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Example: biadic into monadic name passing

Name passing

[[a�m,n�.P ]] = νr (a�r�.r�m�.r�n�.[[P ]])
[[a(x, y).Q]] = a(r).r(x).r(y).[[Q]]

Private links represent agreements on a restricted name
Encodings are compact and robust wrt interferences
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• No similar studies as in the name passing setting
•  What if names are not considered? 

Here: pure process passing
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Processes as black boxes

• They can only be executed, forwarded, or discarded

• They can contain restricted names                             
But a receiver cannot “dig into” the structure of a 
process. So it cannot actually use such names.

• “Hollow” scope extrusions: the scope expands but 
their effect is limited
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Names actually used

[[a�m,n�.P ]] = νr (a�r�.r�m�.r�n�.[[P ]])
[[a(x, y).Q]] = a(r).r(x).r(y).[[Q]]

Recall the encoding of biadic into monadic:

Once received, r can be freely used 

In R’, name n can only be used as defined in P and S’

Two interacting process passing terms:

νn (a�P �.S�) � a(x).R� −→ νn (S� � R�{P/x})



Our Results

1. Synchronous communication can be encoded 
into asynchronous communication

2. Polyadic communication of arity n cannot be 
encoded into communication of arity n-1

3. Abstraction passing cannot be encoded into 
polyadic communication
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The Languages
Synchronous pure process passing of arity n (SHOn)

In the asynchronous variant (AHOn) outputs have no 
continuations

The variant with abstraction passing extends SHOn 
with λ-like abstractions and applications:

P,Q ::= · · · | (x)P | P1�P2�

P,Q ::= a(x̃).P | a�Q̃�.P | P1 � P2 | νr P | x | 0



Semantics

• A Labeled Transition System (LTS) that enforces 
a closer look into synchronizations

• Two kinds of Internal behavior:
- internal synchronizations τ
- public synchronizations aτ
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The LTS for SHOn

Rule for the variant with abstraction passing:
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The notion of encoding  (Informally)

Language: an algebra of processes, an LTS, and a weak 
behavioral equivalence

Translation: a function from language L1 to language L2

Encoding: a translation plus syntactic/semantic conditions
Syntactic:  Compositionality - Name invariance 
Semantic: Operational Correspondence - Adequacy

Divergence Reflection

Encodings are composable: the composition of two 
encodings is an encoding
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• Encoding SHOn into AHOn+1 is easy

Send all the objects as they are, and use an extra 
parameter to send the continuation of the output

• Challenge: to encode SHOn into AHOn

Our solution: Send the first n-1 objects as they are, 
and use the n-th object to send BOTH the last 
object AND the continuation
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Encoding Synchronous 
into Asynchronous

• Object and continuation together in a guarded sum  
• Two triggers: k for object P and l for continuation S

- The continuation is triggered only once
- A trigger on k is always available

• The generalization to the n-adic case is immediate

The basic case:  SHO1 into AHO1

[[a�P �.S]] = νk l (a� k.([[P ]] � k) + l.([[S]] � k) � � l)
[[a(x).R]] = a(x).(x � [[R]])
The encoding is a homomorphism for the other operators. 
Guarded choice is a derived construct in SHOn
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Restricted names are 
like oil and water

• They do not really “mix” after communications --- 
“hollow” extrusions 

• This separation prevents private link establishment

Our approach to separation:

• Disjoint form:  our way of formalizing separation of 
restricted names after a public synchronization

• Stability conditions: when/how processes remain in 
disjoint form along computations
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νñ (a�R1, R2�.P ) � a(x1, x2).Q
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νñ (a�R1, R2�.P ) � a(x1, x2).Q
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Disjoint Forms
Two biadic processes that do not share private names

They can communicate through a public name:

νñ (a�R1, R2�.P ) � a(x1, x2).Q
aτ−→ νñ (P � Q{R1, R2/x1, x2})
= νñ (P � C[R1, R2])

The scope expands but this is a hollow extrusion
Even if R1, R2 are inside C, they do not share private names
The private names of C and those of P, R1, R2 are disjoint
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Disjoint Forms

Stability Conditions:
Disjoint forms are preserved by internal synchronizations and 
certain output actions
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The impossibility result

Proof Sketch: 
1. Assume such an encoding exists 

2. Take a process P that makes a public (biadic) synchronization. 

Two processes with different behavior are sent; the receiver 
non-deterministically discards one and executes the other.

3. Show that the encoding of P mimics such communication and 
gets into monadic disjoint form (MDF) 

4. Show that the MDF is preserved along relevant computations

5. Using a causality analysis, show that the (limited) structure of 
the MDF causes the encoding of P to exhibit behavior that P 
doesn’t have: contradiction.

Theorem.  There is no encoding of SHO2 into SHO1 
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The hierarchy

• Proofs follow by an extension of all notions and 
auxiliary results

• The hierarchy holds also for asynchronous calculi

Theorem.  There is no encoding of SHOn into SHOn-1, 
for every n>1
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Abstraction passing

• Sending functions as in the λ-calculus

• It is specific to the higher-order setting ---
not present in the name passing 

• We only consider abstractions of order 1: 
functions from processes to processes
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Encoding SHO2 into SHO1 with abstraction passing (SHO1a):

• The receiver takes the initiative and sends an abstraction 
with a restricted name b 

• A private link on b is realized upon application
• Communication objects P1, P2 are “activated” from the 
encoding of output
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Abstraction passing goes beyond 
process passing

Theorem. For every m, n > 1, there is no encoding of 
SHOn

a into SHOm

Proof:
•  Suppose there is an encoding A[[-]]: SHOna →SHOm

•   We know there is an encoding B[[-]]: SHOm+1 →SHOna

•   By composability of encodings, we have the encoding 
                              A⋄B[[-]]: SHOm+1 →SHOm 

•   However, such an encoding doesn’t exist: contradiction
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Example: Sync into Async

a�P �.S � a(x).(x � x)
aτ−→ S � P � P

A synchronous “duplicator” process:
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