Causal-consistent Reversible Debugging

1 1 2

Elena Giachino® Ivan Laneset Claudio Antares Mezzina

IFocus Team, University of Bologna/INRIA, Italy

2SOA Unit, FBK Trento, ltaly

April 11, 2014

FASE 2014

Mezzina (FBK) Causal-consistent Reversible Debugging April 11, 2014



© Introduction



Reversible Debugging

Definition [Jakob Engblom, S4D 2012]

Reverse debugging is the ability of a debugger to stop after a failure in a
program has been observed and go back into the history of the execution
to uncover the reason for the failure.

Implications:
@ Ability to execute an application both in forward and backward way.

@ Reproduce or keep track of the past of an execution.

Mezzina (FBK) Causal-consistent Reversible Debugging April 11, 2014 2/18



Reversibility and Debugging

When a misbehaviour is detected, how one should proceed in order to
retrace the steps that led to the bug?

@ Sequential setting: recursively undo the last action.

@ Concurrent setting: there is not a clear understanding of which the
last action is.

Mezzina (FBK) Causal-consistent Reversible Debugging April 11, 2014 3/18



State of the Art for Concurrent Reversible Debugging

Non-deterministic replay

The execution is replayed non deterministically from the start (or from a
previous checkpoint) till the desired point.

Deterministic replay/reverse-execute debugging

A log of the scheduling among threads is kept and then actions are
reversed or replayed accordingly.

Mezzina (FBK) Causal-consistent Reversible Debugging April 11, 2014 4/18



Non-deterministic replay:

@ Actions could get scheduled in a different order and hence the bug
may not be reproduced.

e Particularly difficult to reproduce concurrency problems (e.g. race
conditions).

Deterministic replay/reverse execute:

@ Also actions in threads not related to the bug may be undone.

@ If one among several independent threads causes the bug, and this
thread has been scheduled first, then one has to undo the entire
execution to find the bug.

Mezzina (FBK) Causal-consistent Reversible Debugging April 11, 2014 5/18



Our Approach: Causal-Consistent Reversibility

Actions are reversed respecting the causes:
@ only actions that have caused no successive actions can be undone;
@ concurrent actions can be reversed in any order;

@ dependent actions are reversed starting from the consequences.

Benefits:

The programmer can easily individuate and undo the actions that caused a
given misbehaviour.

Mezzina (FBK) Causal-consistent Reversible Debugging April 11, 2014 6 /18



The debugger
(2 ) gg



Chosen language

@ 10z: subset of Oz language [Van Roy et al ]

@ Functional language

o thread-based concurrency
e asynchronous communication via ports (channels)

o 10z advantages:
o well-known stack-based abstract machine
e equipped with a causal-consistent reversible semantics (from
previous work)

Mezzina (FBK) Causal-consistent Reversible Debugging April 11, 2014



S =
skip empty stm
St So sequence
let z=vin S end var declaration
if x then S; else S; end conditional
thread S end thread creation
let z =c in S end procedure declaration
{z 7} procedure call
let x = NewPort in S end port creation
{Send z y} send on a port
let © = { Receive y } in S end receive from a port
v:u= true|false|0|1]... simple values
c¢u= proc {z;...z,} S end procedures

Mezzina (FBK) Causal-consistent Reversible Debugging April 11, 2014



The Debugger Commands

forth (f) t (forward execution of one step of thread t)
run (runs the program)
__ | rollvariable (rv) id  (c-c undo of the creation of variable id)
£ | rollsend (rs) id n (c-c undo of last n send to port id)
§ rollreceive (rr) id n  (c-c undo of last n receive from port id)
rollthread (rt) t (c-c undo of the creation of thread t)
roll (r) tn (c-c undo of n steps of thread t)
back (b) t (bk execution of one step of thread t (if possible))
o | list (1) (displays all the available threads)
5 | store (s) (displays all the ids contained in the store)
< | print (p) id (shows the state of a thread, channel, or variable)
® | history (h) id (shows thread/channel computational history)

Mezzina (FBK) Causal-consistent Reversible Debugging April 11, 2014 9/18



Example of execution

let a = true in (1)
let b = false in 2)
let z = port in 3)
thread {send x a};{send x b} end; (4)

let y = {receive z} in skip end (5)

end (6)
end ()
end (8)

@ At line (4), thread t; is created by thread tg
@ Assume t; fully executes, then ¢ty completes its execution
@ Both the threads are now terminated

@ What should happen if roll t1 2 is issued in debugging mode?

Mezzina (FBK) Causal-consistent Reversible Debugging April 11, 2014



State after rollback

to let y = {receive z} in skip end
t1 {send x a};{send x b}
x uE

@ ty is automatically rolled-back enough in order to release the read
value a

@ tg rolled-back as little as possible (no domino effect)

Mezzina (FBK) Causal-consistent Reversible Debugging April 11, 2014 11 /18



Debugging Soundness

Properties:
© Every reduction step can be reversed

@ Every state reached during debugging could have been reached by
forward-only execution from the initial state

Prop 1 ensures that the debugger can undo every forward step, and,
vice-versa, it can re-execute every step previously undone.

Prop 2 ensures that any sequence of debugging commands can only lead
to states which are part of the normal forward-only computations.

Mezzina (FBK) Causal-consistent Reversible Debugging April 11, 2014 12 /18



© Implementation



Implementation

@ Java based

@ Interpreter of the Oz reversible semantics

e forward and backward steps
e roll as controlled sequence of backward steps
o rollvariable, rollthread, rollsend, rollreceive are based on roll

@ It keeps history and causality information to enable reversibility

©Q http://www.cs.unibo.it/caredeb )

Mezzina (FBK) Causal-consistent Reversible Debugging April 11, 2014


http://www.cs.unibo.it/caredeb

History and Causal Information

@ The history of each thread
@ The history of each channel, containing:
o elements of the form (to,i,a,t1,75)
e tg sent a value a which has been received by ¢,
e i and j are pointers to tg and t; send/receive instructions
@ We also maintain the following mappings:
e var_name — (thread_name, i) pointing to the variable creator (for

rollvar)
e thread_name — (thread_name, i) pointing to the thread creator (for

rolithread)
e could be retrieved by inspecting histories, but storing them is much

more efficient

Mezzina (FBK) Causal-consistent Reversible Debugging April 11, 2014 14 /18



Reversing: code snippet

private static void rollTill (HashMap<String, Integer> map)
{

//map contains pairs <thread_name,i>

Iterator<String> it = map.keySet().iterator ();

while (it.hasNext ())

{
String id = it.next();
int gamma = map.get (id);
//getGamma retrieves the next gamma in the history
while (gamma <= getGamma (id))
{
try {
stepBack (id);
} catch (WrongElementChannel e) {
rollTill(e.getDependencies ());
} catch (ChildMissingException e) {
rollEnd(e.getChild ());
}
}
¥

Mezzina (FBK) Causal-consistent Reversible Debugging April 11, 2014



Mezzina (FBK) Causal-consistent Reversible Debugging April 11, 2014 16 / 18




@ Conclusion



Improve the debugger user experience:

e GUI
e Eclipse plug-in

Other forms of causality analysis

@ Move to more popular programming languages / models
e e.g. Java with actors

@ Causal-Consistent Replay

Mezzina (FBK) Causal-consistent Reversible Debugging April 11, 2014



Causal-Consistent Reversible Debugging

Thank you!

Questions?

Causal-consistent Reversible Debugging April 11, 2014 18 / 18



	Introduction
	The debugger
	Implementation
	Conclusion

