}^{\prime} P_{2} \xrightarrow{a(\widetilde{x})} P_{2}^{\prime} \widetilde{s} \cap \mathrm{fn}\left(P_{2}\right)=} \emptyset]{P_{1} \| P_{2} \xrightarrow{a \tau} \nu \widetilde{s}\left(P_{1}^{\prime} \| P_{2}^{\prime}\{\widetilde{P} / \widetilde{x}\}\right)}$
INTRES $\frac{P \xrightarrow{a \tau} P^{\prime}}{\nu a P \xrightarrow{\tau} \nu a P}$

The LTS for SHOn

INP

Act1 $\frac{P_{1} \xrightarrow{\alpha} P_{1}^{\prime} \operatorname{cond}\left(\alpha, P_{2}\right)}{P_{1}\left\|P_{2} \xrightarrow{\alpha} P_{1}^{\prime}\right\| P_{2}}$
 $\operatorname{RES} \frac{P \xrightarrow{\alpha} P^{\prime} r \notin \mathrm{n}(\alpha)}{\nu r P \xrightarrow{\alpha} \nu r P^{\prime}}$

TAU1 $\xrightarrow[{P_{1} \xrightarrow{(\nu \widetilde{s}) \bar{a}\langle\widetilde{P}\rangle} P_{1}^{\prime} P_{2} \xrightarrow{a(\widetilde{x})} P_{2}^{\prime} \widetilde{s} \cap \mathrm{fn}\left(P_{2}\right)=} \emptyset]{P_{1} \| P_{2} \xrightarrow{a \tau} \nu \widetilde{s}\left(P_{1}^{\prime} \| P_{2}^{\prime}\{\widetilde{P} / \widetilde{x}\}\right)}$
INTRES $\frac{P \xrightarrow{a \tau} P^{\prime}}{\nu a P \xrightarrow{\tau} \nu a P}$

The LTS for SHOn

$$
\text { INP } \xlongequal[{a(\widetilde{x}) \cdot P \xrightarrow{a(\tilde{x})}} P]{ } \quad \text { OUT } \xrightarrow[{\bar{a}\langle\widetilde{Q}\rangle \cdot P \xrightarrow{\bar{a}\langle\widetilde{Q}\rangle}} P]{ } \quad \text { Act1 } \frac{P_{1} \xrightarrow{\alpha} P_{1}^{\prime} \operatorname{cond}\left(\alpha, P_{2}\right)}{P_{1}\left\|P_{2} \xrightarrow{\alpha} P_{1}^{\prime}\right\| P_{2}}
$$

$$
\mathrm{RES} \frac{P \xrightarrow{\alpha} P^{\prime} r \notin \mathrm{n}(\alpha)}{\nu r P \xrightarrow{\alpha} \nu r P^{\prime}}
$$

$$
\text { TAU1 } \xrightarrow[{P_{1} \xrightarrow{(\nu \tilde{s}) \bar{a}\langle\widetilde{P}\rangle} P_{1}^{\prime} \quad P_{2} \xrightarrow{a(\tilde{x})} P_{2}^{\prime} \widetilde{s} \cap \mathrm{fn}\left(P_{2}\right)=} \emptyset]{P_{1} \| P_{2} \xrightarrow{a \tau} \tilde{b} \tilde{s}\left(P_{1}^{\prime} \| P_{2}^{\prime}\{\widetilde{P} / \widetilde{x}\}\right)} \quad \text { INTRES } \xrightarrow[{\nu a \xrightarrow{\text { P } \xrightarrow{a \tau} P^{\prime}} a} P]{ }
$$

The LTS for SHOn

$$
\begin{aligned}
& \text { INP } \xrightarrow[{a(\widetilde{x}) \cdot P \xrightarrow{a(\tilde{x})}} P]{ } \quad \text { OUT } \xrightarrow[{\bar{a}\langle\widetilde{Q}\rangle \cdot P \xrightarrow{\bar{a}\langle\widetilde{Q}\rangle}} P]{ } \quad \text { Act1 } \frac{P_{1} \xrightarrow{\alpha} P_{1}^{\prime} \operatorname{cond}\left(\alpha, P_{2}\right)}{P_{1}\left\|P_{2} \xrightarrow{\alpha} P_{1}^{\prime}\right\| P_{2}} \\
& \text { OPEN } \xrightarrow{P \xrightarrow{(\nu \widetilde{s}) \bar{a}\left\langle\widetilde{P}^{\prime \prime}\right\rangle} P^{\prime} r \neq a, r \in \mathrm{fn}\left(\widetilde{P}^{\prime \prime}\right)-\widetilde{s}} \quad \operatorname{Rr} P \xrightarrow{(\nu r \widetilde{s}) \bar{\alpha}\left\langle\widetilde{P}^{\prime \prime}\right\rangle} P^{\prime} \quad \operatorname{RES} \xrightarrow{P r P \xrightarrow{\alpha} P^{\prime} r \notin \mathrm{n}(\alpha)} \\
& \text { TAU1 } \xrightarrow[{P_{1} \xrightarrow{(\nu \widetilde{s}) \bar{a}\langle\widetilde{P}\rangle} P_{1}^{\prime} \quad P_{2} \xrightarrow{a(\tilde{x})} P_{2}^{\prime} \widetilde{s} \cap \mathrm{fn}\left(P_{2}\right)=} \emptyset]{P_{1} \| P_{2} \xrightarrow{a \tau} \tilde{y} \widetilde{s}\left(P_{1}^{\prime} \| P_{2}^{\prime}\{\widetilde{P} / \widetilde{x}\}\right)} \quad \text { INTRES } \xrightarrow[{\nu a \xrightarrow{P} P^{a \tau} a} P]{ }
\end{aligned}
$$

Rule for the variant with abstraction passing:

$$
\text { APP } \overline{(x) P\lfloor Q\rfloor \xrightarrow{\tau} P\{Q / x\}}
$$

The notion of encoding (Informaly)

The notion of encoding (Informally)

Language: an algebra of processes, an LTS, and a weak behavioral equivalence

The notion of encoding (Informally)

Language: an algebra of processes, an LTS, and a weak behavioral equivalence
Translation: a function from language \mathcal{L}_{1} to language \mathcal{L}_{2}

The notion of encoding (Informally)

Language: an algebra of processes, an LTS, and a weak behavioral equivalence
Translation: a function from language \mathcal{L}_{1} to language \mathcal{L}_{2}
Encoding: a translation plus syntactic/semantic conditions

The notion of encoding (Informally)

Language: an algebra of processes, an LTS, and a weak behavioral equivalence
Translation: a function from language \mathcal{L}_{1} to language \mathcal{L}_{2}
Encoding: a translation plus syntactic/semantic conditions Syntactic: Compositionality - Name invariance

The notion of encoding (Informally)

Language: an algebra of processes, an LTS, and a weak behavioral equivalence
Translation: a function from language \mathcal{L}_{1} to language \mathcal{L}_{2}
Encoding: a translation plus syntactic/semantic conditions Syntactic: Compositionality - Name invariance Semantic: Operational Correspondence - Adequacy

The notion of encoding (Informally)

Language: an algebra of processes, an LTS, and a weak behavioral equivalence
Translation: a function from language \mathcal{L}_{1} to language \mathcal{L}_{2}
Encoding: a translation plus syntactic/semantic conditions Syntactic: Compositionality - Name invariance Semantic: Operational Correspondence - Adequacy

Divergence Reflection

The notion of encoding (Informally)

Language: an algebra of processes, an LTS, and a weak behavioral equivalence
Translation: a function from language \mathcal{L}_{1} to language \mathcal{L}_{2}
Encoding: a translation plus syntactic/semantic conditions Syntactic: Compositionality - Name invariance Semantic: Operational Correspondence - Adequacy Divergence Reflection

Encodings are composable: the composition of two encodings is an encoding

Synchronous into Asynchronous

Synchronous into Asynchronous

- Encoding $\mathrm{SHO}^{\mathrm{n}}$ into $\mathrm{AHO}^{\mathrm{n+1}}$ is easy

Synchronous into Asynchronous

- Encoding $\mathrm{SHO}^{\mathrm{n}}$ into $\mathrm{AHO}^{\mathrm{n+1}}$ is easy

Send all the objects as they are, and use an extra parameter to send the continuation of the output

Synchronous into Asynchronous

- Encoding SHO ${ }^{n}$ into $\mathrm{AHO}^{\mathrm{n+1}}$ is easy

Send all the objects as they are, and use an extra parameter to send the continuation of the output

- Challenge: to encode SHO^{n} into AHO^{n}

Synchronous into Asynchronous

- Encoding SHO ${ }^{n}$ into $\mathrm{AHO}^{\mathrm{n+1}}$ is easy

Send all the objects as they are, and use an extra parameter to send the continuation of the output

- Challenge: to encode SHO^{n} into AHO^{n}

Our solution: Send the first n-I objects as they are, and use the n-th object to send BOTH the last object AND the continuation

Encoding Synchronous into Asynchronous

The basic case: SHO^{1} into AHO^{1}

$$
\begin{aligned}
\llbracket \bar{a}\langle P\rangle \cdot S \rrbracket & =\nu k l(\bar{a}\langle k \cdot(\llbracket P \rrbracket \| \bar{k})+l \cdot(\llbracket S \rrbracket \| \bar{k})\rangle \| \bar{l}) \\
\llbracket a(x) \cdot R \rrbracket & =a(x) \cdot(x \| \llbracket R \rrbracket)
\end{aligned}
$$

The encoding is a homomorphism for the other operators. Guarded choice is a derived construct in SHO^{n}

Encoding Synchronous into Asynchronous

The basic case: SHO^{\prime} into AHO^{\prime}

$$
\begin{aligned}
\llbracket \bar{a}\langle P\rangle \cdot S \rrbracket & =\nu k l(\bar{a}\langle k \cdot(\llbracket P \rrbracket \| \bar{k})+l \cdot(\llbracket S \rrbracket \| \bar{k})\rangle \| \bar{l}) \\
\llbracket a(x) \cdot R \rrbracket & =a(x) \cdot(x \| \llbracket R \rrbracket)
\end{aligned}
$$

The encoding is a homomorphism for the other operators. Guarded choice is a derived construct in SHO^{n}

- Object and continuation together in a guarded sum

Encoding Synchronous into Asynchronous

The basic case: SHO^{1} into AHO^{1}

$$
\begin{aligned}
\llbracket \bar{a}\langle P\rangle \cdot S \rrbracket & =\nu k l(\bar{a}\langle\langle k \cdot(\llbracket P \rrbracket \| \bar{k})+l \cdot(\llbracket S \rrbracket \| \bar{k})\rangle \| \bar{l}) \\
\llbracket a(x) \cdot R \rrbracket & =a(x) \cdot(x \| \llbracket R \rrbracket)
\end{aligned}
$$

The encoding is a homomorphism for the other operators. Guarded choice is a derived construct in SHO^{n}

- Object and continuation together in a guarded sum

Encoding Synchronous into Asynchronous

The basic case: SHO^{1} into AHO^{1}

$$
\begin{aligned}
\llbracket \bar{a}\langle P\rangle \cdot S \rrbracket & =\nu k l(\bar{a}\langle\langle k \cdot(\llbracket P \rrbracket \| \bar{k})+l \cdot(\llbracket S \rrbracket \| \bar{k})\rangle \| \bar{l}) \\
\llbracket a(x) \cdot R \rrbracket & =a(x) \cdot(x \| \llbracket R \rrbracket)
\end{aligned}
$$

The encoding is a homomorphism for the other operators. Guarded choice is a derived construct in SHO^{n}

- Object and continuation together in a guarded sum
- Two triggers: k for object P and I for continuation S

Encoding Synchronous into Asynchronous

The basic case: SHO^{1} into AHO^{1}

$$
\begin{aligned}
\llbracket \bar{a}\langle P\rangle \cdot S \rrbracket & =\nu k l(\bar{a}\langle\langle k \cdot(\llbracket P \rrbracket \| \bar{k})+l \cdot(\llbracket S \rrbracket \| \bar{k})\rangle \| \bar{l}) \\
\llbracket a(x) \cdot R \rrbracket & =a(x) \cdot(x \| \llbracket R \rrbracket)
\end{aligned}
$$

The encoding is a homomorphism for the other operators. Guarded choice is a derived construct in SHO^{n}

- Object and continuation together in a guarded sum
- Two triggers: k for object P and I for continuation S
- The continuation is triggered only once

Encoding Synchronous into Asynchronous

The basic case: SHO^{1} into AHO^{1}

$$
\begin{aligned}
& \llbracket \bar{a}\langle P\rangle \cdot S \rrbracket=\nu k l(\bar{a}\langle\langle k \cdot(\llbracket P \rrbracket \| \bar{k})+l \cdot(\llbracket S \rrbracket \| \bar{k})\rangle\rangle(\bar{l})) \\
& \llbracket a(x) \cdot R \rrbracket=a(x) \cdot(x\| \| R \|)
\end{aligned}
$$

The encoding is a homomorphism for the other operators. Guarded choice is a derived construct in SHO^{n}

- Object and continuation together in a guarded sum
- Two triggers: k for object P and I for continuation S
- The continuation is triggered only once

Encoding Synchronous into Asynchronous

The basic case: SHO^{1} into AHO^{1}

$$
\begin{aligned}
\llbracket \bar{a}\langle P\rangle \cdot S \rrbracket & =\nu k l(\bar{a}\langle k \cdot(\llbracket P \rrbracket \| \bar{k})+l \cdot(\llbracket S \rrbracket \| \bar{k})\rangle \\
\llbracket a(x) \cdot R \rrbracket & =a(x) \cdot(x\| \| R \|)
\end{aligned}
$$

The encoding is a homomorphism for the other operators. Guarded choice is a derived construct in SHO^{n}

- Object and continuation together in a guarded sum
- Two triggers: k for object P and I for continuation S
- The continuation is triggered only once
- A trigger on k is always available

Encoding Synchronous into Asynchronous

The basic case: SHO^{\prime} into AHO
$\llbracket \bar{a}\langle P\rangle \cdot S \rrbracket=\nu k l(\bar{a}\langle k \cdot(\llbracket P \rrbracket \|(\bar{k}))+l \cdot(\llbracket S \rrbracket \|(\bar{k})$
$\llbracket a(x) \cdot R \rrbracket=a(x) \cdot(x \| \llbracket R \rrbracket)$
The encoding is a homomorphism for the other operators. Guarded choice is a derived construct in SHO^{n}

- Object and continuation together in a guarded sum
- Two triggers: k for object P and I for continuation S
- The continuation is triggered only once
- A trigger on k is always available

Encoding Synchronous into Asynchronous

The basic case: SHO^{1} into AHO^{\prime}
$\begin{aligned} \llbracket \bar{a}\langle P\rangle \cdot S \rrbracket & =\nu k l(\bar{a}\langle k \cdot(\llbracket P \rrbracket \|(\bar{k})+l \cdot(\llbracket S \rrbracket \| \bar{k}))\rangle(\bar{l})) \\ \llbracket a(x) \cdot R \rrbracket & =a(x) \cdot(x \| \llbracket R \rrbracket)\end{aligned}$
The encoding is a homomorphism for the other operators. Guarded choice is a derived construct in SHO^{n}

- Object and continuation together in a guarded sum
- Two triggers: k for object P and I for continuation S
- The continuation is triggered only once
- A trigger on k is always available
- The generalization to the n-adic case is immediate

Restricted names are like oil and water

- They do not really "mix" after communications --"hollow" extrusions
- This separation prevents private link establishment

Restricted names are like oil and water

- They do not really "mix" after communications --"hollow" extrusions
- This separation prevents private link establishment

Our approach to separation:

- Disioint form: our way of formalizing separation of restricted names after a public synchronization
- Stability conditions: when/how processes remain in disjoint form along computations

Disjoint Forms

Two biadic processes that do not share private names They can communicate through a public name:
$\nu \tilde{n}\left(\bar{a}\left\langle R_{1}, R_{2}\right\rangle \cdot P\right) \| a\left(x_{1}, x_{2}\right) \cdot Q$

Disjoint Forms

Two biadic processes that do not share private names They can communicate through a public name:

$$
\nu \tilde{n}\left(\bar{a}\left\langle R_{1}, R_{2}\right\rangle \cdot P\right) \| a\left(x_{1}, x_{2}\right) \cdot Q \xrightarrow{a \tau} \nu \tilde{n}\left(P \| Q\left\{R_{1}, R_{2} / x_{1}, x_{2}\right\}\right)
$$

Disjoint Forms

Two biadic processes that do not share private names They can communicate through a public name:

$$
\begin{aligned}
\nu \tilde{n}\left(\bar{a}\left\langle R_{1}, R_{2}\right\rangle \cdot P\right) \| a\left(x_{1}, x_{2}\right) \cdot Q & \xrightarrow{a \tau} \nu \tilde{n}\left(P \| Q\left\{R_{1}, R_{2} / x_{1}, x_{2}\right\}\right) \\
& =\nu \tilde{n}\left(P \| C\left[R_{1}, R_{2}\right]\right)
\end{aligned}
$$

Disjoint Forms

Two biadic processes that do not share private names They can communicate through a public name:

$$
\begin{aligned}
\nu \tilde{n}\left(\bar{a}\left\langle R_{1}, R_{2}\right\rangle \cdot P\right) \| a\left(x_{1}, x_{2}\right) \cdot Q & \xrightarrow{a \tau} \nu \tilde{n}\left(P \| Q\left\{R_{1}, R_{2} / x_{1}, x_{2}\right\}\right) \\
& =\nu \tilde{n}\left(P \| C\left[R_{1}, R_{2}\right]\right)
\end{aligned}
$$

The scope expands but this is a hollow extrusion

Disjoint Forms

Two biadic processes that do not share private names They can communicate through a public name:

The scope expands but this is a hollow extrusion

Disjoint Forms

Two biadic processes that do not share private names They can communicate through a public name:

The scope expands but this is a hollow extrusion
Even if R_{1}, R_{2} are inside C, they do not share private names

Disjoint Forms

Two biadic processes that do not share private names They can communicate through a public name:

The scope expands but this is a hollow extrusion Even if R_{1}, R_{2} are inside C, they do not share private names The private names of C and those of $\mathrm{P}_{1} \mathrm{R}_{1}, \mathrm{R}_{2}$ are disjoint

Disjoint Forms

Definition 10 (Disjoint Form) Let $T \equiv \nu \widetilde{n}(P \| C[\widetilde{R}])$ be a SHO^{m} process where

1. \widetilde{n} is a set of names such that $\widetilde{n} \subseteq \mathrm{fn}(P, \widetilde{R})$ and $\widetilde{n} \cap \mathrm{fn}(C)=\emptyset$;
2. $\underset{\sim}{C}$ is a k-ary (guarded, multihole) context;
3. \widetilde{R} contains k closed processes.

We then say that T is in k-adic disjoint form with respect to $\widetilde{n}, \widetilde{R}$, and P.

Disjoint Forms

Definition 10 (Disjoint Form) Let $T \equiv \nu \widetilde{n}(P \| C[\widetilde{R}])$ be a SHO^{m} process where

1. \widetilde{n} is a set of names such that $\widetilde{n} \subseteq \mathrm{fn}(P, \widetilde{R})$ and $\widetilde{n} \cap \mathrm{fn}(C)=\emptyset$;
2. $\underset{\sim}{C}$ is a k-ary (guarded, multihole) context;
3. \widetilde{R} contains k closed processes.

We then say that T is in k-adic disjoint form with respect to $\widetilde{n}, \widetilde{R}$, and P.

Disjoint Forms

Definition 10 (Disjoint Form) Let $T \equiv \nu \widetilde{n}(P \| C[\widetilde{R}])$ be a SHO^{m} process where

1. \widetilde{n} is a set of names such that $\widetilde{n} \subseteq \mathrm{fn}(P, \widetilde{R})$ and $\widetilde{n} \cap \mathrm{fn}(C)=\emptyset$;
2. $\underset{\sim}{C}$ is a k-ary (guarded, multihole) context;
3. \widetilde{R} contains k closed processes.

We then say that T is in k-adic disjoint form with respect to $\widetilde{n}, \widetilde{R}$, and P.

Stability Conditions:
Disjoint forms are preserved by internal synchronizations and certain output actions

The impossibility result

Theorem. There is no encoding of SHO^{2} into SHO^{\prime}

The impossibility result

Theorem. There is no encoding of SHO^{2} into SHO^{\prime} Proof Sketch:

The impossibility result

Theorem. There is no encoding of SHO^{2} into SHO^{\prime}
Proof Sketch:
I. Assume such an encoding exists

The impossibility result

Theorem. There is no encoding of SHO^{2} into SHO^{\prime}

Proof Sketch:

I. Assume such an encoding exists
2. Take a process P that makes a public (biadic) synchronization.

The impossibility result

Theorem. There is no encoding of SHO^{2} into SHO^{\prime}

Proof Sketch:

I. Assume such an encoding exists
2. Take a process P that makes a public (biadic) synchronization.

Two processes with different behavior are sent; the receiver non-deterministically discards one and executes the other.

The impossibility result

Theorem. There is no encoding of SHO^{2} into SHO^{\prime}

Proof Sketch:

I. Assume such an encoding exists
2. Take a process P that makes a public (biadic) synchronization.

Two processes with different behavior are sent; the receiver non-deterministically discards one and executes the other.
3. Show that the encoding of P mimics such communication and gets into monadic disjoint form (MDF)

The impossibility result

Theorem. There is no encoding of SHO^{2} into SHO^{\prime}

Proof Sketch:

I. Assume such an encoding exists
2. Take a process P that makes a public (biadic) synchronization.

Two processes with different behavior are sent; the receiver non-deterministically discards one and executes the other.
3. Show that the encoding of P mimics such communication and gets into monadic disjoint form (MDF)
4. Show that the MDF is preserved along relevant computations

The impossibility result

Theorem. There is no encoding of SHO^{2} into SHO^{\prime}

Proof Sketch:

I. Assume such an encoding exists
2. Take a process P that makes a public (biadic) synchronization.

Two processes with different behavior are sent; the receiver non-deterministically discards one and executes the other.
3. Show that the encoding of P mimics such communication and gets into monadic disjoint form (MDF)
4. Show that the MDF is preserved along relevant computations
5. Using a causality analysis, show that the (limited) structure of the MDF causes the encoding of P to exhibit behavior that P doesn't have: contradiction.

The hierarchy

Theorem. There is no encoding of SHO^{n} into SHO^{n-1}, for every $n>1$

The hierarchy

Theorem. There is no encoding of SHO^{n} into SHO^{n-1}, for every $n>1$

- Proofs follow by an extension of all notions and auxiliary results
- The hierarchy holds also for asynchronous calculi

Abstraction passing

- Sending functions as in the λ-calculus
- It is specific to the higher-order setting --not present in the name passing
- We only consider abstractions of order I: functions from processes to processes

Private links with abstraction passing

Encoding SHO^{2} into SHO^{\prime} with abstraction passing $\left(\mathrm{SHO}^{\prime}{ }_{\mathrm{a}}\right)$:

$$
\begin{gathered}
\llbracket \bar{a}\left\langle P_{1}, P_{2}\right\rangle \cdot R \rrbracket=a(z) \cdot\left(\llbracket R \rrbracket \| \nu m n c\left(\bar{n} \| z\left\lfloor n \cdot(\bar{c} \| \bar{m})+m \cdot\left(\llbracket P_{1} \rrbracket \| \bar{m}\right)\right\rfloor\right.\right. \\
\left.\left.\| c \cdot z\left\lfloor\llbracket P_{2} \rrbracket\right\rfloor\right)\right) \\
\llbracket a\left(x_{1}, x_{2}\right) \cdot Q \rrbracket=\nu b\left(\bar{a}\langle(y) \bar{b}\langle y\rangle\rangle \| b\left(x_{1}\right) \cdot\left(x_{1} \| b\left(x_{2}\right) \cdot \llbracket Q \rrbracket\right)\right)
\end{gathered}
$$

Private links with abstraction passing

Encoding SHO^{2} into SHO^{\prime} with abstraction passing $\left(\mathrm{SHO}^{\prime}{ }_{\mathrm{a}}\right)$:

$$
\begin{gathered}
\llbracket \bar{a}\left\langle P_{1}, P_{2}\right\rangle \cdot R \rrbracket=a(z) \cdot\left(\llbracket R \rrbracket \| \nu m n c\left(\bar{n} \| z\left\lfloor n \cdot(\bar{c} \| \bar{m})+m \cdot\left(\llbracket P_{1} \rrbracket \| \bar{m}\right)\right\rfloor\right.\right. \\
\left.\| c \cdot z\left\lfloor\left\lfloor P_{2} \rrbracket\right\rfloor\right)\right) \\
\llbracket a\left(x_{1}, x_{2}\right) \cdot Q \rrbracket=\nu b\left(\bar{a}\langle(y) \bar{b}\langle y\rangle\rangle \| b\left(x_{1}\right) \cdot\left(x_{1} \| b\left(x_{2}\right) \cdot \llbracket Q \rrbracket\right)\right)
\end{gathered}
$$

- The receiver takes the initiative and sends an abstraction with a restricted name b

Private links with abstraction passing

Encoding SHO^{2} into SHO^{\prime} with abstraction passing $\left(\mathrm{SHO}^{\prime}{ }_{\mathrm{a}}\right)$:

$$
\begin{gathered}
\llbracket \bar{a}\left\langle P_{1}, P_{2}\right\rangle \cdot R \rrbracket=a(z) \cdot\left(\llbracket R \rrbracket \| \nu m n c\left(\bar{n} \| z\left\lfloor n \cdot(\bar{c} \| \bar{m})+m \cdot\left(\llbracket P_{1} \rrbracket \| \bar{m}\right)\right\rfloor\right.\right. \\
\left.\left.\| c \cdot z\left\lfloor\llbracket P_{2} \rrbracket\right\rfloor\right)\right) \\
\llbracket a\left(x_{1}, x_{2}\right) \cdot Q \rrbracket=\nu b\left(\bar{a}((y) \bar{b}\langle y\rangle\rangle \| b\left(x_{1}\right) \cdot\left(x_{1} \| b\left(x_{2}\right) \cdot \llbracket Q \rrbracket\right)\right)
\end{gathered}
$$

- The receiver takes the initiative and sends an abstraction with a restricted name b

Private links with abstraction passing

Encoding SHO^{2} into SHO^{\prime} with abstraction passing $\left(\mathrm{SHO}^{\prime}{ }_{\mathrm{a}}\right)$:

$$
\begin{gathered}
\llbracket \bar{a}\left\langle P_{1}, P_{2}\right\rangle \cdot R \rrbracket=a(z) \cdot\left(\llbracket R \rrbracket \| \nu m n c\left(\bar{n} \| z\left\lfloor n \cdot(\bar{c} \| \bar{m})+m \cdot\left(\llbracket P_{1} \rrbracket \| \bar{m}\right)\right\rfloor\right.\right. \\
\left.\left.\| c \cdot z\left\lfloor\llbracket P_{2} \rrbracket\right\rfloor\right)\right) \\
\llbracket a\left(x_{1}, x_{2}\right) \cdot Q \rrbracket=\nu b\left(\bar{a}((y) \bar{b}\langle y\rangle\rangle \| b\left(x_{1}\right) \cdot\left(x_{1} \| b\left(x_{2}\right) \cdot \llbracket Q \rrbracket\right)\right)
\end{gathered}
$$

- The receiver takes the initiative and sends an abstraction with a restricted name b
- A private link on b is realized upon application

Private links with abstraction passing

Encoding SHO^{2} into SHO^{\prime} with abstraction passing $\left(\mathrm{SHO}^{\prime}{ }_{\mathrm{a}}\right)$:

$$
\begin{gathered}
\llbracket \bar{a}\left\langle P_{1}, P_{2}\right\rangle \cdot R \rrbracket=a(z) \cdot\left(\llbracket R \rrbracket \| \nu m n c\left(\bar{n} \| z\left\lfloor n \cdot(\bar{c} \| \bar{m})+m \cdot\left(\llbracket P_{1} \rrbracket \| \bar{m}\right)\right\rfloor\right.\right. \\
\left.\left.\llbracket c \cdot z\left\lfloor\llbracket P_{2} \rrbracket\right\rfloor\right)\right) \\
\llbracket a\left(x_{1}, x_{2}\right) \cdot Q \rrbracket=\nu b\left(\bar{a}((y) \bar{b}\langle y\rangle\rangle \| b\left(x_{1}\right) \cdot\left(x_{1} \| b\left(x_{2}\right) \cdot \llbracket Q \rrbracket\right)\right)
\end{gathered}
$$

- The receiver takes the initiative and sends an abstraction with a restricted name b
- A private link on b is realized upon application

Private links with abstraction passing

Encoding SHO^{2} into SHO^{\prime} with abstraction passing $\left(\mathrm{SHO}^{\prime}{ }_{\mathrm{a}}\right)$:

$$
\begin{gathered}
\llbracket \bar{a}\left\langle P_{1}, P_{2}\right\rangle \cdot R \rrbracket=a(z) \cdot\left(\llbracket R \rrbracket \| \nu m n c\left(\bar{n} \| z \mid n \cdot(\bar{c} \| \bar{m})+m \cdot\left(\llbracket P_{1} \rrbracket \| \bar{m}\right)\right\rfloor\right. \\
\left.\left.\| c \cdot z\left\lfloor\llbracket P_{2} \rrbracket\right]\right)\right) \\
\llbracket a\left(x_{1}, x_{2}\right) \cdot Q \rrbracket=\nu b\left(\bar{a}((y) \bar{b}\langle y\rangle\rangle \| b\left(x_{1}\right) \cdot\left(x_{1} \| b\left(x_{2}\right) \cdot \llbracket Q \rrbracket\right)\right)
\end{gathered}
$$

- The receiver takes the initiative and sends an abstraction with a restricted name b
- A private link on b is realized upon application

Private links with abstraction passing

Encoding SHO^{2} into SHO^{\prime} with abstraction passing $\left(\mathrm{SHO}_{\mathrm{a}}{ }^{\mathrm{a}}\right)$:

$$
\begin{gathered}
\llbracket \bar{a}\left\langle P_{1}, P_{2}\right\rangle \cdot R \rrbracket=a(z) \cdot\left(\llbracket R \rrbracket \| \nu m n c\left(\bar{n} \| \underline{\left.z \mid n \cdot(\bar{c} \| \bar{m})+m \cdot\left(\llbracket P_{1} \rrbracket \| \bar{m}\right)\right\rfloor}\right.\right. \\
\| a\left(x_{1}, x_{2}\right) \cdot Q \rrbracket=\nu b\left(\bar{a}((y) \bar{b}\langle y\rangle\rangle \| b\left(x_{1}\right) \cdot\left(x_{1} \| b\left(x_{2}\right) \cdot \llbracket Q \rrbracket\right)\right)
\end{gathered}
$$

- The receiver takes the initiative and sends an abstraction with a restricted name b
- A private link on b is realized upon application
- Communication objects $\mathrm{P}_{\mathrm{l}}, \mathrm{P}_{2}$ are "activated" from the encoding of output

Private links with abstraction passing

Encoding SHO^{2} into SHO^{\prime} with abstraction passing $\left(\mathrm{SHO}_{\mathrm{a}}{ }^{\mathrm{a}}\right)$:

$$
\begin{aligned}
& \llbracket \bar{\alpha}\left\langle P_{1}, P_{2}\right\rangle \cdot R \rrbracket=a(z) \cdot\left(\llbracket R \rrbracket \| \nu m n c(\bar{n}) z z \mid n \cdot(\bar{c} \| \bar{m})+m \cdot\left(\llbracket P_{1} \rrbracket \| \bar{m}\right)\right\rfloor \\
& \llbracket a\left(x_{1}, x_{2}\right) \cdot Q \rrbracket=\nu b\left(\bar{a}((y) \bar{b}\langle y\rangle\rangle \| b\left(x_{1}\right) \cdot\left(x_{1} \| b\left(x_{2}\right) \cdot \llbracket Q \rrbracket\right)\right)
\end{aligned}
$$

- The receiver takes the initiative and sends an abstraction with a restricted name b
- A private link on b is realized upon application
- Communication objects $\mathrm{P}_{\mathrm{l}}, \mathrm{P}_{2}$ are "activated" from the encoding of output

Abstraction passing goes beyond process passing

Theorem. For every $m, n>I$, there is no encoding of SHO^{n} a into SHO^{m}

Abstraction passing goes beyond process passing

Theorem. For every $m, n>I$, there is no encoding of SHO^{n} a into SHO^{m}

Proof:

- Suppose there is an encoding $\mathrm{A}[[-]]: \mathrm{SHO}_{\mathrm{a}} \rightarrow \mathrm{SHO}^{m}$
- We know there is an encoding $\mathrm{B}[[-]]: \mathrm{SHO}^{m+1} \rightarrow \mathrm{SHO}_{a}$
- By composability of encodings, we have the encoding $\mathrm{A} \cdot \mathrm{B}[[-]]: \mathrm{SHO}^{\mathrm{m}+1} \rightarrow \mathrm{SHO}^{\mathrm{m}}$
- However, such an encoding doesn't exist: contradiction

Asynchronous Communication
Abstraction Passing

Polyadic Communication

Asynchronous Communication

Polyadic Communication

Asynchronous Communication Abstraction Passing

Polyadic Communication

On the Expressiveness of Polyadic and Synchronous Communication in Higher-Order Process Calculi

Ivan Lanese Jorge A. Pérez Davide Sangiorgi Alan Schmitt

ICALP 2010, Bordeaux.

The notion of encoding

(Formally)

The notion of encoding

Definition 5 (Syntactic Conditions) Let $\llbracket \cdot]: \mathcal{P}_{\mathrm{s}} \rightarrow \mathcal{P}_{\mathrm{t}}$ be a translation of \mathcal{L}_{s} into \mathcal{L}_{t}. We say that $\llbracket \cdot \rrbracket$ is:

1. compositional if for every k-ary operator op of \mathcal{L}_{s} and for all S_{1}, \ldots, S_{k} with $\mathrm{fn}\left(S_{1}, \ldots, S_{k}\right)=N$, there exists a k-ary context $C_{\mathrm{op}}^{N} \in \mathcal{P}_{\mathrm{t}}$ that depends on N and op such that $\llbracket \operatorname{op}\left(S_{1}, \ldots, S_{k}\right) \rrbracket=C_{\mathrm{op}}^{N}\left[\llbracket S_{1} \rrbracket, \ldots, \llbracket S_{k} \rrbracket\right]$;
2. name invariant if $\llbracket \sigma(P) \rrbracket=\sigma([P \|)$, for any injective renaming of names σ.

The notion of encoding

Definition 5 (Syntactic Conditions) Let $\llbracket \cdot \rrbracket: \mathcal{P}_{\mathrm{s}} \rightarrow \mathcal{P}_{\mathrm{t}}$ be a translation of \mathcal{L}_{s} into \mathcal{L}_{t}. We say that $\llbracket \cdot \rrbracket$ is:

1. compositional if for every k-ary operator op of \mathcal{L}_{s} and for all S_{1}, \ldots, S_{k} with $\mathrm{fn}\left(S_{1}, \ldots, S_{k}\right)=N$, there exists a k-ary context $C_{\mathrm{op}}^{N} \in \mathcal{P}_{\mathrm{t}}$ that depends on N and op such that $\llbracket \operatorname{op}\left(S_{1}, \ldots, S_{k}\right) \rrbracket=C_{\mathrm{op}}^{N}\left[\llbracket S_{1} \rrbracket, \ldots, \llbracket S_{k} \rrbracket\right]$;
2. name invariant if $\llbracket \sigma(P) \rrbracket=\sigma([P \|)$, for any injective renaming of names σ.

Definition 6 (Semantic Conditions) Let $\llbracket \cdot \rrbracket: \mathcal{P}_{s} \rightarrow \mathcal{P}_{\mathrm{t}}$ be a translation of \mathcal{L}_{s} into \mathcal{L}_{t}. We say that $\mathbb{[} \rrbracket$ is:

1. complete if for every $S, S^{\prime} \in \mathcal{P}_{\mathrm{s}}$ and $\alpha \in \mathcal{A}_{\mathrm{s}}$ such that $S \xlongequal{\alpha}{ }_{\mathrm{s}} S^{\prime}$, it holds that $\llbracket S \rrbracket \stackrel{\beta}{\Longrightarrow}{ }_{\mathrm{t}} \approx_{\mathrm{t}} \llbracket S^{\prime} \rrbracket$, where $\beta \in \mathcal{A}_{\mathrm{t}}$ and $\operatorname{sig}(\alpha)=\operatorname{sig}(\beta)$;
2. sound if for every $S \in \mathcal{P}_{\mathrm{s}}, T \in \mathcal{P}_{\mathrm{t}}, \beta \in \mathcal{A}_{\mathrm{t}}$ such that $\llbracket S \rrbracket \stackrel{\beta}{\Longrightarrow}{ }_{\mathrm{t}} T$ there exists an $S^{\prime} \in \mathcal{P}_{\mathrm{s}}$ and an $\alpha \in \mathcal{A}_{\mathrm{s}}$ such that $S{\underset{\mathrm{~s}}{ }}_{{ }_{\mathrm{s}}} S^{\prime}, T \Rightarrow \approx_{\mathrm{t}} \llbracket S^{\prime} \rrbracket$, and $\operatorname{sig}(\alpha)=\operatorname{sig}(\beta)$;
3. adequate iffor every $S, S^{\prime} \in \mathcal{P}_{\mathrm{s}}$, if $S \approx_{\mathrm{s}} S^{\prime}$ then $\llbracket S \rrbracket \approx_{\mathrm{t}}\left[S^{\prime}\right]$;
4. diverge-reflecting if for every $S \in \mathcal{P}_{s}, \llbracket S \rrbracket$ diverges only if S diverges.

Example: Sync into Async

A synchronous "duplicator" process:

$$
\bar{a}\langle P\rangle \cdot S\|a(x) \cdot(x \| x) \xrightarrow{a \tau} S\| P \| P
$$

$$
\begin{aligned}
& \llbracket \bar{a}\langle P\rangle \cdot S \rrbracket \| \llbracket a(x) \cdot(x \| x) \rrbracket \\
&= \nu k l(\bar{a}\langle k \cdot(\llbracket P \rrbracket \| \bar{k})+l \cdot(\llbracket S \rrbracket \| \bar{k})\rangle \| \bar{l}) \| a(x) \cdot(x\|\llbracket x\| x \rrbracket) \\
&= \nu k l(\bar{a}\langle k \cdot(\llbracket P \rrbracket \| \bar{k})+l \cdot(\llbracket S \rrbracket \| \bar{k})\rangle \| \bar{l}) \| a(x) \cdot(x\|x\| x) \\
& \xrightarrow{a \tau} \nu k l(\bar{l} \| k \cdot(\llbracket P \rrbracket \| \bar{k})+l \cdot(\llbracket S \rrbracket \| \bar{k}) \\
& \| k \cdot(\llbracket P \rrbracket \| \bar{k})+l \cdot(\llbracket S \rrbracket \| \bar{k}) \\
&\| k \cdot(\llbracket P \rrbracket \| \bar{k})+l \cdot(\llbracket S \rrbracket \| \bar{k})) \\
& \xrightarrow{\tau} \nu k l(\llbracket S \rrbracket\|\bar{k}\| k \cdot(\llbracket P \rrbracket \| \bar{k})+l \cdot(\llbracket S \rrbracket \| \bar{k}) \\
& \xrightarrow{\tau} \nu k l(\llbracket S \rrbracket\|\llbracket P \rrbracket\| \bar{k} \| k \cdot(\llbracket P \rrbracket \| \bar{k})+l \cdot(\llbracket S \rrbracket \| \bar{k})) \\
& \nu k(\llbracket S \rrbracket\|\llbracket P \rrbracket\| \llbracket P \rrbracket \| \bar{k}) \\
& \approx \llbracket S \rrbracket\|\llbracket P \rrbracket\| \llbracket P \rrbracket
\end{aligned}
$$

$$
\begin{aligned}
& \llbracket \bar{a}\langle P\rangle . S \rrbracket| | \llbracket a(x) .(x| | x) \rrbracket \\
& =\nu k l(\bar{a}\langle k \cdot([P] \| \bar{k})+l \cdot(\llbracket S \rrbracket \| \bar{k})\rangle \| \bar{l}) \| a(x) \cdot(x\| \| x \| x]) \\
& =\nu k l(\bar{a}\langle k \cdot([P] \| \bar{k})+l \cdot([S] \| \bar{k})\rangle \| \bar{l}) \| a(x) \cdot(x\|x\| x) \\
& \xrightarrow{a \tau} \nu k l(\bar{l} \| k \cdot([P] \| \bar{k})+l .([S] \| \bar{k}) \\
& \| k \cdot([P] \| \bar{k})+l .([S \rrbracket \| \bar{k}) \\
& \| k \cdot([P] \| \bar{k})+l .([S] \| \bar{k})) \\
& \xrightarrow{\tau} \nu k l([S] \rrbracket\|\bar{k}\| k .([P] \| \bar{k})+l .(\llbracket S] \| \bar{k}) \\
& \| k \cdot(\llbracket P \rrbracket \| \bar{k})+l .(\llbracket S \rrbracket \| \bar{k})) \\
& \xrightarrow{\tau} \nu k l([S \rrbracket\|\| P]\|\bar{k}\| k \cdot([P] \| \bar{k})+l \cdot([\mid S \rrbracket \| \bar{k})) \\
& \xrightarrow{\tau} \nu k(\llbracket S \rrbracket\|\llbracket P \rrbracket\| \llbracket P \rrbracket \| \bar{k}) \\
& \approx \llbracket S \rrbracket\|\llbracket P \rrbracket\| \llbracket P \rrbracket
\end{aligned}
$$

$$
\begin{aligned}
& \llbracket \bar{a}\langle P\rangle . S \rrbracket| | \llbracket a(x) .(x| | x) \rrbracket \\
& =\nu k l(\bar{a}\langle k \cdot(\llbracket P \rrbracket \| \bar{k})+l \cdot(\llbracket S \rrbracket \| \bar{k})\rangle \| \bar{l}) \| a(x) \cdot(x\|\llbracket x\| x \rrbracket) \\
& =\nu k l(\bar{a}\langle k \cdot([P] \| \bar{k})+l \cdot([S] \| \bar{k})\rangle \| \bar{l}) \| a(x) \cdot(x\|x\| x) \\
& \xrightarrow{a \tau} \nu k l(\bar{l} \| k \cdot([P] \| \bar{k})+l .([S] \| \bar{k}) \\
& \| k \cdot(\llbracket P \rrbracket \| \bar{k})+l .(\llbracket S \rrbracket \| \bar{k}) \\
& \| k \cdot([\mid P] \| \bar{k})+l \cdot([S] \| \bar{k})) \\
& \xrightarrow{\tau} \nu k l([S] \rrbracket\|\bar{k}\| k .([P] \| \bar{k})+l .(\llbracket S] \| \bar{k}) \\
& \| k \cdot(\llbracket P \rrbracket \| \bar{k})+l .(\llbracket S \rrbracket \| \bar{k})) \\
& \xrightarrow{\tau} \nu k l([S \rrbracket\|\llbracket P \rrbracket\| \bar{k} \| k \cdot([P] \| \bar{k})+l .([S \rrbracket \| \mid \bar{k})) \\
& \xrightarrow{\tau} \nu k(\llbracket S \rrbracket\|\llbracket P \rrbracket\| \llbracket P \rrbracket \| \bar{k}) \\
& \approx \llbracket S \rrbracket\|\llbracket P \rrbracket\| \llbracket P \rrbracket
\end{aligned}
$$

$$
\begin{aligned}
& \llbracket \bar{a}\langle P\rangle . S \rrbracket \| \llbracket a(x) \cdot(x \| x) \rrbracket \\
& =\nu k l(\bar{a}\langle k \cdot(\llbracket P \rrbracket \| \bar{k})+l \cdot(\llbracket S \rrbracket \| \bar{k})\rangle \| \bar{l}) \| a(x) \cdot(x\|\llbracket x\| x \rrbracket) \\
& =\nu k l(\bar{a}\langle k \cdot(\llbracket P \rrbracket \| \bar{k})+l \cdot(\llbracket S \rrbracket \| \bar{k})\rangle \| \bar{l}) \| a(x) \cdot(x\|x\| x) \\
& \xrightarrow{a \tau} \nu k l(\bar{l} \| k \cdot(\llbracket P \rrbracket \| \bar{k})+l \cdot(\llbracket S \rrbracket \| \bar{k}) \\
& \| k .(\llbracket P \rrbracket \| \bar{k})+l .(\llbracket S \rrbracket \| \bar{k}) \\
& \| k \cdot(\llbracket P \rrbracket \| \bar{k})+l .(\llbracket S \rrbracket \| \bar{k})) \\
& \xrightarrow{\tau} \nu k l([S \rrbracket\|\bar{k}\| k \cdot(\llbracket P \rrbracket \| \bar{k})+l .(\llbracket S \rrbracket \| \bar{k}) \\
& \| k \cdot(\llbracket P \rrbracket \| \bar{k})+l .(\llbracket S \rrbracket \| \bar{k})) \\
& \xrightarrow{\tau} \operatorname{\nu kl}(\llbracket S \rrbracket\|\llbracket P \rrbracket\| \bar{k} \| k .(\llbracket P \rrbracket \| \bar{k})+l .(\llbracket S \rrbracket \| \bar{k})) \\
& \xrightarrow{\tau} \nu k(\llbracket S \rrbracket\|\llbracket P \rrbracket|\| P \rrbracket| \mid \bar{k}) \\
& \approx \llbracket S \rrbracket\|\llbracket P \rrbracket\| \llbracket P \rrbracket
\end{aligned}
$$

$$
\begin{aligned}
& \llbracket \bar{a}\langle P\rangle . S \rrbracket \| \llbracket a(x) \cdot(x \| x) \rrbracket \\
& =\nu k l(\bar{a}\langle k \cdot(\llbracket P \rrbracket \| \bar{k})+l \cdot(\llbracket S \rrbracket \| \bar{k})\rangle \| \bar{l}) \| a(x) \cdot(x\|\llbracket x\| x \rrbracket) \\
& =\nu k l(\bar{a}\langle k \cdot(\llbracket P \rrbracket \| \bar{k})+l \cdot(\llbracket S \rrbracket \| \bar{k})\rangle \| \bar{l}) \| a(x) \cdot(x\|x\| x) \\
& \xrightarrow{a \tau} \nu k_{i} l(\bar{l} \| k \cdot(\llbracket P \rrbracket \| \bar{k})+l \cdot(\llbracket S \rrbracket \| \bar{k}) \\
& \| k .(\llbracket P \rrbracket \| \bar{k})+l .(\llbracket S \rrbracket \| \bar{k}) \\
& \| k \cdot(\llbracket P \rrbracket \| \bar{k})+l .(\llbracket S \rrbracket \| \bar{k})) \\
& \xrightarrow{\tau} \nu k l(\llbracket S \rrbracket\|\bar{k}\| k \cdot(\llbracket P \rrbracket \| \bar{k})+l .(\llbracket S \rrbracket \| \bar{k}) \\
& \| k \cdot(\llbracket P \rrbracket \| \bar{k})+l .(\llbracket S \rrbracket \| \bar{k})) \\
& \xrightarrow{\tau} \operatorname{\nu kl}(\llbracket S \rrbracket\|\llbracket P \rrbracket\| \bar{k} \| k .(\llbracket P \rrbracket \| \bar{k})+l .(\llbracket S \rrbracket \| \bar{k})) \\
& \xrightarrow{\tau} \nu k(\llbracket S \rrbracket\|\llbracket P \rrbracket \mid\| P \rrbracket \| \bar{k}) \\
& \approx \llbracket S \rrbracket\|\llbracket P \rrbracket\| \llbracket P \rrbracket
\end{aligned}
$$

$$
\begin{aligned}
& \llbracket \bar{a}\langle P\rangle . S \rrbracket \| \llbracket a(x) \cdot(x \| x) \rrbracket \\
& =\nu k l(\bar{a}\langle k \cdot(\llbracket P \rrbracket \| \bar{k})+l \cdot(\llbracket S \rrbracket \| \bar{k})\rangle \| \bar{l}) \| a(x) \cdot(x\|\llbracket x\| x \rrbracket) \\
& =\nu k l(\bar{a}\langle k \cdot(\llbracket P \rrbracket \| \bar{k})+l \cdot(\llbracket S \rrbracket \| \bar{k})\rangle \| \bar{l}) \| a(x) \cdot(x\|x\| x) \\
& \xrightarrow{a \tau} \nu k l(\bar{l} \| k \cdot(\llbracket P \rrbracket \| \bar{k})+l \cdot(\llbracket S \rrbracket \| \bar{k}) \\
& \| k .(\llbracket P \rrbracket \| \bar{k})+l .(\llbracket S \rrbracket \| \bar{k}) \\
& \| k \cdot(\llbracket P \rrbracket \| \bar{k})+l \cdot(\llbracket S \rrbracket \| \bar{k})) \\
& \begin{array}{r}
\stackrel{\tau}{\longrightarrow} \nu k l(\llbracket S \rrbracket\|\bar{k}\| k \cdot(\llbracket P \rrbracket \| \bar{k})+l \cdot(\llbracket S \rrbracket \| \bar{k}) \\
\| k \cdot(\llbracket P \rrbracket \mid \bar{k})+l \cdot(\llbracket S \rrbracket \| \bar{k}))
\end{array} \\
& \xrightarrow{\tau} \nu k l(\llbracket S \rrbracket\|\llbracket P \rrbracket\| \bar{k} \| k .(\llbracket P \rrbracket \| \bar{k})+l .(\llbracket S \rrbracket \| \bar{k}))
\end{aligned}
$$

$$
\begin{aligned}
& \llbracket \bar{a}\langle P\rangle . S \rrbracket \| \llbracket a(x) \cdot(x \| x) \rrbracket \\
& =\nu k l(\bar{a}\langle k \cdot(\llbracket P \rrbracket \| \bar{k})+l \cdot(\llbracket S \rrbracket \| \bar{k})\rangle \| \bar{l}) \| a(x) \cdot(x\|\llbracket x\| x \rrbracket) \\
& =\nu k l(\bar{a}\langle k \cdot(\llbracket P \rrbracket \| \bar{k})+l \cdot(\llbracket S \rrbracket \| \bar{k})\rangle \| \bar{l}) \| a(x) \cdot(x\|x\| x) \\
& \xrightarrow{a \tau} \nu k l(\bar{l} \| k \cdot(\llbracket P \rrbracket \| \bar{k})+l \cdot(\llbracket S \rrbracket \| \bar{k}) \\
& \| k .(\llbracket P \rrbracket \| \bar{k})+l .(\llbracket S \rrbracket \| \bar{k}) \\
& \| k \cdot(\llbracket P \rrbracket \| \bar{k})+l \cdot(\llbracket S \rrbracket \| \bar{k})) \\
& \begin{array}{r}
\stackrel{\tau}{\longrightarrow} \nu k l(\llbracket S \rrbracket\|\bar{k}\| k \cdot(\llbracket P \rrbracket \| \bar{k})+l \cdot(\llbracket S \rrbracket \| \bar{k}) \\
\| k \cdot(\llbracket P \rrbracket \| \bar{k})+l \cdot(\llbracket S \rrbracket \| \bar{k}))
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \llbracket \bar{a}\langle P\rangle . S \rrbracket \| \llbracket a(x) \cdot(x \| x) \rrbracket \\
& =\nu k l(\bar{a}\langle k \cdot(\llbracket P \rrbracket \| \bar{k})+l \cdot(\llbracket S \rrbracket \| \bar{k})\rangle \| \bar{l}) \| a(x) \cdot(x\|\llbracket x\| x \rrbracket) \\
& =\nu k l(\bar{a}\langle k \cdot(\llbracket P \rrbracket \| \bar{k})+l \cdot(\llbracket S \rrbracket \| \bar{k})\rangle \| \bar{l}) \| a(x) \cdot(x\|x\| x) \\
& \xrightarrow{a \tau} \nu k l(\bar{l} \| \xrightarrow[k .(\llbracket P \rrbracket \| \bar{k})+l \cdot(\llbracket S \rrbracket \| \bar{k})]{ } \\
& \| k \cdot(\llbracket P \rrbracket \| \bar{k})+l .(\llbracket S \rrbracket \| \bar{k}) \\
& \|(k \cdot(\llbracket P \rrbracket \| \bar{k})+l \cdot(\llbracket S \rrbracket \| \bar{k}))
\end{aligned}
$$

$$
\begin{aligned}
& \llbracket \bar{a}\langle P\rangle . S \rrbracket \| \llbracket a(x) \cdot(x \| x) \rrbracket \\
& =\nu k l(\bar{a}\langle k \cdot(\llbracket P \rrbracket \| \bar{k})+l \cdot(\llbracket S \rrbracket \| \bar{k})\rangle \| \bar{l}) \| a(x) \cdot(x\|\llbracket x\| x \rrbracket) \\
& =\nu k l(\bar{a}\langle k \cdot(\llbracket P \rrbracket \| \bar{k})+l \cdot(\llbracket S \rrbracket \| \bar{k})\rangle \| \bar{l}) \| a(x) \cdot(x\|x\| x) \\
& \xrightarrow{a \tau} \nu k l(\bar{l} \| \xrightarrow[k .(\llbracket P \rrbracket \| \bar{k})+l .(\llbracket S \rrbracket \| \bar{k})]{ }) \\
& \| k \cdot(\llbracket P \rrbracket \| \bar{k})+l .(\llbracket S \rrbracket \| \bar{k}) \\
& \|(k \cdot(\llbracket P \rrbracket \| \bar{k})+l \cdot(\llbracket S \rrbracket \| \bar{k})) \\
& \xrightarrow{\tau} \nu k l(\llbracket S \rrbracket\|\bar{k}\| k \cdot(\llbracket P \rrbracket \| \bar{k})+l .(\llbracket S \rrbracket \| \bar{k}) \\
& \| k .(\llbracket P \rrbracket \| \bar{k})+l .(\llbracket S \rrbracket \| \bar{k}))
\end{aligned}
$$

$$
\begin{aligned}
& \llbracket \bar{a}\langle P\rangle . S \rrbracket \| \llbracket a(x) \cdot(x \| x) \rrbracket \\
& =\nu k l(\bar{a}\langle k \cdot(\llbracket P \rrbracket \| \bar{k})+l \cdot(\llbracket S \rrbracket \| \bar{k})\rangle \| \bar{l}) \| a(x) \cdot(x\|\llbracket x\| x \rrbracket) \\
& =\nu k l(\bar{a}\langle k \cdot(\llbracket P \rrbracket \| \bar{k})+l \cdot(\llbracket S \rrbracket \| \bar{k})\rangle \| \bar{l}) \| a(x) \cdot(x\|x\| x) \\
& \xrightarrow{a \tau} \nu k l(\bar{l}\|\| \xlongequal{k \cdot(\llbracket P \rrbracket \| \bar{k})+l .(\llbracket S \rrbracket \| \bar{k})}) \\
& \| k \cdot(\llbracket P \rrbracket \| \bar{k})+l .(\llbracket S \rrbracket \| \bar{k})) \\
& \| k .(\llbracket P \rrbracket \| \bar{k})+l \cdot(\llbracket S \rrbracket \| \bar{k})) \\
& \xrightarrow{\tau} \nu k l(\llbracket S \rrbracket \| \bar{k}) / k \cdot(\llbracket P \rrbracket \| \bar{k})+l \cdot(\llbracket S \rrbracket \| \bar{k}) \\
& \| k \cdot(\llbracket P \rrbracket \| \bar{k})+l .(\llbracket S \rrbracket \| \bar{k}))
\end{aligned}
$$

$$
\begin{aligned}
& \llbracket \bar{a}\langle P\rangle . S \rrbracket \| \llbracket a(x) \cdot(x \| x) \rrbracket \\
& =\nu k l(\bar{a}\langle k \cdot(\llbracket P \rrbracket \| \bar{k})+l \cdot(\llbracket S \rrbracket \| \bar{k})\rangle \| \bar{l}) \| a(x) \cdot(x\|\llbracket x\| x \rrbracket) \\
& =\nu k l(\bar{a}\langle k \cdot(\llbracket P \rrbracket \| \bar{k})+l \cdot(\llbracket S \rrbracket \| \bar{k})\rangle \| \bar{l}) \| a(x) \cdot(x\|x\| x) \\
& \xrightarrow{a \tau} \nu k l(\bar{l} \| k \cdot(\llbracket P \rrbracket \| \bar{k})+l \cdot(\llbracket S \rrbracket \| \bar{k}) \\
& \| k .(\llbracket P \rrbracket \| \bar{k})+l .(\llbracket S \rrbracket \| \bar{k}) \\
& \| k \cdot(\llbracket P \rrbracket \| \bar{k})+l .(\llbracket S \rrbracket \| \bar{k})) \\
& \xrightarrow{\tau} \nu k l(\llbracket S \rrbracket \| \bar{k}) \| k \cdot(\llbracket P \rrbracket \| \bar{k})+l .(\llbracket S \rrbracket \| \bar{k}) \\
& \| k \cdot(\llbracket P \rrbracket \| \bar{k})+l \cdot(\llbracket S \rrbracket \| \bar{k}))
\end{aligned}
$$

$$
\begin{aligned}
& \llbracket \bar{a}\langle P\rangle . S \rrbracket \| \llbracket a(x) \cdot(x \| x) \rrbracket \\
& =\nu k l(\bar{a}\langle k \cdot(\llbracket P \rrbracket \| \bar{k})+l \cdot(\llbracket S \rrbracket \| \bar{k})\rangle \| \bar{l}) \| a(x) \cdot(x\|\llbracket x\| x \rrbracket) \\
& =\nu k l(\bar{a}\langle k \cdot(\llbracket P \rrbracket \| \bar{k})+l \cdot(\llbracket S \rrbracket \| \bar{k})\rangle \| \bar{l}) \| a(x) \cdot(x\|x\| x) \\
& \xrightarrow{a \tau} \nu k l(\bar{l} \| k \cdot(\llbracket P \rrbracket \| \bar{k})+l \cdot(\llbracket S \rrbracket \| \bar{k}) \\
& \| k .(\llbracket P \rrbracket \| \bar{k})+l .(\llbracket S \rrbracket \| \bar{k}) \\
& \| k \cdot(\llbracket P \rrbracket \| \bar{k})+l .(\llbracket S \rrbracket \| \bar{k})) \\
& \xrightarrow{\tau} \nu k l(\llbracket S \rrbracket\|\bar{k}\| k \cdot(\llbracket P \rrbracket \| \bar{k})+l .(\llbracket S \rrbracket \| \bar{k}) \\
& \| k \cdot(\llbracket P \rrbracket \| \bar{k})+l .(\llbracket S \rrbracket \| \bar{k}))
\end{aligned}
$$

$$
\begin{aligned}
& \llbracket \bar{a}\langle P\rangle \cdot S \rrbracket \| \llbracket a(x) \cdot(x \| x) \rrbracket \\
&= \nu k l(\bar{a}\langle k \cdot(\llbracket P \rrbracket \| \bar{k})+l \cdot(\llbracket S \rrbracket \| \bar{k})\rangle \| \bar{l}) \| a(x) \cdot(x\|\llbracket x\| x \rrbracket) \\
&= \nu k l(\bar{a}\langle k \cdot(\llbracket P \rrbracket \| \bar{k})+l \cdot(\llbracket S \rrbracket \| \bar{k})\rangle \| \bar{l}) \| a(x) \cdot(x\|x\| x) \\
& \xrightarrow{a \tau} \nu k l(\bar{l} \| k \cdot(\llbracket P \rrbracket \| \bar{k})+l \cdot(\llbracket S \rrbracket \| \bar{k}) \\
& \| k \cdot(\llbracket P \rrbracket \| \bar{k})+l \cdot(\llbracket S \rrbracket \| \bar{k}) \\
&\| k \cdot(\llbracket P \rrbracket \| \bar{k})+l \cdot(\llbracket S \rrbracket \| \bar{k})) \\
& \xrightarrow{\tau} \operatorname{\nu kl}(\llbracket S \rrbracket\|\bar{k}\| k \cdot(\llbracket P \rrbracket \| \bar{k})+l .(\llbracket S \rrbracket \| \bar{k}) \\
&\| k \cdot(\llbracket P \rrbracket \| \bar{k})+l .(\llbracket S \rrbracket \| \bar{k})) \\
& \xrightarrow{\tau} \operatorname{\nu kl}(\llbracket S \rrbracket\|\llbracket P \rrbracket\| \bar{k} \| k \cdot(\llbracket P \rrbracket \| \bar{k})+l \cdot(\llbracket S \rrbracket \| \bar{k}))
\end{aligned}
$$

$$
\begin{aligned}
& \llbracket \bar{a}\langle P\rangle . S \rrbracket \| \llbracket a(x) \cdot(x \| x) \rrbracket \\
& =\nu k l(\bar{a}\langle k \cdot(\llbracket P \rrbracket \| \bar{k})+l \cdot(\llbracket S \rrbracket \| \bar{k})\rangle \| \bar{l}) \| a(x) \cdot(x\|\llbracket x\| x \rrbracket) \\
& =\nu k l(\bar{a}\langle k \cdot(\llbracket P \rrbracket \| \bar{k})+l \cdot(\llbracket S \rrbracket \| \bar{k})\rangle \| \bar{l}) \| a(x) \cdot(x\|x\| x) \\
& \xrightarrow{a \tau} \nu k l(\bar{l} \| k \cdot(\llbracket P \rrbracket \| \bar{k})+l \cdot(\llbracket S \rrbracket \| \bar{k}) \\
& \| k \cdot(\llbracket P \rrbracket \| \bar{k})+l .(\llbracket S \rrbracket \| \bar{k}) \\
& \| k \cdot(\llbracket P \rrbracket \| \bar{k})+l .(\llbracket S \rrbracket \| \bar{k})) \\
& \xrightarrow{\tau} \nu k l(\llbracket S \rrbracket\|\bar{k}\| k \cdot(\llbracket P \rrbracket \| \bar{k})+l .(\llbracket S \rrbracket \| \bar{k}) \\
& \| k \cdot(\llbracket P \rrbracket \| \bar{k})+l .(\llbracket S \rrbracket \| \bar{k})) \\
& \xrightarrow{\tau} \operatorname{\nu kl}(\llbracket S \rrbracket\|\llbracket P \rrbracket\| \bar{k} \| k \cdot(\llbracket P \rrbracket \| \bar{k})+l .(\llbracket S \rrbracket \| \bar{k})) \\
& \xrightarrow{\tau} \nu k(\llbracket S \rrbracket\|\llbracket P \rrbracket\| \llbracket P \rrbracket \| \bar{k})
\end{aligned}
$$

$$
\begin{aligned}
& \llbracket \bar{a}\langle P\rangle \cdot S \rrbracket \| \llbracket a(x) \cdot(x \| x) \rrbracket \\
= & \nu k l(\bar{a}\langle k \cdot(\llbracket P \rrbracket \| \bar{k})+l \cdot(\llbracket S \rrbracket \| \bar{k})\rangle \| \bar{l}) \| a(x) \cdot(x\|\llbracket x\| x \rrbracket) \\
= & \nu k l(\bar{a}\langle k \cdot(\llbracket P \rrbracket \| \bar{k})+l \cdot(\llbracket S \rrbracket \| \bar{k})\rangle \| \bar{l}) \| a(x) \cdot(x\|x\| x) \\
\xrightarrow{a \tau} & \nu k l(\bar{l} \| k \cdot(\llbracket P \rrbracket \| \bar{k})+l \cdot(\llbracket S \rrbracket \| \bar{k}) \\
& \| k \cdot(\llbracket P \rrbracket \| \bar{k})+l \cdot(\llbracket S \rrbracket \| \bar{k}) \\
& \| k \cdot(\llbracket P \rrbracket \| \bar{k})+l \cdot(\llbracket S \rrbracket \| \bar{k})) \\
\xrightarrow{\tau} & \nu k l(\llbracket S \rrbracket\|\bar{k}\| k \cdot(\llbracket P \rrbracket \| \bar{k})+l .(\llbracket S \rrbracket \| \bar{k}) \\
& \| k \cdot(\llbracket P \rrbracket \| \bar{k})+l \cdot(\llbracket S \rrbracket \| \bar{k})) \\
\xrightarrow{\tau} & \nu k l(\llbracket S \rrbracket\|\llbracket P \rrbracket\| \bar{k} \| k \cdot(\llbracket P \rrbracket \| \bar{k})+l \cdot(\llbracket S \rrbracket \| \bar{k})) \\
\approx & \nu k(\llbracket S \rrbracket\|\llbracket P \rrbracket\| \llbracket P \rrbracket \| \bar{k}) \\
\approx & \llbracket S \rrbracket\|\llbracket P \rrbracket\| \llbracket P \rrbracket
\end{aligned}
$$

$$
\begin{aligned}
& \llbracket \bar{a}\langle P\rangle \cdot S \rrbracket \| \llbracket a(x) \cdot(x \| x) \rrbracket \\
&= \nu k l(\bar{a}\langle k \cdot(\llbracket P \rrbracket \| \bar{k})+l \cdot(\llbracket S \rrbracket \| \bar{k})\rangle \| \bar{l}) \| a(x) \cdot(x\|\llbracket x\| x \rrbracket) \\
&= \nu k l(\bar{a}\langle k \cdot(\llbracket P \rrbracket \| \bar{k})+l \cdot(\llbracket S \rrbracket \| \bar{k})\rangle \| \bar{l}) \| a(x) \cdot(x\|x\| x) \\
& \xrightarrow{a \tau} \nu k l(\bar{l} \| k \cdot(\llbracket P \rrbracket \| \bar{k})+l \cdot(\llbracket S \rrbracket \| \bar{k}) \\
& \| k \cdot(\llbracket P \rrbracket \| \bar{k})+l \cdot(\llbracket S \rrbracket \| \bar{k}) \\
&\| k \cdot(\llbracket P \rrbracket \| \bar{k})+l \cdot(\llbracket S \rrbracket \| \bar{k})) \\
& \xrightarrow{\tau} \nu k l(\llbracket S \rrbracket\|\bar{k}\| k \cdot(\llbracket P \rrbracket \| \bar{k})+l \cdot(\llbracket S \rrbracket \| \bar{k}) \\
& \xrightarrow{\tau} \nu k l(\llbracket S \rrbracket\|\llbracket P \rrbracket\| \bar{k} \| k \cdot(\llbracket P \rrbracket \| \bar{k})+l \cdot(\llbracket S \rrbracket \| \bar{k})) \\
& \xrightarrow{\tau} \nu k(\llbracket S \rrbracket\|\llbracket P \rrbracket\| \llbracket P \rrbracket \| \bar{k}) \\
& \approx \llbracket S \rrbracket\|\llbracket P \rrbracket\| \llbracket P \rrbracket
\end{aligned}
$$

