
A component Model
for the ABS Language

Michaël Lienhardt
M. Bravetti, I. Lanese, D. Sangiorgi, J. Schäfer, Y. Welsh, G. Zavattaro

Motivation

Why Components?

Motivation

Two keywords of the HATS project

- Adaptability

- Evolvability

at runtime

Adapt to the
 environment

Enable
modification

Adaptability = Evolvability + operations

Motivation

Typically:

ProgramWe have a to update

Motivation

Typically:

ProgramUsually

Program’
Very costly

Motivation

Typically:

Program
Change only

what’s necessary

Consistency

Motivation

Typically:

ProgramWe have a to restructure

For instance, new sites are available

Motivation

Typically:

ProgramProgramProgramProgramProgramProgramProgram

Motivation

Hence, we need:

Programs as sets of talkative boxes

Isolation

Mobility

Motivation

A classical approach to structure

programs into boxes is

Components

Classic Components
Boxes

Classic Components
Boxes with ports

Classic Components
Boxes with ports

that can be assembled

Classic Components
Boxes with ports

that can be assembled in hierarchy

Classic Components
Boxes with ports

so we can manipulate their structure

New

Move

Classic Components

But

Why Yet Another Component Model?

(there’s already Fractal, OSGi, Ensemble, Appia, darwin,...)

Classic Components

Formal model

What we want to do

That interacts with Objects

That can easily express Adaptability

Classic Components

BUT

Common Approaches:
- ADL Based
- Just a Model
- Informal, Complex

Cannot express
runtime modification

no interaction
with objects

difficult to
prove properties

- Focuses on Mobility
- Extends Objects
- Formally defined

Our Component Model

good with
Adaptibility

evident interaction
with objects

We hope good with
proofs

Our Component Model

P ::= 0 | x | νaP | P | P | A.P | a(S){M}[P]

A ::= a(x) | a�P � | open S | close S
| a in b | a out b | a m�P �

M ::= 0 | m(x)P | M | M

P ::= 0 | x | νaP | P | P | A.P | a(S){M}[P]

A ::= a(x) | a�P � | open S | close S
| a in b | a out b | a m�P �

M ::= 0 | m(x)P | M | M

Our Component Model

Process

Methods

Action

Our Component Model

≅ π-Calculus

P ::= 0 | x | νaP | P | P | A.P | a(S){M}[P]

A ::= a(x) | a�P � | open S | close S
| a in b | a out b | a m�P �

M ::= 0 | m(x)P | M | M

Our Component Model

Component

P ::= 0 | x | νaP | P | P | A.P | a(S){M}[P]

A ::= a(x) | a�P � | open S | close S
| a in b | a out b | a m�P �

M ::= 0 | m(x)P | M | M

Our Component Model

Method invocation

Method definition

P ::= 0 | x | νaP | P | P | A.P | a(S){M}[P]

A ::= a(x) | a�P � | open S | close S
| a in b | a out b | a m�P �

M ::= 0 | m(x)P | M | M

Our Component Model

Sub Components and
tasks

P ::= 0 | x | νaP | P | P | A.P | a(S){M}[P]

A ::= a(x) | a�P � | open S | close S
| a in b | a out b | a m�P �

M ::= 0 | m(x)P | M | M

Our Component Model

Channels
To return values

P ::= 0 | x | νaP | P | P | A.P | a(S){M}[P]

A ::= a(x) | a�P � | open S | close S
| a in b | a out b | a m�P �

M ::= 0 | m(x)P | M | M

Our Component Model

Visibility
to control communications
and encode the wrapping

P ::= 0 | x | νaP | P | P | A.P | a(S){M}[P]

A ::= a(x) | a�P � | open S | close S
| a in b | a out b | a m�P �

M ::= 0 | m(x)P | M | M

Our Component Model

Manipulation
to modify components

P ::= 0 | x | νaP | P | P | A.P | a(S){M}[P]

A ::= a(x) | a�P � | open S | close S
| a in b | a out b | a m�P �

M ::= 0 | m(x)P | M | M

c4

m4(x)...

c3

m3(x).m4(P')..

c1

m(x).c2_m2(P)...

Sub Components
c2

m2(x)...

Sub Components

Components as
Objects

Inner component
= is a field of

Tree structure

Graph
communication

c3(c1){. . . }[. . .]

open S / close S

c4

m4(x)...

c2

m2(x)...

Sub Components

c3

m3(x).m4(P')..

c1

m(x).c2_m2(P)...

Sub Components

c1

Components as
Isolation Boxes

Control over
communications

Only affect method
calls

Controlled by

Components as
Mobility Basis

c4

m4(x)...

c3

m3(x).m4(P')..

c2

m2(x)...

Sub Components

c2 in c3
c1

m(x).c2_m2(P)...

Sub Components

c1 out c3

We then encode the other
Adaptability operators

ctmp

c1

m(x).c2_m2(P)...

Sub Components

c1

ctmp
c1

Components as
Adaptibility Basis

(1/3) Remove(c1)

c1

m(x).c2_m2(P)...

Sub Components

c1

m(x).c2_m2(P)...

Sub Components

+
ν ctmp

c1 in ctmp

the component isn’t
deleted

Components as
Adaptibility Basis

(2/3) Update(c1)

c1

m(x).c2_m2(P)...

Sub Components

Remove(c1)

c1(. . .){. . . }[. . .]
c1

New Methods

New Sub Components

c3

c3's Methods

c3's Sub Components

 +

c1
c1

m(x).c2_m2(P)...

Sub Components

c3

c3's Methods

c3's Sub Components c1

Components as
Adaptibility Basis

(3/3) Wrap(c1,c3)

c1

m(x).c2_m2(P)...

Sub Components

c1

m(x).c2_m2(P)...

Sub Components

+
c3(. . .){. . . }[. . .]

c3

c3's Methods

c3's Sub Components c1

c1 in c3

Components as
Adaptibility

(1/2) Wrap(c1)

c3

c3's Methods

c3's Sub Components c1

c1

m(x).c2_m2(P)...

Sub Components

ctmp

m(x).c2_m2(P)...

c1
c1

m(x).c2_m2(P)...

Sub Components

ctmp

m(x).c2_m2(P)...

c1
c1

m(x).c2_m2(P)...

Sub Components

+
c1

New Methods

New Sub Components

New Sub Components
+

c1

New Methods

ctmp

m(x).c2_m2(P)...

c1
c1

m(x).c2_m2(P)...

Sub Components

Components as
Adaptibility

(2/2) deploy

c3

c3's Methods

c3's Sub Components c1

ProgramProgramProgramProgramProgramProgramProgram

ai out s
ai in si

Components as
Adaptibility

(2/2) deploy

c3

c3's Methods

c3's Sub Components c1

ProgramProgramProgramProgramProgramProgramProgram

Components as
Adaptibility

(2/2) deploy

c3

c3's Methods

c3's Sub Components c1

Program
Program

Communication

Must know where the other component is

Conclusion

Our component Model

Is Formal

Capture the notion of Object

Has a relatively simple semantic

Can encode ‘safe’ modifications

Conclusion

In comparison to other Model

Does not have a remove operator

Does not have links

Conclusion

Our Model may still need improvements

For the deploy

For message forwarding

To manage errors (real deletion)

To manage sessions

Conclusion

Integration to ABS needs
to be addressed

Thank You
for your attention

