A component Model
for the ABS Language

Michael Lienhardt

M. Bravetti, . Lanese, D. Sangiorgi, J. Schafer, Y.Welsh, G. Zavattaro

Motivation

Why Components!?

Motivation

Two keywords of the HATS project

Adapt to the
- Adaptability environment
- Evolvability Enable

modification

Adaptability = Evolvability + operations

Typically:

We have a

Motivation

Program

to update

Motivation

Typically:

Usually M

_

Program’

Motivation

Typically: I:I

Change only Program

what’s necessary E
I:I Consistency

Motivation

Typically:

We have a Program to restructure

For instance, new sites are available

Typically:

Motivation

pan
/

Pro

v

Motivation

Hence, we need:

¢ Programs as sets of talkative boxes

¢ |solation

¢ Mobility

Motivation

A classical approach to structure

programs into boxes is

Classic Components

¢ Boxes

Classic Components

¢ Boxes with ports

Classic Components

¢ Boxes with ports

that can be assembled

L S S
L

Classic Components

¢ Boxes with ports

that can be assembled in hierarchy

-
FRE

Classic Components

¢ Boxes with ports

sO we can manipulate their structure

Classic Components

But

Why Yet Another Component Model?

(there’s already Fractal, OSGi, Ensemble, Appia, darwin,...)

Classic Components

What we want to do

Formal model
That interacts with Objects

That can easily express Adaptability

Classic Components

BUT

Cannot express
runtime modification

Common Approaches:
) ADL Based no interaction
- Just a Model with objects

- |nforma|, Complex difficult to

prove properties

Our Component Model

good with
Adaptibility

- Focuses on Mobility evident interaction

- Extends Obijects with objects
- Formally defined

We hope good with
proofs

Our Component Model

Our Component Model

0 |- | vaP | P|P | AP | a(S){M}[P)

a(x) | a(P) | openS | close S
ainb | aoutd | am(P)

0 | m(z)P | M| M

Our Component Model

0 | = | vaP | P|P | AP | a(S){M}[P)

a(x) | a(P) /| openS | close S
ainb | aoutd | am(P)

0 | m(z)P | M| M

Our Component Model

0 | = | vaP | P|P | AP | a(S){M}[P)

a(x) | a(P) | openS | close S
ainb | aoutd | am(P)

0 | m(z)P | M| M

Our Component Model

0 | = | vaP | P|P | AP | a(S){M}P)

a(x) | a{(P) | openS | close S
ainb | aoutd | am(P)

0 | im(z)P | M| M

Our Component Model

0 | =« | vaP | P|P | AP | a(S){M}[P)

a(x) | a(P) | openS | close S
ainb | aoutd | am(P)

0 | m(z)P | M| M

Our Component Model

0 | = | vaP | P|P | AP | a(S){M}[P)

a(x) | a{(P) | openS | close S
ainb)| aoutd | am(P)

0 | m(z)P | M| M

Our Component Model

0 | = | vaP | P|P | AP | d(S)YM}[P

a(x) | a{(P) | copen S | close S
ainb | aoutd | am(P)

0 | m(z)P | M| M

Our Component Model

0 | = | vaP | P|P | AP | a(S){M}[P)

a(x) | a(P) | openS | close S
ainb | aoutb | am(P)

0 | m(z)P | M| M

Components as

Objects

c4

c3

ci

Sub Components

m(x).c2_m2(P)...

———]

c2

Sub Components

—r m2(X)...

m3(x).m4(P")..

#

m4(x)...

¢ Inner component

= is a field of
& Tree structure
¢ Graph

communication

Components as
Isolation Boxes

8 g cs(e){.. M.

cl

c3

ci

Sub Components c2 ‘?\\2) ContrOI over

Sub Components communications

m(x).c2_m2(P)... | -
%/'—’mz(x)
m3(x).ma(P).. ¢ Only affect method
calls

m4(x)... —-J

& Controlled by
open S / close S

Components as
Mobility Basis

c4

c3

Co 1N C3

ci

Sub Components

m(x).c2_m2(P)...

T

Sub Components

c2

m3(x).m4(P)..

ﬁ—

m4(Xx)...

We then encode the other
Adaptability operators

Components as

Adaptibility Basis

(1/3) Remove(cl)

Sub Components

p

m(x).c2_m2(P)...

Sub Components

m(x).c2_m2(P)...

P

ctmp

cl

Sub Components

m(x).c2_m2(P)...

+

ctmp

the component isn’t
deleted

Components as
Adaptibility Basis

(2/3) Update(cl)

cl
Sub Components
m(x).c2_m2(P)...

) Remove(c|)

i

eeeeeeeeeeeeeeee

eeeeeeeeee

Components as
Adaptibility Basis

(3/3) Wrap(cl,c3)

c3
P ci c3's Sub Components
Sub Components Sub Components +
m(x).c2_m2(P)... m(x).c2_m2(P)...

c3's Methods

c3

c3's Sub Components ci
cl

Sub Components

m(x).c2_m2(P)...

c3's Methods

Components as

(1/2) Wrap(cl)

ci

Sub Components

m(x).c2_m2(P)...

N

Adaptibility

ctmp

ci

Sub Components

m(x).c2_m2(P)...

cl

m(x).c2_m2(P)...

-4

ctmp

ci

cl

cl

Sub Components

m(x).c2_m2(P)...

m(x).c2_m2(P)...

New Sub Components

New Methods

ci

New Sub Components
+

ctmp

ci

Sub Components

m(x).c2_m2(P)...

m(x).c2_m2(P)...

New Methods

Components as
Adaptibility

(2/2) deploy

Pro(gram

Components as

Adaptibility
(2/2) deploy
a; out s l_l_ J’r’r‘Oggmm

Components as
Adaptibility

(2/2) deploy

Communication

Pro.

Must know where the other component is

Conclusion

¢ Our component Model
¢ |s Formal
¢ Capture the notion of Object
¢ Has a relatively simple semantic

¢ Can encode ‘safe’ modifications

Conclusion

€ In comparison to other Model

¢ Does not have a remove operator

¢ Does not have links

Conclusion

¢ Our Model may still need improvements

¢ For the deploy
¢ For message forwarding
¢ To manage errors (real deletion)

¢ To manage sessions

Conclusion

Integration to ABS needs
to be addressed

Thank You
for your attention

