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Venue # Papers Core / SCIMAGO Rank
Future Generation Computer Systems 8 Software : Q1

IEEE Internet Computing 3 Computer Networks and 
Communications : Q1

IEEE Transactions on Parallel and Distributed Systems 2 Computational Theory and 
Mathematics: Q1

USENIX Annual Technical Conference + HotCloud 13 (6,7) A / -
IC2E + IEEE CLOUD + CLOSER 20 (5,10,5) - / B / -

ACM Symposium on Cloud Computing (SoCC) 12 -
SIGMOD 4 A*

Middleware 4 A
CIDR 3 A

OOPSLA 2 A*
ICSE 2 A*

INFOCOM 2 A*
Source: DBLP
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Our new version of SKC (Section 2) provides a few improvements, which are given by a89

better integration of the essential features of the ⁄-calculus and the fi-calculus. Specifically,90

functions can now be parametric on the names of other functions available in a serverless91

system, whereas before all references to functions in the repository were statically fixed;92

it is now possible to create new function names for the repository dynamically, so the93

repository of available functions can now grow freely at runtime.94

These new features enhance the expressiveness of the language, which we illustrate through95

small examples (Section 2) and two use cases (Section 3) from artificial intelligence, one96

implementing the perceptron algorithm and one for distributed tagging of large images.97

We present two semantic interpretations for our version of SKC. The first (Section 2) is a98

refinement of the original reduction semantics from [13], which supports the aforementioned99

improvements. This high-level semantics is intended for developers to reason abstractly100

about SKC programs. The second semantic interpretation is a formalisation of a possible101

implementation layer for SKC, given in terms of an encoding (Section 5) from SKC to the102

asynchronous fi-calculus [41] (recalled in Section 4). The encoding is inspired by Milner’s103

encoding of the call-by-value ⁄-calculus [26]. It shows how serverless functions can be104

implemented by servers (replicated processes in the fi-calculus) that can be triggered by105

messages from clients, and how a serverless implementation layer can be modelled in terms106

of communications among processes. We prove that the encoding is correct in terms of an107

operational correspondence result.108

Our results show that standard techniques from process calculi can be useful to under-109

stand the two layers of serverless calculi. Hopefully, this understanding could also provide110

foundations for tackling some outstanding questions in serverless computing. For example,111

predicting resource usage and costs is challenging in general, since it requires knowing how112

functions are executed by the implementation layer.113

2 The Serverless Kernel Calculus, Revised114

We now present our refined version of the Serverless Kernel Calculus (SKC).

Configurations C ::= ÈS, DÍ | ‹n C
Definition repository D ::= {(f1, M1), . . . , (fk, Mk)} (k Ø 0)

Systems S, SÕ ::= c J M | S | SÕ | ‹n S | 0
Functions M, N ::= M N | V |

call h | store h N M | take h | ‹f M | async M | c
Values V, V Õ ::= x | ⁄x. M | f

Restrictable names n ::= c | f
h ::= f | x

Function names f œ Fun

Future names c œ Fut

Variables x œ Var

Figure 1 Syntax of SKC.
115

2.1 Syntax116

The syntax of SKC terms is given in Figure 1, and described in the following.117

Gabbr i e l l i ’ s Fes t sch r i f t
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⟨c◂𝖼𝖺𝗅𝗅 f, D ∪ {( f, M)}⟩
→ ⟨c◂M, D⟩
→ ⟨c◂V, D⟩
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not contain any mapping for f (but can become unstuck if a mapping appears later on).210

Rule take is similar, but the mapping for the called function is removed from the definition211

repository: we write undef(D, f) for the repository obtained by removing the mapping for f212

from D.213

The other rules are the expected ones for dealing with restriction (res-s and res-c),214

parallel composition (par), and structural equivalence (str): reductions under restriction215

and parallel composition can be lifted, and the reduction relation ≠≠æ is closed under the216

structural equivalence ©.217

I Example 1 (Local vs Async execution). As we are going to see in Section 3, the definition218

repository is useful to store data and functions that are commonly reused. By itself, term219

call f retrieves the body of function f from the repository and runs it locally. One can220

combine call with async to execute the retrieved function asynchronously, which gives some221

control on how functions from the repository should be executed.222

The caller of a function does not need to worry about which strategy is used by the callee,223

since the semantics of SKC makes both to eventually reduce to the same result. For example,224

assume that D(f) = V . The following reduction chains show the respective behaviours of225

the two strategies.226

Èc J call f, DÍ ≠≠æ Èc J V, DÍ (1)227

228

Èc J async call f, DÍ
≠≠æ È‹cÕ (c J cÕ | cÕ J call f), DÍ
≠≠æ È‹cÕ (c J cÕ | cÕ J V ), DÍ
≠≠æ È‹cÕ (c J V | cÕ J V ), DÍ

(2)229

The resulting term has the same behaviour of the one resulting from the local execution.230

One could make the two terms syntactically equal by implementing garbage collection for231

unused futures (and the related values).232

I Example 2 (Shared state). The definition repository can be used to store and share state.233

A simple example is keeping a counter of requests. We abuse notation and use arithmetic234

operators and natural numbers in SKC — as presented in Section 3. The counter can be235

initialised with236

(store counter V0 M)237

where V0 is the initial value, and incremented with238

(⁄x. store counter (call sum 1 x) M) (take counter)239

In both the cases M is a continuation.240

I Example 3 (Libraries). Updating shared state as in the previous example happens often in241

serverless computing. One could think of o�ering a replace primitive as syntactic sugar.242

replace h N M , (⁄x. store h (N x) M) (take h)243

We can then rewrite our previous counter example as follows.244

replace counter (call sum 1) M245

Gabbr i e l l i ’ s Fes t sch r i f t
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( newLog, νlog(𝗌𝗍𝗈𝗋𝖾 log 𝖼𝖺𝗅𝗅 nil log) ) ∈ D} } }
Name Body Continuation

}

Fresh name

/restriction

Empty list}
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( newLog, νlog(𝗌𝗍𝗈𝗋𝖾 log 𝖼𝖺𝗅𝗅 nil log) ) ∈ D
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( newLog, νlog(𝗌𝗍𝗈𝗋𝖾 log 𝖼𝖺𝗅𝗅 nil log) ) ∈ D

⟨c◂(λx . (𝖼𝖺𝗅𝗅 pair ((M x)(N x)) x)) 𝖼𝖺𝗅𝗅 newLog, D⟩
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( newLog, νlog(𝗌𝗍𝗈𝗋𝖾 log 𝖼𝖺𝗅𝗅 nil log) ) ∈ D

⟨c◂(λx . (𝖼𝖺𝗅𝗅 pair ((M x)(N x)) x)) 𝖼𝖺𝗅𝗅 newLog, D⟩

⟨c◂(λx . (𝖼𝖺𝗅𝗅 pair ((M x)(N x)) x)) νlog(𝗌𝗍𝗈𝗋𝖾 log 𝖼𝖺𝗅𝗅 nil log), D⟩
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( newLog, νlog(𝗌𝗍𝗈𝗋𝖾 log 𝖼𝖺𝗅𝗅 nil log) ) ∈ D

⟨c◂(λx . (𝖼𝖺𝗅𝗅 pair ((M x)(N x)) x)) 𝖼𝖺𝗅𝗅 newLog, D⟩

⟨c◂(λx . (𝖼𝖺𝗅𝗅 pair ((M x)(N x)) x)) νlog(𝗌𝗍𝗈𝗋𝖾 log 𝖼𝖺𝗅𝗅 nil log), D⟩

νlog⟨c◂(λx . (𝖼𝖺𝗅𝗅 pair ((M x)(N x)) x)) log, D ∪ {(log, 𝖼𝖺𝗅𝗅 nil)}⟩
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( newLog, νlog(𝗌𝗍𝗈𝗋𝖾 log 𝖼𝖺𝗅𝗅 nil log) ) ∈ D

⟨c◂(λx . (𝖼𝖺𝗅𝗅 pair ((M x)(N x)) x)) 𝖼𝖺𝗅𝗅 newLog, D⟩

⟨c◂(λx . (𝖼𝖺𝗅𝗅 pair ((M x)(N x)) x)) νlog(𝗌𝗍𝗈𝗋𝖾 log 𝖼𝖺𝗅𝗅 nil log), D⟩

νlog⟨c◂(λx . (𝖼𝖺𝗅𝗅 pair ((M x)(N x)) x)) log, D ∪ {(log, 𝖼𝖺𝗅𝗅 nil)}⟩

νlog⟨c◂𝖼𝖺𝗅𝗅 pair ((M log)(N log)) log, D ∪ {(log, 𝖼𝖺𝗅𝗅 nil)}⟩
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( newLog, νlog(𝗌𝗍𝗈𝗋𝖾 log 𝖼𝖺𝗅𝗅 nil log) ) ∈ D
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νlog⟨c◂𝖼𝖺𝗅𝗅 pair (M log VN) log, D ∪ {(log, Nlog)}⟩
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( newLog, νlog(𝗌𝗍𝗈𝗋𝖾 log 𝖼𝖺𝗅𝗅 nil log) ) ∈ D

⟨c◂(λx . (𝖼𝖺𝗅𝗅 pair ((M x)(N x)) x)) 𝖼𝖺𝗅𝗅 newLog, D⟩

⟨c◂(λx . (𝖼𝖺𝗅𝗅 pair ((M x)(N x)) x)) νlog(𝗌𝗍𝗈𝗋𝖾 log 𝖼𝖺𝗅𝗅 nil log), D⟩

νlog⟨c◂(λx . (𝖼𝖺𝗅𝗅 pair ((M x)(N x)) x)) log, D ∪ {(log, 𝖼𝖺𝗅𝗅 nil)}⟩

νlog⟨c◂𝖼𝖺𝗅𝗅 pair ((M log)(N log)) log, D ∪ {(log, 𝖼𝖺𝗅𝗅 nil)}⟩

νlog⟨c◂𝖼𝖺𝗅𝗅 pair (M log VN) log, D ∪ {(log, Nlog)}⟩

νlog⟨c◂𝖼𝖺𝗅𝗅 pair VM log, D ∪ {(log, Nlog :: Mlog)}⟩
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Theorem 1. From � -to-�  operational correspondence


If �  then �

SKC π

C → C′� [[C]]* → ≈ [[C′ �]]*

Theorem 2. From � -to-�  operational correspondence.


If �  then there is �  with �  and �

π SKC

{[C]} * → P C′� C → C′� P ≈ [[C′�]]*
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- guarantees like sequential execution, sequential consistency, and global-
state transformation serialisability;


- programming models that give programmers a global view of the overall 
logic of the distributed functions and capture the loosely-consistent 
execution model of Serverless;


- transformation frameworks, e.g., depending on the application context 
and inbound load, users/optimisation systems can transform parts of a 
given system from Serverless to Microservices and vice versa;


- prediction models for cost/resource usage, which require a modelling 
that relates functions and their execution at the implementation layer.
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Happy 
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To ensure atomicity, trainAndStore uses the take primitive to remove the “weights” from344

the definition environment while it is computing the new ones. In this way, if other clients are345

trying to access the same weights (name-wise), they are blocked until it finishes computing346

and it executes the store instruction to “release” them in the definition repository.347

We can now train our model to emulate the logical conjunction (wa represents the weights348

and bias of the model)—below we omit D for compactness.349

c0 J store wa (call pair (call cons 0 call cons 0 call nil) 1) ()
| c1 J call trainAndStore wa (call pair (call cons 0 call cons 0 call nil) 0)
| c2 J call trainAndStore wa (call pair (call cons 0 call cons 1 call nil) 0)
| c3 J call trainAndStore wa (call pair (call cons 1 call cons 0 call nil) 0)
| c4 J call trainAndStore wa (call pair (call cons 1 call cons 1 call nil) 1)
| c5 J ⁄ w. (call predict (call cons 0 call cons 1 call nil) (call first w) (call second w)) call wa

350

Above, the running function at the bottom (with future c5) uses the trained weights—at351

any possible stage of the training, due to the interleaving of the execution—to predict the352

result of the conjunction of the Boolean values 0 and 1.353

In the example above, we showed an initial configuration already featuring some running354

functions. Indeed, since we consider a reduction semantics, we do not model the invocation355

of functions from outside the system. To consider also the point of view of the user of356

the serverless system, one could equip SKC with a labelled semantics supporting both the357

invocation of functions and the retrieval of the results of the evaluation from outside the358

system. We leave this direction for future work.359

3.2 A Serverless Large Image Tagger360

In the following, we illustrate the use of the proposed language abstractions in order to361

model a simple system for tagging large images. The example takes advantage of an Artificial362

Intelligence (AI) algorithm to extract semantic content from an image. In computer vision it363

is common practice to segment the content of a photo to assign a label indicating the nature364

of the object(s) represented in each segment, for example a person, an animal, or a thing.365

Although modern AI techniques and in particular deep convolutional neural networks are able366

to predict the semantic content of an image with extreme accuracy, these algorithms normally367

take small inputs and are not adequate to classify images at ultra-high resolutions, e.g., the368

recent 4K format corresponding to 3840 ◊ 2160 pixels. As a reference, MobileNetV2 [35]369

is a well-known neural network architecture able to achieve fast object classification with370

accuracy of around 90% over 3-channel colour image inputs of 224 ◊ 224 pixels.371

With the purpose to build a system for annotating ultra-high resolution images, we want372

to exploit the parallel execution of inference processes to find the labels associated with each373

image portion and aggregate them at the end of the single computations. The scenario lends374

itself well to a serverless deployment strategy and can benefit from the language constructs375

provided by the SKC language. Summarising, our strategy is to split the image into portions376

that can be quickly annotated by the AI and to aggregate the results computed for each of377

these parts. This can be simply rendered in SKC by the tag function below:378

D(tag) = ⁄ image. (call aggregate (call split image))379

where function split splits the image and function aggregate classifies each portion and380

aggregates the results.381

Gabbr i e l l i ’ s Fes t sch r i f t
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⟨c0◂𝗌𝗍𝗈𝗋𝖾 wa ⋯
| c1◂𝖼𝖺𝗅𝗅 trainAndStore 𝖼𝖺𝗅𝗅 wa ⋯
| c2◂𝖼𝖺𝗅𝗅 trainAndStore 𝖼𝖺𝗅𝗅 wa ⋯
| c3◂𝖼𝖺𝗅𝗅 trainAndStore 𝖼𝖺𝗅𝗅 wa ⋯
| c4◂𝖼𝖺𝗅𝗅 trainAndStore 𝖼𝖺𝗅𝗅 wa ⋯
| c5◂λw . (𝖼𝖺𝗅𝗅 predict ⋯) 𝖼𝖺𝗅𝗅 wa, D⟩


