
Causal-consistent Reversible Debugging

Elena Giachino1 Ivan Lanese1 Claudio Antares Mezzina2

1Focus Team, University of Bologna/INRIA, Italy

2SOA Unit, FBK Trento, Italy

April 11, 2014

FASE 2014

Mezzina (FBK) Causal-consistent Reversible Debugging April 11, 2014 1 / 18

Roadmap

1 Introduction

2 The debugger

3 Implementation

4 Conclusion

Reversible Debugging

Definition [Jakob Engblom, S4D 2012]

Reverse debugging is the ability of a debugger to stop after a failure in a
program has been observed and go back into the history of the execution
to uncover the reason for the failure.

Implications:

Ability to execute an application both in forward and backward way.

Reproduce or keep track of the past of an execution.

Mezzina (FBK) Causal-consistent Reversible Debugging April 11, 2014 2 / 18

Reversibility and Debugging

Question:

When a misbehaviour is detected, how one should proceed in order to
retrace the steps that led to the bug?

Sequential setting: recursively undo the last action.

Concurrent setting: there is not a clear understanding of which the
last action is.

Mezzina (FBK) Causal-consistent Reversible Debugging April 11, 2014 3 / 18

State of the Art for Concurrent Reversible Debugging

Non-deterministic replay

The execution is replayed non deterministically from the start (or from a
previous checkpoint) till the desired point.

Deterministic replay/reverse-execute debugging

A log of the scheduling among threads is kept and then actions are
reversed or replayed accordingly.

Mezzina (FBK) Causal-consistent Reversible Debugging April 11, 2014 4 / 18

Drawbacks

Non-deterministic replay:

Actions could get scheduled in a different order and hence the bug
may not be reproduced.

Particularly difficult to reproduce concurrency problems (e.g. race
conditions).

Deterministic replay/reverse execute:

Also actions in threads not related to the bug may be undone.

If one among several independent threads causes the bug, and this
thread has been scheduled first, then one has to undo the entire
execution to find the bug.

Mezzina (FBK) Causal-consistent Reversible Debugging April 11, 2014 5 / 18

Our Approach: Causal-Consistent Reversibility

Actions are reversed respecting the causes:

only actions that have caused no successive actions can be undone;

concurrent actions can be reversed in any order;

dependent actions are reversed starting from the consequences.

Benefits:

The programmer can easily individuate and undo the actions that caused a
given misbehaviour.

Mezzina (FBK) Causal-consistent Reversible Debugging April 11, 2014 6 / 18

Roadmap

1 Introduction

2 The debugger

3 Implementation

4 Conclusion

Chosen language

µOz: subset of Oz language [Van Roy et al.]

Functional language

thread-based concurrency
asynchronous communication via ports (channels)

µOz advantages:

well-known stack-based abstract machine
equipped with a causal-consistent reversible semantics (from
previous work)

Mezzina (FBK) Causal-consistent Reversible Debugging April 11, 2014 7 / 18

Syntax

S ::=

skip empty stm

S1 S2 sequence

let x = v in S end var declaration

if x then S1 else S2 end conditional

thread S end thread creation

let x = c in S end procedure declaration

{x ỹ} procedure call

let x = NewPort in S end port creation

{Send x y} send on a port

let x = { Receive y } in S end receive from a port

v ::= true | false | 0 | 1 | . . . simple values

c ::= proc {x1 . . . xn} S end procedures

Mezzina (FBK) Causal-consistent Reversible Debugging April 11, 2014 8 / 18

The Debugger Commands
co

n
tr

ol

forth (f) t (forward execution of one step of thread t)
run (runs the program)
rollvariable (rv) id (c-c undo of the creation of variable id)
rollsend (rs) id n (c-c undo of last n send to port id)
rollreceive (rr) id n (c-c undo of last n receive from port id)
rollthread (rt) t (c-c undo of the creation of thread t)
roll (r) t n (c-c undo of n steps of thread t)
back (b) t (bk execution of one step of thread t (if possible))

ex
p

lo
re

list (l) (displays all the available threads)
store (s) (displays all the ids contained in the store)
print (p) id (shows the state of a thread, channel, or variable)
history (h) id (shows thread/channel computational history)

Mezzina (FBK) Causal-consistent Reversible Debugging April 11, 2014 9 / 18

Example of execution

let a = true in (1)

let b = false in (2)

let x = port in (3)

thread {send x a}; {send x b} end; (4)

let y = {receive x} in skip end (5)

end (6)

end (7)

end (8)

At line (4), thread t1 is created by thread t0

Assume t1 fully executes, then t0 completes its execution

Both the threads are now terminated

What should happen if roll t1 2 is issued in debugging mode?

Mezzina (FBK) Causal-consistent Reversible Debugging April 11, 2014 10 / 18

State after rollback

t0 let y = {receive x} in skip end

t1 {send x a}; {send x b}
x ⊥

t0 is automatically rolled-back enough in order to release the read
value a

t0 rolled-back as little as possible (no domino effect)

Mezzina (FBK) Causal-consistent Reversible Debugging April 11, 2014 11 / 18

Debugging Soundness

Properties:

1 Every reduction step can be reversed

2 Every state reached during debugging could have been reached by
forward-only execution from the initial state

Prop 1 ensures that the debugger can undo every forward step, and,
vice-versa, it can re-execute every step previously undone.

Prop 2 ensures that any sequence of debugging commands can only lead
to states which are part of the normal forward-only computations.

Mezzina (FBK) Causal-consistent Reversible Debugging April 11, 2014 12 / 18

Roadmap

1 Introduction

2 The debugger

3 Implementation

4 Conclusion

Implementation

Java based

Interpreter of the µOz reversible semantics

forward and backward steps
roll as controlled sequence of backward steps
rollvariable, rollthread, rollsend, rollreceive are based on roll

It keeps history and causality information to enable reversibility

1 http://www.cs.unibo.it/caredeb

Mezzina (FBK) Causal-consistent Reversible Debugging April 11, 2014 13 / 18

http://www.cs.unibo.it/caredeb

History and Causal Information

The history of each thread

The history of each channel, containing:

elements of the form (t0, i, a, t1, j)
t0 sent a value a which has been received by t1
i and j are pointers to t0 and t1 send/receive instructions

We also maintain the following mappings:

var name→ (thread name, i) pointing to the variable creator (for
rollvar)
thread name→ (thread name, i) pointing to the thread creator (for
rollthread)
could be retrieved by inspecting histories, but storing them is much
more efficient

Mezzina (FBK) Causal-consistent Reversible Debugging April 11, 2014 14 / 18

Reversing: code snippet

private static void rollTill(HashMap <String , Integer > map)

{

//map contains pairs <thread_name ,i>

Iterator <String > it = map.keySet ().iterator ();

while(it.hasNext ())

{

String id = it.next();

int gamma = map.get(id);

// getGamma retrieves the next gamma in the history

while(gamma <= getGamma(id))

{

try {

stepBack(id);

} catch (WrongElementChannel e) {

rollTill(e.getDependencies ());

} catch (ChildMissingException e) {

rollEnd(e.getChild ());

}

}

}

}

Mezzina (FBK) Causal-consistent Reversible Debugging April 11, 2014 15 / 18

Demo Time

Mezzina (FBK) Causal-consistent Reversible Debugging April 11, 2014 16 / 18

Roadmap

1 Introduction

2 The debugger

3 Implementation

4 Conclusion

Future work

Improve the debugger user experience:

GUI
Eclipse plug-in

Other forms of causality analysis

Move to more popular programming languages / models

e.g. Java with actors

Causal-Consistent Replay

Mezzina (FBK) Causal-consistent Reversible Debugging April 11, 2014 17 / 18

Causal-Consistent Reversible Debugging

Thank you!

Questions?

Mezzina (FBK) Causal-consistent Reversible Debugging April 11, 2014 18 / 18

	Introduction
	The debugger
	Implementation
	Conclusion

