
Concurrent Flexible Reversibility

Ivan Lanese 1 Michael Lienhardt2 Claudio Antares Mezzina 3

Alan Schmitt4 Jean-Bernard Stefani 4

1Focus Team, University of Bologna/INRIA, Italy

2PPS Laboratory Paris

3Fondazione Bruno Kessler Trento, Italy

4INRIA France

March 21, 2013

ESOP 2013

Mezzina (FBK) Concurrent Flexible Reversibility March 21, 2013 1 / 24

Roadmap

1 Reversibility

2 A flexible reversible language: crollπ

3 Results

Undo manifestations

Language support for Recovery Oriented Computing (ROC)

Application undo (e.g. Ctrl+Z)

System undo (e.g. Windows Undo System Restore)

Logs and checkpoints

Transaction rollback

Distributed rollback-recovery

Mezzina (FBK) Concurrent Flexible Reversibility March 21, 2013 2 / 24

The case for reversibility

What if we could undo every action ?

Claim

We want to use reversibility as a unifying framework to build dependable
systems

Mezzina (FBK) Concurrent Flexible Reversibility March 21, 2013 3 / 24

Reversibility: Sequential Vs Concurrent

Reversibility

The possibility of executing a computation both in the standard, forward
direction, and in the backward direction, going back to a past state

In a sequential setting, reversibility is simply undoing (recursively) the last
action

In a concurrent setting, one cannot simply undo the last action

Not clear what is the last action

Independent threads are reversed independently

Causal dependencies should be respected

First undo the consequences and then the causes

Mezzina (FBK) Concurrent Flexible Reversibility March 21, 2013 4 / 24

Concurrent Causal Reversibility

Mezzina (FBK) Concurrent Flexible Reversibility March 21, 2013 5 / 24

Concurrent Causal Reversibility

Mezzina (FBK) Concurrent Flexible Reversibility March 21, 2013 5 / 24

Concurrent Causal Reversibility

Mezzina (FBK) Concurrent Flexible Reversibility March 21, 2013 5 / 24

So far

Previous works on reversibility proposed:
1 uncontrolled reversibility

show how to go back and forth
no hint on when to go forward or backward
more useful to understand basics of concurrent reversibility than as
programming languages

2 controlled reversibility

backward computations are enabled in case of an error (when)
the computation should undo the events that caused the error (how far
to go)
the computation that led to an error can be re-executed (may diverge)

Mezzina (FBK) Concurrent Flexible Reversibility March 21, 2013 6 / 24

Controlled Reversibility: example

Mezzina (FBK) Concurrent Flexible Reversibility March 21, 2013 7 / 24

Controlled Reversibility: example

Mezzina (FBK) Concurrent Flexible Reversibility March 21, 2013 7 / 24

Controlled Reversibility: example

Mezzina (FBK) Concurrent Flexible Reversibility March 21, 2013 7 / 24

Controlled Reversibility: example

Mezzina (FBK) Concurrent Flexible Reversibility March 21, 2013 7 / 24

Flexible Reversibility

Problems

How do I avoid repeating the same erroneous computations?

How do I specify what to do after a backward computation?

Solution (our idea)

Mixing controlled reversibility and compensations

Mezzina (FBK) Concurrent Flexible Reversibility March 21, 2013 8 / 24

Flexible Reversibility

Problems

How do I avoid repeating the same erroneous computations?

How do I specify what to do after a backward computation?

Solution (our idea)

Mixing controlled reversibility and compensations

Mezzina (FBK) Concurrent Flexible Reversibility March 21, 2013 8 / 24

Flexible Reversibility: example

Mezzina (FBK) Concurrent Flexible Reversibility March 21, 2013 9 / 24

Flexible Reversibility: example

Mezzina (FBK) Concurrent Flexible Reversibility March 21, 2013 9 / 24

Flexible Reversibility: example

Mezzina (FBK) Concurrent Flexible Reversibility March 21, 2013 9 / 24

Roadmap

1 Reversibility

2 A flexible reversible language: crollπ

3 Results

HOπ

Syntax

P,Q ::= a〈P 〉 message

| (a(X) . P) trigger

| X variable

| (P | Q) parallel composition

| νa. P new name

| 0 null process

a ∈ N

Message passing communications

Higher Order communications (sent values are processes)

Mezzina (FBK) Concurrent Flexible Reversibility March 21, 2013 10 / 24

Ideas

To introduce reversibility in HOπ:

Log each action (message receipt)

Uniquely identify action participants

To control reversibility:

Use of a specific primitive roll γ where γ is an action identifier

To specify compensations:

Use messages with alternatives

Mezzina (FBK) Concurrent Flexible Reversibility March 21, 2013 11 / 24

crollπ

Syntax: Processes

P,Q | a〈P 〉÷C message

| (a(X) .γ P) trigger

| roll γ roll

| roll k active roll

| X variable

| (P | Q) parallel composition

| νa. P new name

| 0 null process

C::= 0 empty alternative

| a〈P 〉 ÷ 0 message alternative

Mezzina (FBK) Concurrent Flexible Reversibility March 21, 2013 12 / 24

crollπ

Syntax: Configurations

M,N ::= configurations

| k : P thread

| [µ; k] memory

| k ≺ (k1, k2) connector

| νu.M restriction

| (M | N) parallel

0 null configuration

µ::= (k1 : a〈P 〉 ÷ C) | (k2 : a(X) .γ Q)

u ∈ I a ∈ N k ∈ K

Mezzina (FBK) Concurrent Flexible Reversibility March 21, 2013 13 / 24

Syntax intuitions

k : P thread of computation (process) P uniquely identified by tag k

[(k1 : a〈P 〉 ÷ C) | (k2 : a(X) .γ Q); k] action identified by k

roll k reverts all the effects of a memory (message receipt) k

k : a〈P 〉÷C alternative C to the message a〈P 〉

k ≺ (k1, k2) thread k is divided into two sub-threads k1 and k2

Mezzina (FBK) Concurrent Flexible Reversibility March 21, 2013 14 / 24

Operational Semantics 1/2

(Com)
µ = (k1 : a〈P 〉 ÷ C) | (k2 : a(X) .γ Q)

(k1 : a〈P 〉 ÷ C) | (k2 : a(X) .γ Q)→ νk .(k : Q{P,k/X,γ}) | [µ; k]

(TagP) k : P | Q→ νk1 k2. k ≺ (k1, k2) | k1 : P | k2 : Q

Communication side-effects:

tags the new instance of Q with the new key k
γ is replaced by k in the instance of Q
stores the configuration that generated the even k in a memory

Partial order among process identifiers

Mezzina (FBK) Concurrent Flexible Reversibility March 21, 2013 15 / 24

Operational Semantics 1/2

(Com)
µ = (k1 : a〈P 〉 ÷ C) | (k2 : a(X) .γ Q)

(k1 : a〈P 〉 ÷ C) | (k2 : a(X) .γ Q)→ νk .(k : Q{P,k/X,γ}) | [µ; k]

(TagP) k : P | Q→ νk1 k2. k ≺ (k1, k2) | k1 : P | k2 : Q

Communication side-effects:

tags the new instance of Q with the new key k
γ is replaced by k in the instance of Q
stores the configuration that generated the even k in a memory

Partial order among process identifiers

Mezzina (FBK) Concurrent Flexible Reversibility March 21, 2013 15 / 24

Operational Semantics 1/2

(Com)
µ = (k1 : a〈P 〉 ÷ C) | (k2 : a(X) .γ Q)

(k1 : a〈P 〉 ÷ C) | (k2 : a(X) .γ Q)→ νk .(k : Q{P,k/X,γ}) | [µ; k]

(TagP) k : P | Q→ νk1 k2. k ≺ (k1, k2) | k1 : P | k2 : Q

Communication side-effects:

tags the new instance of Q with the new key k
γ is replaced by k in the instance of Q
stores the configuration that generated the even k in a memory

Partial order among process identifiers

Mezzina (FBK) Concurrent Flexible Reversibility March 21, 2013 15 / 24

Operational Semantics 1/2

(Com)
µ = (k1 : a〈P 〉 ÷ C) | (k2 : a(X) .γ Q)

(k1 : a〈P 〉 ÷ C) | (k2 : a(X) .γ Q)→ νk .(k : Q{P,k/X,γ}) | [µ; k]

(TagP) k : P | Q→ νk1 k2. k ≺ (k1, k2) | k1 : P | k2 : Q

Communication side-effects:

tags the new instance of Q with the new key k
γ is replaced by k in the instance of Q
stores the configuration that generated the even k in a memory

Partial order among process identifiers

Mezzina (FBK) Concurrent Flexible Reversibility March 21, 2013 15 / 24

Operational Semantics 1/2

(Com)
µ = (k1 : a〈P 〉 ÷ C) | (k2 : a(X) .γ Q)

(k1 : a〈P 〉 ÷ C) | (k2 : a(X) .γ Q)→ νk .(k : Q{P,k/X,γ}) | [µ; k]

(TagP) k : P | Q→ νk1 k2. k ≺ (k1, k2) | k1 : P | k2 : Q

Communication side-effects:

tags the new instance of Q with the new key k
γ is replaced by k in the instance of Q
stores the configuration that generated the even k in a memory

Partial order among process identifiers

Mezzina (FBK) Concurrent Flexible Reversibility March 21, 2013 15 / 24

Operational Semantics 2/2

(S.Roll)
k <: N complete(N | [µ; k] | (kr : roll k)) µ′ = xtr(µ)

N | [µ; k] | (kr : roll k)→ µ′ | N k

How the rule works:

1 collects all the processes caused by k

2 deletes them and frees resources consumed by the computation to be
rolled-back

3 substitutes the message in µ with its alternative (xtr function)

xtr(k1 : a〈P1〉 ÷ C) | (k2 : a(X) .γ Q) = k1 : C | (k2 : a(X) .γ Q)

Mezzina (FBK) Concurrent Flexible Reversibility March 21, 2013 16 / 24

Operational Semantics 2/2

(S.Roll)
k <: N complete(N | [µ; k] | (kr : roll k)) µ′ = xtr(µ)

N | [µ; k] | (kr : roll k)→ µ′ | N k

How the rule works:

1 collects all the processes caused by k

2 deletes them and frees resources consumed by the computation to be
rolled-back

3 substitutes the message in µ with its alternative (xtr function)

xtr(k1 : a〈P1〉 ÷ C) | (k2 : a(X) .γ Q) = k1 : C | (k2 : a(X) .γ Q)

Mezzina (FBK) Concurrent Flexible Reversibility March 21, 2013 16 / 24

Roadmap

1 Reversibility

2 A flexible reversible language: crollπ

3 Results

Different Alternative Idioms

Simple messages as alternatives are powerful enough to express:

Different kind of alternatives:

General alternatives: e.g. a〈P 〉 ÷ Q
Triggers with alternatives: (a(X) .γ P) ÷ C

More sophisticated patterns:

Finite retry: a〈P 〉 ÷n C (try a〈P 〉 n times and then C)
Infinite retry: a〈P 〉

Mezzina (FBK) Concurrent Flexible Reversibility March 21, 2013 17 / 24

Some encodings in crollπ

La〈P 〉 ÷ QMaa = νc. a〈LP Maa〉 ÷ c〈LQMaa〉 ÷ 0 | c(X) . X

La〈P 〉Mer = νt. Y | a〈LP Mer〉 ÷ t〈Y 〉 Y = t(Z) . Z | a〈LP Mer〉 ÷ t〈Z〉

Encodings Correctness

P ≈c LP Maa for any closed process P
P ≈c LP Mer for any closed process P

≈c weak barbed congruence

Mezzina (FBK) Concurrent Flexible Reversibility March 21, 2013 18 / 24

Interacting Transactions

A transaction is a computation that may:

succeed, making results permanent
abort, undoing all its effect
have a compensation to be executed upon abort

Interacting transactions are allowed to interact with the environment
during their execution.

no isolation

Mezzina (FBK) Concurrent Flexible Reversibility March 21, 2013 19 / 24

Hennessy interacting transactions

TransCCS

(Com) a | a.P → P (Co) JP | co k .k QK→ P

(Ab) JP .k QK→ Q (Emb) JP .k QK | R→ JP | R .k Q | RK

→ closed under structural congruence (π one) and under the
contexts: • | P , J• .k QK and νa. •
JP .k QK transaction with name k, body P and compensation Q

rule Emb allows an arbitrary process to get into the transactional
scope

abort is spontaneous, commit is explicit

Mezzina (FBK) Concurrent Flexible Reversibility March 21, 2013 20 / 24

Interacting transactions in crollπ

Encoding

Lνa. P M = νa. LP M LP | QM = LP M | LQM LaM = a

La.P M = a . P Lco kM = l(X) . 0 L0M = 0

LJP .l QKM = [νl. LP M | l〈roll γ〉 | l(X) . X , LQM]γ
[P , Q]γ = νa, c. a ÷ c ÷ 0 | (a .γ P) | (c . Q)

abort is modelled as rollback

a transaction is started by a message with alternative

compensation Q is started upon rollback

Mezzina (FBK) Concurrent Flexible Reversibility March 21, 2013 21 / 24

Results

Theorem (Encoding Correctness)

For each TransCCS process P , P t≈crollπ νk. k : LP M

t≈crollπ ad-hoc weak barbed bisimulation between transCCS processes
and crollπ processes

crollπ causality tracking mechanism is more precise than Hennessy
embedding

we avoid spurious rollbacks they have (thread independence)

Mezzina (FBK) Concurrent Flexible Reversibility March 21, 2013 22 / 24

Conclusion

we presented a calculus with explicit rollback and core facilities for
alternatives

simple messages are enough to built more complex alternatives

rollback and alternatives can encode transactional constructs

messages with alternatives increase the expressive power of the
calculus (not shown here)

simple Maude interpreter (not shown here)

some primitive for errors handling (try/catch , stabilizer)
http://proton.inrialpes.fr/~mlienhar/croll-pi/implem/

context lemma to help proofs (not shown here)

Mezzina (FBK) Concurrent Flexible Reversibility March 21, 2013 23 / 24

http://proton.inrialpes.fr/~mlienhar/croll-pi/implem/

Future works

try to encode more transactional constructs (e.g. STM)

study relationships between alternatives and compensations in
long-running transactions

improve the Maude interpreter (e.g. garbage collection of unreachable
memories)

test the interpreter against more complex case studies

Mezzina (FBK) Concurrent Flexible Reversibility March 21, 2013 24 / 24

	Reversibility
	A flexible reversible language: croll
	Results

