Concurrent Flexible Reversibility

Ivan Lanese ! Michael Lienhardt? Claudio Antares Mezzina 3
Alan Schmitt* Jean-Bernard Stefani 4

LFocus Team, University of Bologna/INRIA, Italy
2PPS Laboratory Paris
3Fondazione Bruno Kessler Trento, Italy

4INRIA France

March 21, 2013

ESOP 2013

Mezzina (FBK) Concurrent Flexible Reversibility March 21, 2013

© Reversibility

Undo manifestations

Language support for Recovery Oriented Computing (ROC)
@ Application undo (e.g. Ctrl+Z)

System undo (e.g. Windows Undo System Restore)

Logs and checkpoints
@ Transaction rollback

@ Distributed rollback-recovery

Mezzina (FBK) Concurrent Flexible Reversibility March 21, 2013

The case for reversibility

What if we could undo every action ?

We want to use reversibility as a unifying framework to build dependable
systems

Mezzina (FBK) Concurrent Flexible Reversibility March 21, 2013 3/24

Reversibility: Sequential Vs Concurrent

Reversibility

The possibility of executing a computation both in the standard, forward
direction, and in the backward direction, going back to a past state

In a sequential setting, reversibility is simply undoing (recursively) the last
action

In a concurrent setting, one cannot simply undo the last action
o Not clear what is the last action
@ Independent threads are reversed independently

o Causal dependencies should be respected
e First undo the consequences and then the causes

Mezzina (FBK) Concurrent Flexible Reversibility March 21, 2013

Concurrent Causal Reversibility

PlQ

VAN

PIIQ PIQ’

N 4

PIIQ'

Mezzina (FBK) Concurrent Flexible Reversibility March 21, 2013 5/24

Concurrent Causal Reversibility

PlQ

‘/
.// \
./
/

v Pla PlQ’

0\‘
S0 b a
~
‘A

PIIQ'

Mezzina (FBK) Concurrent Flexible Reversibility March 21, 2013 5/24

Concurrent Causal Reversibility

PlQ

”
"/ ﬁ-\
4 .
. N
, .

v Pla PlQ’

. /
AN \ / s
S b a :
~ -/

‘A ”

P!IQI’ *

\

Mezzina (FBK) Concurrent Flexible Reversibility March 21, 2013

Previous works on reversibility proposed:
© uncontrolled reversibility
@ show how to go back and forth
e no hint on when to go forward or backward
e more useful to understand basics of concurrent reversibility than as
programming languages

@ controlled reversibility
o backward computations are enabled in case of an error (when)
o the computation should undo the events that caused the error (how far
to go)
e the computation that led to an error can be re-executed (may diverge)

Mezzina (FBK) Concurrent Flexible Reversibility March 21, 2013 6 /24

Controlled Reversibility: example

Mezzina (FBK) Concurrent Flexible Reversibility March 21, 2013 7/24

Controlled Reversibility: example

Mezzina (FBK) Concurrent Flexible Reversibility March 21, 2013 7/24

Controlled Reversibility: example

Mezzina (FBK) Concurrent Flexible Reversibility March 21, 2013 7/24

Controlled Reversibility: example

Mezzina (FBK) Concurrent Flexible Reversibility March 21, 2013 7/24

Flexible Reversibility

Problems

@ How do | avoid repeating the same erroneous computations?

@ How do | specify what to do after a backward computation?

Mezzina (FBK) Concurrent Flexible Reversibility March 21, 2013 8 /24

Flexible Reversibility

Problems

@ How do | avoid repeating the same erroneous computations?

@ How do | specify what to do after a backward computation?

Solution (our idea)

Mixing controlled reversibility and compensations

Mezzina (FBK) Concurrent Flexible Reversibility March 21, 2013 8 /24

Flexible Reversibility: example

Mezzina (FBK) Concurrent Flexible Reversibility March 21, 2013 9 /24

Flexible Reversibility: example

fail left

/
/
:’

Mezzina (FBK) Concurrent Flexible Reversibility March 21, 2013 9 /24

Flexible Reversibility: example

fail left

/
/
:’

Mezzina (FBK) Concurrent Flexible Reversibility March 21, 2013 9 /24

© A flexible reversible language: crollr

HOx

P,Q ::= a(P) message
| (a(X)>P) trigger
| X variable
| (P|Q) parallel composition
| va.P new name
| 0 null process
aeN

@ Message passing communications

@ Higher Order communications (sent values are processes)

March 21, 2013

Mezzina (FBK) Concurrent Flexible Reversibility

Ideas

To introduce reversibility in HOx:
@ Log each action (message receipt)

@ Uniquely identify action participants
To control reversibility:
@ Use of a specific primitive roll v where -y is an action identifier

To specify compensations:

@ Use messages with alternatives

Mezzina (FBK) Concurrent Flexible Reversibility March 21, 2013

crollr

Syntax: Processes

P,Q | a(P)+C message
| (a(X)p>, P) trigger
| roll v roll
| roll k active roll
| X variable
| (P|Q) parallel composition
| va.P new name
| O null process

C:=0 empty alternative

| a(P) =~ 0 message alternative

Mezzina (FBK) Concurrent Flexible Reversibility March 21, 2013

crollr

Syntax: Configurations

M,N = configurations
| k: P thread
| (k] memory
| k< (k1,k2) connector
| vu. M restriction
| (M| N) parallel

0 null configuration

pi= (k1 :a(P) + C) | (k2 : a(X) >y Q)

weEZ acN kek

Mezzina (FBK) Concurrent Flexible Reversibility March 21, 2013 13 /24

Syntax intuitions

@ / : P thread of computation (process) P uniquely identified by tag &
o [(k1:a(P) + C) | (k2 :a(X)r, Q); k| action identified by %

roll k reverts all the effects of a memory (message receipt) k

k : a(P) -~ C alternative C' to the message a(P)

k < (k1, ko) thread k is divided into two sub-threads %y and k-

Mezzina (FBK) Concurrent Flexible Reversibility March 21, 2013

Operational Semantics 1/2

(k1 afPy = O) | (k2 - a(X) >, Q) = vk (k- Q{P"/x,, })

@ Communication side-effects:

e tags the new instance of @) with the new key k&
e 7 is replaced by k in the instance of Q)
e stores the configuration that generated the even k£ in a memory

@ Partial order among process identifiers

Mezzina (FBK) Concurrent Flexible Reversibility March 21, 2013

Operational Semantics 1/2

(Com) P
(k1:a(P) + O)| (ke:a(X)> Q) = vk.(k:Q{" /x, })

@ Communication side-effects:

e tags the new instance of @) with the new key k&
e 7 is replaced by k in the instance of Q)
e stores the configuration that generated the even k£ in a memory

@ Partial order among process identifiers

Mezzina (FBK) Concurrent Flexible Reversibility March 21, 2013

Operational Semantics 1/2

(o) (ky : a(P) + O) | (k2 a(X) >y Q) = vk .(k: Q{""/x1})

@ Communication side-effects:

e tags the new instance of @) with the new key k
e 7 is replaced by k in the instance of Q)
e stores the configuration that generated the even k£ in a memory

@ Partial order among process identifiers

Mezzina (FBK) Concurrent Flexible Reversibility March 21, 2013

Operational Semantics 1/2

p=(k1:a(P) + C)| (k2 :a(X)r>, Q)

(Com) . =
(k2 a(P) = O) | (k2 : a(X) 0y Q) — vk -(k: QU /x 2 1) | (14

@ Communication side-effects:

e tags the new instance of @) with the new key k
e 7 is replaced by k in the instance of Q)
e stores the configuration that generated the even k£ in a memory

@ Partial order among process identifiers

Mezzina (FBK) Concurrent Flexible Reversibility March 21, 2013

Operational Semantics 1/2

p=(k1:a(P) + C)| (k2 :a(X)r>, Q)

(Com) . =
(k2 a(P) = O) | (k2 : a(X) 0y Q) — vk -(k: QU /x 2 1) | (14

(TAGP)]CZP|Q—>Z/I€1]€2.]€-<(k‘l,k’2>|k‘12P|k‘22Q

@ Communication side-effects:

e tags the new instance of @) with the new key k&
e 7 is replaced by k in the instance of Q)
e stores the configuration that generated the even k£ in a memory

@ Partial order among process identifiers

Mezzina (FBK) Concurrent Flexible Reversibility March 21, 2013

Operational Semantics 2/2

<N complete(N | [w; k] | (kr : roll k)) p = xtr(u)

(S.RoLL) N | [k] | (y:roll k) = 4 | N4y

How the rule works:
@ collects all the processes caused by k

©Q deletes them and frees resources consumed by the computation to be
rolled-back

© substitutes the message in p with its alternative (xtr function)

Mezzina (FBK) Concurrent Flexible Reversibility March 21, 2013 16 / 24

Operational Semantics 2/2

<N complete(N | [w; k] | (kr : roll k)) p = xtr(p)
N | [u; k]| (ky :roll k) — p/ | Ngy

(S.RoLL)

How the rule works:
@ collects all the processes caused by k

©Q deletes them and frees resources consumed by the computation to be
rolled-back

© substitutes the message in p with its alternative (xtr function)

xtr(ki:a(Pr) = C) | (k2 :a(X)>y Q) =k1 : C| (k2 : a(X) >, Q) J

Mezzina (FBK) Concurrent Flexible Reversibility March 21, 2013 16 / 24

© Results

Different Alternative Idioms

Simple messages as alternatives are powerful enough to express:

o Different kind of alternatives:

o General alternatives: e.g. a(P) +
o Triggers with alternatives: (a(X) P)+C

@ More sophisticated patterns:
o Finite retry: a(P) <+, C (try a{P) n times and then C)
o Infinite retry: a(P)

Mezzina (FBK) Concurrent Flexible Reversibility March 21, 2013

Some encodings in crollr

(a(P) + Q)aa = ve.a{(P)aa) + c¢((@)aa) ~ 0| c(X)> X

(@(P))er = vt.Y | a{(P)er) + HY) Y =HZ)> Z | a{(Per) + H{Z)

Encodings Correctness

P =, (P)qq for any closed process P
P =, (P)e for any closed process P

~. weak barbed congruence

Mezzina (FBK) Concurrent Flexible Reversibility March 21, 2013 18 / 24

Interacting Transactions

@ A transaction is a computation that may:

e succeed, making results permanent
e abort, undoing all its effect
e have a compensation to be executed upon abort

@ Interacting transactions are allowed to interact with the environment
during their execution.

e no isolation

Mezzina (FBK) Concurrent Flexible Reversibility March 21, 2013 19 /24

Hennessy interacting transactions

(Com)a|a.P— P (Co) [P|cokpr Q] — P

(AB) [Prr Q] — Q (Emp) [Pop Q | R — [P | Roy Q| R]

— closed under structural congruence (7 one) and under the
contexts: e | P, [ery Q] and va. e

[P > Q] transaction with name k, body P and compensation

@ rule Emb allows an arbitrary process to get into the transactional
scope

abort is spontaneous, commit is explicit

Mezzina (FBK) Concurrent Flexible Reversibility March 21, 2013 20 /24

Interacting transactions in crollr

(va. P) = va.(P) (P|Q) = (P)](Q) (@) =@
(a.P) = a> P (cok) = I(X)>0 (0) = 0
([P Q) = [V (P) | Kroll) | 1(X) > X, (QD]~
[P,Qly = va,c.a +¢+ 0] (abyP)| (c>Q) J

@ abort is modelled as rollback
@ a transaction is started by a message with alternative

@ compensation () is started upon rollback

March 21, 2013

Concurrent Flexible Reversibility

Mezzina (FBK)

For each TransCCS process P, P ~olix Vk. k : (P)

@ ~ollx ad-hoc weak barbed bisimulation between transCCS processes
and crollr processes

@ crollm causality tracking mechanism is more precise than Hennessy
embedding

@ we avoid spurious rollbacks they have (thread independence)

Mezzina (FBK) Concurrent Flexible Reversibility March 21, 2013 22 /24

Conclusion

@ we presented a calculus with explicit rollback and core facilities for
alternatives

@ simple messages are enough to built more complex alternatives
@ rollback and alternatives can encode transactional constructs

@ messages with alternatives increase the expressive power of the
calculus (not shown here)

e simple Maude interpreter (not shown here)

e some primitive for errors handling (try/catch , stabilizer)
e http://proton.inrialpes.fr/~mlienhar/croll-pi/implem/

@ context lemma to help proofs (not shown here)

Mezzina (FBK) Concurrent Flexible Reversibility March 21, 2013 23 /24

http://proton.inrialpes.fr/~mlienhar/croll-pi/implem/

@ try to encode more transactional constructs (e.g. STM)

o study relationships between alternatives and compensations in
long-running transactions

@ improve the Maude interpreter (e.g. garbage collection of unreachable
memories)

@ test the interpreter against more complex case studies

Mezzina (FBK) Concurrent Flexible Reversibility March 21, 2013 24 /24

	Reversibility
	A flexible reversible language: croll
	Results

