
On the Expressiveness of
Polyadic and Synchronous

Communication in
Higher-Order Process Calculi

Ivan Lanese Jorge A. Pérez Davide Sangiorgi Alan Schmitt

ICALP 2010, Bordeaux.

On the Expressiveness of
Polyadic and Synchronous

Communication in
Higher-Order Process Calculi

Ivan Lanese Jorge A. Pérez Davide Sangiorgi Alan Schmitt

ICALP 2010, Bordeaux.

Cover for Pink Floyd’s “The dark side of the moon” (1973)

Synchronous Communication

Cover for Pink Floyd’s “The dark side of the moon” (1973)

Synchronous Communication

Process Passing

Cover for Pink Floyd’s “The dark side of the moon” (1973)

Synchronous Communication

Synchronous Communication

Process Passing

Cover for Pink Floyd’s “The dark side of the moon” (1973)

Synchronous Communication

Synchronous Communication

Asynchronous Communication

Process Passing

Cover for Pink Floyd’s “The dark side of the moon” (1973)

Synchronous Communication

Synchronous Communication

Asynchronous CommunicationPolyadic Communication

Process Passing

Cover for Pink Floyd’s “The dark side of the moon” (1973)

Synchronous Communication

Synchronous Communication

Asynchronous CommunicationPolyadic Communication

Process Passing
This Talk

Name passing

Name passing

✦ Encodings of synchronous π-calculus without choice into
asynchronous π [Honda-Tokoro91, Boudol92]
✦ Synchronous π-calculus with mixed choice is more expressive
than the asynchronous π [Palamidessi96]

✦ The encoding of polyadic into monadic name passing [Milner93]

Name passing

✦ Encodings of synchronous π-calculus without choice into
asynchronous π [Honda-Tokoro91, Boudol92]
✦ Synchronous π-calculus with mixed choice is more expressive
than the asynchronous π [Palamidessi96]

✦ The encoding of polyadic into monadic name passing [Milner93]
✦ The encoding of higher-order π-calculus (name AND process
passing) into the π-calculus [Sangiorgi93]

Name passing

✦ Encodings of synchronous π-calculus without choice into
asynchronous π [Honda-Tokoro91, Boudol92]
✦ Synchronous π-calculus with mixed choice is more expressive
than the asynchronous π [Palamidessi96]

Relies on private links
by combining restriction

and name passing
Name passing

Relies on private links
by combining restriction

and name passing

Example: biadic into monadic name passing

Name passing

Relies on private links
by combining restriction

and name passing

Example: biadic into monadic name passing

Name passing

[[a�m,n�.P]] = νr (a�r�.r�m�.r�n�.[[P]])
[[a(x, y).Q]] = a(r).r(x).r(y).[[Q]]

Relies on private links
by combining restriction

and name passing

Example: biadic into monadic name passing

Name passing

[[a�m,n�.P]] = νr (a�r�.r�m�.r�n�.[[P]])
[[a(x, y).Q]] = a(r).r(x).r(y).[[Q]]

Private links represent agreements on a restricted name

Relies on private links
by combining restriction

and name passing

Example: biadic into monadic name passing

Name passing

[[a�m,n�.P]] = νr (a�r�.r�m�.r�n�.[[P]])
[[a(x, y).Q]] = a(r).r(x).r(y).[[Q]]

Private links represent agreements on a restricted name

Relies on private links
by combining restriction

and name passing

Example: biadic into monadic name passing

Name passing

[[a�m,n�.P]] = νr (a�r�.r�m�.r�n�.[[P]])
[[a(x, y).Q]] = a(r).r(x).r(y).[[Q]]

Private links represent agreements on a restricted name
Encodings are compact and robust wrt interferences

What about process passing?
Synchronous Communication

Asynchronous CommunicationPolyadic Communication

Process Passing

What about process passing?
Synchronous Communication

Asynchronous CommunicationPolyadic Communication

Process Passing

• No similar studies as in the name passing setting

What about process passing?
Synchronous Communication

Asynchronous CommunicationPolyadic Communication

Process Passing

• No similar studies as in the name passing setting
• What if names are not considered?

What about process passing?
Synchronous Communication

Asynchronous CommunicationPolyadic Communication

Process Passing

• No similar studies as in the name passing setting
• What if names are not considered?

Here: pure process passing

Processes as black boxes

Processes as black boxes

• They can only be executed, forwarded, or discarded

Processes as black boxes

• They can only be executed, forwarded, or discarded

• They can contain restricted names
But a receiver cannot “dig into” the structure of a
process. So it cannot actually use such names.

Processes as black boxes

• They can only be executed, forwarded, or discarded

• They can contain restricted names
But a receiver cannot “dig into” the structure of a
process. So it cannot actually use such names.

• “Hollow” scope extrusions: the scope expands but
their effect is limited

Names actually used

Names actually used

[[a�m,n�.P]] = νr (a�r�.r�m�.r�n�.[[P]])
[[a(x, y).Q]] = a(r).r(x).r(y).[[Q]]

Recall the encoding of biadic into monadic:

Once received, r can be freely used

Names actually used

[[a�m,n�.P]] = νr (a�r�.r�m�.r�n�.[[P]])
[[a(x, y).Q]] = a(r).r(x).r(y).[[Q]]

Recall the encoding of biadic into monadic:

Once received, r can be freely used

Two interacting process passing terms:

νn (a�P �.S�) � a(x).R� −→ νn (S� � R�{P/x})

Names actually used

[[a�m,n�.P]] = νr (a�r�.r�m�.r�n�.[[P]])
[[a(x, y).Q]] = a(r).r(x).r(y).[[Q]]

Recall the encoding of biadic into monadic:

Once received, r can be freely used

Two interacting process passing terms:

νn (a�P �.S�) � a(x).R� −→ νn (S� � R�{P/x})

Names actually used

[[a�m,n�.P]] = νr (a�r�.r�m�.r�n�.[[P]])
[[a(x, y).Q]] = a(r).r(x).r(y).[[Q]]

Recall the encoding of biadic into monadic:

Once received, r can be freely used

In R’, name n can only be used as defined in P and S’

Two interacting process passing terms:

νn (a�P �.S�) � a(x).R� −→ νn (S� � R�{P/x})

Our Results

1. Synchronous communication can be encoded
into asynchronous communication

2. Polyadic communication of arity n cannot be
encoded into communication of arity n-1

3. Abstraction passing cannot be encoded into
polyadic communication

The Languages
Synchronous pure process passing of arity n (SHOn)

P,Q ::= a(x̃).P | a�Q̃�.P | P1 � P2 | νr P | x | 0

The Languages
Synchronous pure process passing of arity n (SHOn)

In the asynchronous variant (AHOn) outputs have no
continuations

P,Q ::= a(x̃).P | a�Q̃�.P | P1 � P2 | νr P | x | 0

The Languages
Synchronous pure process passing of arity n (SHOn)

In the asynchronous variant (AHOn) outputs have no
continuations

P,Q ::= a(x̃).P | a�Q̃�.P | P1 � P2 | νr P | x | 0X

The Languages
Synchronous pure process passing of arity n (SHOn)

In the asynchronous variant (AHOn) outputs have no
continuations

P,Q ::= a(x̃).P | a�Q̃�.P | P1 � P2 | νr P | x | 0

The Languages
Synchronous pure process passing of arity n (SHOn)

In the asynchronous variant (AHOn) outputs have no
continuations

The variant with abstraction passing extends SHOn
with λ-like abstractions and applications:

P,Q ::= a(x̃).P | a�Q̃�.P | P1 � P2 | νr P | x | 0

The Languages
Synchronous pure process passing of arity n (SHOn)

In the asynchronous variant (AHOn) outputs have no
continuations

The variant with abstraction passing extends SHOn
with λ-like abstractions and applications:

P,Q ::= · · · | (x)P | P1�P2�

P,Q ::= a(x̃).P | a�Q̃�.P | P1 � P2 | νr P | x | 0

Semantics

• A Labeled Transition System (LTS) that enforces
a closer look into synchronizations

• Two kinds of Internal behavior:
- internal synchronizations τ
- public synchronizations aτ

The LTS for SHOn

The LTS for SHOn

The LTS for SHOn

The LTS for SHOn

The LTS for SHOn

Rule for the variant with abstraction passing:

The notion of encoding (Informally)

The notion of encoding (Informally)

Language: an algebra of processes, an LTS, and a weak
behavioral equivalence

The notion of encoding (Informally)

Language: an algebra of processes, an LTS, and a weak
behavioral equivalence

Translation: a function from language L1 to language L2

The notion of encoding (Informally)

Language: an algebra of processes, an LTS, and a weak
behavioral equivalence

Translation: a function from language L1 to language L2

Encoding: a translation plus syntactic/semantic conditions

The notion of encoding (Informally)

Language: an algebra of processes, an LTS, and a weak
behavioral equivalence

Translation: a function from language L1 to language L2

Encoding: a translation plus syntactic/semantic conditions
Syntactic: Compositionality - Name invariance

The notion of encoding (Informally)

Language: an algebra of processes, an LTS, and a weak
behavioral equivalence

Translation: a function from language L1 to language L2

Encoding: a translation plus syntactic/semantic conditions
Syntactic: Compositionality - Name invariance
Semantic: Operational Correspondence - Adequacy

The notion of encoding (Informally)

Language: an algebra of processes, an LTS, and a weak
behavioral equivalence

Translation: a function from language L1 to language L2

Encoding: a translation plus syntactic/semantic conditions
Syntactic: Compositionality - Name invariance
Semantic: Operational Correspondence - Adequacy

Divergence Reflection

The notion of encoding (Informally)

Language: an algebra of processes, an LTS, and a weak
behavioral equivalence

Translation: a function from language L1 to language L2

Encoding: a translation plus syntactic/semantic conditions
Syntactic: Compositionality - Name invariance
Semantic: Operational Correspondence - Adequacy

Divergence Reflection

Encodings are composable: the composition of two
encodings is an encoding

Encoding Synchronous into
Asynchronous

Synchronous into
Asynchronous

Synchronous into
Asynchronous

• Encoding SHOn into AHOn+1 is easy

Synchronous into
Asynchronous

• Encoding SHOn into AHOn+1 is easy

Send all the objects as they are, and use an extra
parameter to send the continuation of the output

Synchronous into
Asynchronous

• Encoding SHOn into AHOn+1 is easy

Send all the objects as they are, and use an extra
parameter to send the continuation of the output

• Challenge: to encode SHOn into AHOn

Synchronous into
Asynchronous

• Encoding SHOn into AHOn+1 is easy

Send all the objects as they are, and use an extra
parameter to send the continuation of the output

• Challenge: to encode SHOn into AHOn

Our solution: Send the first n-1 objects as they are,
and use the n-th object to send BOTH the last
object AND the continuation

Encoding Synchronous
into Asynchronous

The basic case: SHO1 into AHO1

[[a�P �.S]] = νk l (a� k.([[P]] � k) + l.([[S]] � k) � � l)
[[a(x).R]] = a(x).(x � [[R]])
The encoding is a homomorphism for the other operators.
Guarded choice is a derived construct in SHOn

Encoding Synchronous
into Asynchronous

• Object and continuation together in a guarded sum

The basic case: SHO1 into AHO1

[[a�P �.S]] = νk l (a� k.([[P]] � k) + l.([[S]] � k) � � l)
[[a(x).R]] = a(x).(x � [[R]])
The encoding is a homomorphism for the other operators.
Guarded choice is a derived construct in SHOn

Encoding Synchronous
into Asynchronous

• Object and continuation together in a guarded sum

The basic case: SHO1 into AHO1

[[a�P �.S]] = νk l (a� k.([[P]] � k) + l.([[S]] � k) � � l)
[[a(x).R]] = a(x).(x � [[R]])
The encoding is a homomorphism for the other operators.
Guarded choice is a derived construct in SHOn

Encoding Synchronous
into Asynchronous

• Object and continuation together in a guarded sum
• Two triggers: k for object P and l for continuation S

The basic case: SHO1 into AHO1

[[a�P �.S]] = νk l (a� k.([[P]] � k) + l.([[S]] � k) � � l)
[[a(x).R]] = a(x).(x � [[R]])
The encoding is a homomorphism for the other operators.
Guarded choice is a derived construct in SHOn

Encoding Synchronous
into Asynchronous

• Object and continuation together in a guarded sum
• Two triggers: k for object P and l for continuation S

- The continuation is triggered only once

The basic case: SHO1 into AHO1

[[a�P �.S]] = νk l (a� k.([[P]] � k) + l.([[S]] � k) � � l)
[[a(x).R]] = a(x).(x � [[R]])
The encoding is a homomorphism for the other operators.
Guarded choice is a derived construct in SHOn

Encoding Synchronous
into Asynchronous

• Object and continuation together in a guarded sum
• Two triggers: k for object P and l for continuation S

- The continuation is triggered only once

The basic case: SHO1 into AHO1

[[a�P �.S]] = νk l (a� k.([[P]] � k) + l.([[S]] � k) � � l)
[[a(x).R]] = a(x).(x � [[R]])
The encoding is a homomorphism for the other operators.
Guarded choice is a derived construct in SHOn

Encoding Synchronous
into Asynchronous

• Object and continuation together in a guarded sum
• Two triggers: k for object P and l for continuation S

- The continuation is triggered only once
- A trigger on k is always available

The basic case: SHO1 into AHO1

[[a�P �.S]] = νk l (a� k.([[P]] � k) + l.([[S]] � k) � � l)
[[a(x).R]] = a(x).(x � [[R]])
The encoding is a homomorphism for the other operators.
Guarded choice is a derived construct in SHOn

Encoding Synchronous
into Asynchronous

• Object and continuation together in a guarded sum
• Two triggers: k for object P and l for continuation S

- The continuation is triggered only once
- A trigger on k is always available

The basic case: SHO1 into AHO1

[[a�P �.S]] = νk l (a� k.([[P]] � k) + l.([[S]] � k) � � l)
[[a(x).R]] = a(x).(x � [[R]])
The encoding is a homomorphism for the other operators.
Guarded choice is a derived construct in SHOn

Encoding Synchronous
into Asynchronous

• Object and continuation together in a guarded sum
• Two triggers: k for object P and l for continuation S

- The continuation is triggered only once
- A trigger on k is always available

• The generalization to the n-adic case is immediate

The basic case: SHO1 into AHO1

[[a�P �.S]] = νk l (a� k.([[P]] � k) + l.([[S]] � k) � � l)
[[a(x).R]] = a(x).(x � [[R]])
The encoding is a homomorphism for the other operators.
Guarded choice is a derived construct in SHOn

Impossibility Results for Polyadicity

Restricted names are
like oil and water

• They do not really “mix” after communications ---
“hollow” extrusions

• This separation prevents private link establishment

Restricted names are
like oil and water

• They do not really “mix” after communications ---
“hollow” extrusions

• This separation prevents private link establishment

Our approach to separation:

• Disjoint form: our way of formalizing separation of
restricted names after a public synchronization

• Stability conditions: when/how processes remain in
disjoint form along computations

Disjoint Forms
Two biadic processes that do not share private names

They can communicate through a public name:

νñ (a�R1, R2�.P) � a(x1, x2).Q
aτ−→ νñ (P � Q{R1, R2/x1, x2})
= νñ (P � C[R1, R2])

Disjoint Forms
Two biadic processes that do not share private names

They can communicate through a public name:

νñ (a�R1, R2�.P) � a(x1, x2).Q
aτ−→ νñ (P � Q{R1, R2/x1, x2})
= νñ (P � C[R1, R2])

Disjoint Forms
Two biadic processes that do not share private names

They can communicate through a public name:

νñ (a�R1, R2�.P) � a(x1, x2).Q
aτ−→ νñ (P � Q{R1, R2/x1, x2})
= νñ (P � C[R1, R2])

Disjoint Forms
Two biadic processes that do not share private names

They can communicate through a public name:

νñ (a�R1, R2�.P) � a(x1, x2).Q
aτ−→ νñ (P � Q{R1, R2/x1, x2})
= νñ (P � C[R1, R2])

The scope expands but this is a hollow extrusion

Disjoint Forms
Two biadic processes that do not share private names

They can communicate through a public name:

νñ (a�R1, R2�.P) � a(x1, x2).Q
aτ−→ νñ (P � Q{R1, R2/x1, x2})
= νñ (P � C[R1, R2])

The scope expands but this is a hollow extrusion

Disjoint Forms
Two biadic processes that do not share private names

They can communicate through a public name:

νñ (a�R1, R2�.P) � a(x1, x2).Q
aτ−→ νñ (P � Q{R1, R2/x1, x2})
= νñ (P � C[R1, R2])

The scope expands but this is a hollow extrusion
Even if R1, R2 are inside C, they do not share private names

Disjoint Forms
Two biadic processes that do not share private names

They can communicate through a public name:

νñ (a�R1, R2�.P) � a(x1, x2).Q
aτ−→ νñ (P � Q{R1, R2/x1, x2})
= νñ (P � C[R1, R2])

The scope expands but this is a hollow extrusion
Even if R1, R2 are inside C, they do not share private names
The private names of C and those of P, R1, R2 are disjoint

Disjoint Forms

Disjoint Forms

Disjoint Forms

Stability Conditions:
Disjoint forms are preserved by internal synchronizations and
certain output actions

The impossibility result
Theorem. There is no encoding of SHO2 into SHO1

The impossibility result

Proof Sketch:

Theorem. There is no encoding of SHO2 into SHO1

The impossibility result

Proof Sketch:
1. Assume such an encoding exists

Theorem. There is no encoding of SHO2 into SHO1

The impossibility result

Proof Sketch:
1. Assume such an encoding exists

2. Take a process P that makes a public (biadic) synchronization.

Theorem. There is no encoding of SHO2 into SHO1

The impossibility result

Proof Sketch:
1. Assume such an encoding exists

2. Take a process P that makes a public (biadic) synchronization.

Two processes with different behavior are sent; the receiver
non-deterministically discards one and executes the other.

Theorem. There is no encoding of SHO2 into SHO1

The impossibility result

Proof Sketch:
1. Assume such an encoding exists

2. Take a process P that makes a public (biadic) synchronization.

Two processes with different behavior are sent; the receiver
non-deterministically discards one and executes the other.

3. Show that the encoding of P mimics such communication and
gets into monadic disjoint form (MDF)

Theorem. There is no encoding of SHO2 into SHO1

The impossibility result

Proof Sketch:
1. Assume such an encoding exists

2. Take a process P that makes a public (biadic) synchronization.

Two processes with different behavior are sent; the receiver
non-deterministically discards one and executes the other.

3. Show that the encoding of P mimics such communication and
gets into monadic disjoint form (MDF)

4. Show that the MDF is preserved along relevant computations

Theorem. There is no encoding of SHO2 into SHO1

The impossibility result

Proof Sketch:
1. Assume such an encoding exists

2. Take a process P that makes a public (biadic) synchronization.

Two processes with different behavior are sent; the receiver
non-deterministically discards one and executes the other.

3. Show that the encoding of P mimics such communication and
gets into monadic disjoint form (MDF)

4. Show that the MDF is preserved along relevant computations

5. Using a causality analysis, show that the (limited) structure of
the MDF causes the encoding of P to exhibit behavior that P
doesn’t have: contradiction.

Theorem. There is no encoding of SHO2 into SHO1

The hierarchy
Theorem. There is no encoding of SHOn into SHOn-1,
for every n>1

The hierarchy

• Proofs follow by an extension of all notions and
auxiliary results

• The hierarchy holds also for asynchronous calculi

Theorem. There is no encoding of SHOn into SHOn-1,
for every n>1

The power of abstraction passing

Abstraction passing

• Sending functions as in the λ-calculus

• It is specific to the higher-order setting ---
not present in the name passing

• We only consider abstractions of order 1:
functions from processes to processes

Private links with abstraction
passing

Encoding SHO2 into SHO1 with abstraction passing (SHO1a):

Private links with abstraction
passing

Encoding SHO2 into SHO1 with abstraction passing (SHO1a):

• The receiver takes the initiative and sends an abstraction
with a restricted name b

Private links with abstraction
passing

Encoding SHO2 into SHO1 with abstraction passing (SHO1a):

• The receiver takes the initiative and sends an abstraction
with a restricted name b

Private links with abstraction
passing

Encoding SHO2 into SHO1 with abstraction passing (SHO1a):

• The receiver takes the initiative and sends an abstraction
with a restricted name b

• A private link on b is realized upon application

Private links with abstraction
passing

Encoding SHO2 into SHO1 with abstraction passing (SHO1a):

• The receiver takes the initiative and sends an abstraction
with a restricted name b

• A private link on b is realized upon application

Private links with abstraction
passing

Encoding SHO2 into SHO1 with abstraction passing (SHO1a):

• The receiver takes the initiative and sends an abstraction
with a restricted name b

• A private link on b is realized upon application

Private links with abstraction
passing

Encoding SHO2 into SHO1 with abstraction passing (SHO1a):

• The receiver takes the initiative and sends an abstraction
with a restricted name b

• A private link on b is realized upon application
• Communication objects P1, P2 are “activated” from the
encoding of output

Private links with abstraction
passing

Encoding SHO2 into SHO1 with abstraction passing (SHO1a):

• The receiver takes the initiative and sends an abstraction
with a restricted name b

• A private link on b is realized upon application
• Communication objects P1, P2 are “activated” from the
encoding of output

Abstraction passing goes beyond
process passing

Theorem. For every m, n > 1, there is no encoding of
SHOn

a into SHOm

Abstraction passing goes beyond
process passing

Theorem. For every m, n > 1, there is no encoding of
SHOn

a into SHOm

Proof:
• Suppose there is an encoding A[[-]]: SHOna →SHOm

• We know there is an encoding B[[-]]: SHOm+1 →SHOna

• By composability of encodings, we have the encoding
 A⋄B[[-]]: SHOm+1 →SHOm

• However, such an encoding doesn’t exist: contradiction

Asynchronous Communication

Polyadic Communication

Abstraction Passing

Asynchronous Communication

Polyadic Communication

Abstraction Passing

Asynchronous Communication

Polyadic Communication

Abstraction Passing

Asynchronous Communication

Polyadic Communication

Abstraction Passing

On the Expressiveness of
Polyadic and Synchronous

Communication in
Higher-Order Process Calculi

Ivan Lanese Jorge A. Pérez Davide Sangiorgi Alan Schmitt

ICALP 2010, Bordeaux.

The notion of encoding (Formally)

The notion of encoding (Formally)

The notion of encoding (Formally)

Example: Sync into Async

a�P �.S � a(x).(x � x)
aτ−→ S � P � P

A synchronous “duplicator” process:

[[a�P �.S]] � [[a(x).(x � x)]]

= νk l (a�k.([[P]] � k) + l.([[S]] � k)� � l) � a(x).(x � [[x � x]])

= νk l (a�k.([[P]] � k) + l.([[S]] � k)� � l) � a(x).(x � x � x)
aτ−→ νk l (l � k.([[P]] � k) + l.([[S]] � k)

� k.([[P]] � k) + l.([[S]] � k)

� k.([[P]] � k) + l.([[S]] � k))
τ−→ νk l ([[S]] � k � k.([[P]] � k) + l.([[S]] � k)

� k.([[P]] � k) + l.([[S]] � k))
τ−→ νk l ([[S]] � [[P]] � k � k.([[P]] � k) + l.([[S]] � k))
τ−→ νk ([[S]] � [[P]] � [[P]] � k)

≈ [[S]] � [[P]] � [[P]]

[[a�P �.S]] � [[a(x).(x � x)]]

= νk l (a�k.([[P]] � k) + l.([[S]] � k)� � l) � a(x).(x � [[x � x]])

= νk l (a�k.([[P]] � k) + l.([[S]] � k)� � l) � a(x).(x � x � x)
aτ−→ νk l (l � k.([[P]] � k) + l.([[S]] � k)

� k.([[P]] � k) + l.([[S]] � k)

� k.([[P]] � k) + l.([[S]] � k))
τ−→ νk l ([[S]] � k � k.([[P]] � k) + l.([[S]] � k)

� k.([[P]] � k) + l.([[S]] � k))
τ−→ νk l ([[S]] � [[P]] � k � k.([[P]] � k) + l.([[S]] � k))
τ−→ νk ([[S]] � [[P]] � [[P]] � k)

≈ [[S]] � [[P]] � [[P]]

[[a�P �.S]] � [[a(x).(x � x)]]

= νk l (a�k.([[P]] � k) + l.([[S]] � k)� � l) � a(x).(x � [[x � x]])

= νk l (a�k.([[P]] � k) + l.([[S]] � k)� � l) � a(x).(x � x � x)
aτ−→ νk l (l � k.([[P]] � k) + l.([[S]] � k)

� k.([[P]] � k) + l.([[S]] � k)

� k.([[P]] � k) + l.([[S]] � k))
τ−→ νk l ([[S]] � k � k.([[P]] � k) + l.([[S]] � k)

� k.([[P]] � k) + l.([[S]] � k))
τ−→ νk l ([[S]] � [[P]] � k � k.([[P]] � k) + l.([[S]] � k))
τ−→ νk ([[S]] � [[P]] � [[P]] � k)

≈ [[S]] � [[P]] � [[P]]

[[a�P �.S]] � [[a(x).(x � x)]]

= νk l (a�k.([[P]] � k) + l.([[S]] � k)� � l) � a(x).(x � [[x � x]])

= νk l (a�k.([[P]] � k) + l.([[S]] � k)� � l) � a(x).(x � x � x)
aτ−→ νk l (l � k.([[P]] � k) + l.([[S]] � k)

� k.([[P]] � k) + l.([[S]] � k)

� k.([[P]] � k) + l.([[S]] � k))
τ−→ νk l ([[S]] � k � k.([[P]] � k) + l.([[S]] � k)

� k.([[P]] � k) + l.([[S]] � k))
τ−→ νk l ([[S]] � [[P]] � k � k.([[P]] � k) + l.([[S]] � k))
τ−→ νk ([[S]] � [[P]] � [[P]] � k)

≈ [[S]] � [[P]] � [[P]]

[[a�P �.S]] � [[a(x).(x � x)]]

= νk l (a�k.([[P]] � k) + l.([[S]] � k)� � l) � a(x).(x � [[x � x]])

= νk l (a�k.([[P]] � k) + l.([[S]] � k)� � l) � a(x).(x � x � x)
aτ−→ νk l (l � k.([[P]] � k) + l.([[S]] � k)

� k.([[P]] � k) + l.([[S]] � k)

� k.([[P]] � k) + l.([[S]] � k))
τ−→ νk l ([[S]] � k � k.([[P]] � k) + l.([[S]] � k)

� k.([[P]] � k) + l.([[S]] � k))
τ−→ νk l ([[S]] � [[P]] � k � k.([[P]] � k) + l.([[S]] � k))
τ−→ νk ([[S]] � [[P]] � [[P]] � k)

≈ [[S]] � [[P]] � [[P]]

[[a�P �.S]] � [[a(x).(x � x)]]

= νk l (a�k.([[P]] � k) + l.([[S]] � k)� � l) � a(x).(x � [[x � x]])

= νk l (a�k.([[P]] � k) + l.([[S]] � k)� � l) � a(x).(x � x � x)
aτ−→ νk l (l � k.([[P]] � k) + l.([[S]] � k)

� k.([[P]] � k) + l.([[S]] � k)

� k.([[P]] � k) + l.([[S]] � k))
τ−→ νk l ([[S]] � k � k.([[P]] � k) + l.([[S]] � k)

� k.([[P]] � k) + l.([[S]] � k))
τ−→ νk l ([[S]] � [[P]] � k � k.([[P]] � k) + l.([[S]] � k))
τ−→ νk ([[S]] � [[P]] � [[P]] � k)

≈ [[S]] � [[P]] � [[P]]

[[a�P �.S]] � [[a(x).(x � x)]]

= νk l (a�k.([[P]] � k) + l.([[S]] � k)� � l) � a(x).(x � [[x � x]])

= νk l (a�k.([[P]] � k) + l.([[S]] � k)� � l) � a(x).(x � x � x)
aτ−→ νk l (l � k.([[P]] � k) + l.([[S]] � k)

� k.([[P]] � k) + l.([[S]] � k)

� k.([[P]] � k) + l.([[S]] � k))
τ−→ νk l ([[S]] � k � k.([[P]] � k) + l.([[S]] � k)

� k.([[P]] � k) + l.([[S]] � k))
τ−→ νk l ([[S]] � [[P]] � k � k.([[P]] � k) + l.([[S]] � k))
τ−→ νk ([[S]] � [[P]] � [[P]] � k)

≈ [[S]] � [[P]] � [[P]]

[[a�P �.S]] � [[a(x).(x � x)]]

= νk l (a�k.([[P]] � k) + l.([[S]] � k)� � l) � a(x).(x � [[x � x]])

= νk l (a�k.([[P]] � k) + l.([[S]] � k)� � l) � a(x).(x � x � x)
aτ−→ νk l (l � k.([[P]] � k) + l.([[S]] � k)

� k.([[P]] � k) + l.([[S]] � k)

� k.([[P]] � k) + l.([[S]] � k))
τ−→ νk l ([[S]] � k � k.([[P]] � k) + l.([[S]] � k)

� k.([[P]] � k) + l.([[S]] � k))
τ−→ νk l ([[S]] � [[P]] � k � k.([[P]] � k) + l.([[S]] � k))
τ−→ νk ([[S]] � [[P]] � [[P]] � k)

≈ [[S]] � [[P]] � [[P]]

[[a�P �.S]] � [[a(x).(x � x)]]

= νk l (a�k.([[P]] � k) + l.([[S]] � k)� � l) � a(x).(x � [[x � x]])

= νk l (a�k.([[P]] � k) + l.([[S]] � k)� � l) � a(x).(x � x � x)
aτ−→ νk l (l � k.([[P]] � k) + l.([[S]] � k)

� k.([[P]] � k) + l.([[S]] � k)

� k.([[P]] � k) + l.([[S]] � k))
τ−→ νk l ([[S]] � k � k.([[P]] � k) + l.([[S]] � k)

� k.([[P]] � k) + l.([[S]] � k))
τ−→ νk l ([[S]] � [[P]] � k � k.([[P]] � k) + l.([[S]] � k))
τ−→ νk ([[S]] � [[P]] � [[P]] � k)

≈ [[S]] � [[P]] � [[P]]

[[a�P �.S]] � [[a(x).(x � x)]]

= νk l (a�k.([[P]] � k) + l.([[S]] � k)� � l) � a(x).(x � [[x � x]])

= νk l (a�k.([[P]] � k) + l.([[S]] � k)� � l) � a(x).(x � x � x)
aτ−→ νk l (l � k.([[P]] � k) + l.([[S]] � k)

� k.([[P]] � k) + l.([[S]] � k)

� k.([[P]] � k) + l.([[S]] � k))
τ−→ νk l ([[S]] � k � k.([[P]] � k) + l.([[S]] � k)

� k.([[P]] � k) + l.([[S]] � k))
τ−→ νk l ([[S]] � [[P]] � k � k.([[P]] � k) + l.([[S]] � k))
τ−→ νk ([[S]] � [[P]] � [[P]] � k)

≈ [[S]] � [[P]] � [[P]]

[[a�P �.S]] � [[a(x).(x � x)]]

= νk l (a�k.([[P]] � k) + l.([[S]] � k)� � l) � a(x).(x � [[x � x]])

= νk l (a�k.([[P]] � k) + l.([[S]] � k)� � l) � a(x).(x � x � x)
aτ−→ νk l (l � k.([[P]] � k) + l.([[S]] � k)

� k.([[P]] � k) + l.([[S]] � k)

� k.([[P]] � k) + l.([[S]] � k))
τ−→ νk l ([[S]] � k � k.([[P]] � k) + l.([[S]] � k)

� k.([[P]] � k) + l.([[S]] � k))
τ−→ νk l ([[S]] � [[P]] � k � k.([[P]] � k) + l.([[S]] � k))
τ−→ νk ([[S]] � [[P]] � [[P]] � k)

≈ [[S]] � [[P]] � [[P]]

[[a�P �.S]] � [[a(x).(x � x)]]

= νk l (a�k.([[P]] � k) + l.([[S]] � k)� � l) � a(x).(x � [[x � x]])

= νk l (a�k.([[P]] � k) + l.([[S]] � k)� � l) � a(x).(x � x � x)
aτ−→ νk l (l � k.([[P]] � k) + l.([[S]] � k)

� k.([[P]] � k) + l.([[S]] � k)

� k.([[P]] � k) + l.([[S]] � k))
τ−→ νk l ([[S]] � k � k.([[P]] � k) + l.([[S]] � k)

� k.([[P]] � k) + l.([[S]] � k))
τ−→ νk l ([[S]] � [[P]] � k � k.([[P]] � k) + l.([[S]] � k))
τ−→ νk ([[S]] � [[P]] � [[P]] � k)

≈ [[S]] � [[P]] � [[P]]

[[a�P �.S]] � [[a(x).(x � x)]]

= νk l (a�k.([[P]] � k) + l.([[S]] � k)� � l) � a(x).(x � [[x � x]])

= νk l (a�k.([[P]] � k) + l.([[S]] � k)� � l) � a(x).(x � x � x)
aτ−→ νk l (l � k.([[P]] � k) + l.([[S]] � k)

� k.([[P]] � k) + l.([[S]] � k)

� k.([[P]] � k) + l.([[S]] � k))
τ−→ νk l ([[S]] � k � k.([[P]] � k) + l.([[S]] � k)

� k.([[P]] � k) + l.([[S]] � k))
τ−→ νk l ([[S]] � [[P]] � k � k.([[P]] � k) + l.([[S]] � k))
τ−→ νk ([[S]] � [[P]] � [[P]] � k)

≈ [[S]] � [[P]] � [[P]]

[[a�P �.S]] � [[a(x).(x � x)]]

= νk l (a�k.([[P]] � k) + l.([[S]] � k)� � l) � a(x).(x � [[x � x]])

= νk l (a�k.([[P]] � k) + l.([[S]] � k)� � l) � a(x).(x � x � x)
aτ−→ νk l (l � k.([[P]] � k) + l.([[S]] � k)

� k.([[P]] � k) + l.([[S]] � k)

� k.([[P]] � k) + l.([[S]] � k))
τ−→ νk l ([[S]] � k � k.([[P]] � k) + l.([[S]] � k)

� k.([[P]] � k) + l.([[S]] � k))
τ−→ νk l ([[S]] � [[P]] � k � k.([[P]] � k) + l.([[S]] � k))
τ−→ νk ([[S]] � [[P]] � [[P]] � k)

≈ [[S]] � [[P]] � [[P]]

[[a�P �.S]] � [[a(x).(x � x)]]

= νk l (a�k.([[P]] � k) + l.([[S]] � k)� � l) � a(x).(x � [[x � x]])

= νk l (a�k.([[P]] � k) + l.([[S]] � k)� � l) � a(x).(x � x � x)
aτ−→ νk l (l � k.([[P]] � k) + l.([[S]] � k)

� k.([[P]] � k) + l.([[S]] � k)

� k.([[P]] � k) + l.([[S]] � k))
τ−→ νk l ([[S]] � k � k.([[P]] � k) + l.([[S]] � k)

� k.([[P]] � k) + l.([[S]] � k))
τ−→ νk l ([[S]] � [[P]] � k � k.([[P]] � k) + l.([[S]] � k))
τ−→ νk ([[S]] � [[P]] � [[P]] � k)

≈ [[S]] � [[P]] � [[P]]

[[a�P �.S]] � [[a(x).(x � x)]]

= νk l (a�k.([[P]] � k) + l.([[S]] � k)� � l) � a(x).(x � [[x � x]])

= νk l (a�k.([[P]] � k) + l.([[S]] � k)� � l) � a(x).(x � x � x)
aτ−→ νk l (l � k.([[P]] � k) + l.([[S]] � k)

� k.([[P]] � k) + l.([[S]] � k)

� k.([[P]] � k) + l.([[S]] � k))
τ−→ νk l ([[S]] � k � k.([[P]] � k) + l.([[S]] � k)

� k.([[P]] � k) + l.([[S]] � k))
τ−→ νk l ([[S]] � [[P]] � k � k.([[P]] � k) + l.([[S]] � k))
τ−→ νk ([[S]] � [[P]] � [[P]] � k)

≈ [[S]] � [[P]] � [[P]]

