Design-by-Contract for Flexible Multiparty Session Protocols

Lorenzo Gheri @ Imperial College
Ivan Lanese @ Focus Team, University of Bologna/INRIA
Neil Sayers @ Imperial College \& Coveo Solutions Inc.
Emilio Tuosto @ GSSI
Nobuko Yoshida @ Imperial College

ECCP
 Berlin 2022

Take-home message

Take-home message

Choreography Automata
A model of choreographies of message-passing systems featuring

- selective participation
- deadlock and lock freedom by construction
- design-by-contract: constrain payloads of communications

Take-home message

Choreography Automata
A model of choreographies of message-passing systems featuring

- selective participation
- deadlock and lock freedom by construction
- design-by-contract: constrain payloads of communications

CAScr (https://github.com/Tooni/CAScript-Artifact)
A tool chain for

- top-down choreographic development
- validating protocols via choreography automata
- TypeScript web programming via API generation

Take-home message

Choreography Automata

A model of choreographies of message-passing systems featuring

- selective participation
- deadlock and lock freedom by construction
- design-by-contract: constrain payloads of communications

CAScr (https://github.com/Tooni/CAScript-Artifact)
A tool chain for

- top-down choreographic development
- validating protocols via choreography automata
- TypeScript web programming via API generation

Check out our paper or get in touch for details...

- Prologue -

Choreographies, informally]

The online-wallet protocol

The online-wallet protocol

...some modelling problems

The online-wallet protocol

...some modelling problems

What about payloads?

Top-down model-driven development

Kydeı8одлоч)

Quoting W3C:

"[...] a contract [...] of the common ordering conditions and constraints under which messages are exchanged [...] from a global viewpoint [...]
Each party can then use the global definition to build and test solutions [...]
global specification is in turn realised by combination of the resulting local systems"

Top-down model-driven development

Quoting W3C:

"[..] a contract [...] of the common ordering conditions and constraints under which messages are exchanged [...] from a global viewpoint [...]
Each party can then use the global definition to build and test solutions [...]
global specification is in turn realised by combination of the resulting local systems"
well-formedness
vendor
Local viewpoint

Top-down model-driven development

Kydeı80әлоч)

Quoting W3C:

"[...] a contract [...] of the common ordering conditions and constraints under which messages are exchanged [...] from a global viewpoint [...]
Each party can then use the global definition to build and test solutions [...]
global specification is in turn realised by combination of the resulting local systems"

well-formedness
specs, not code

Top-down model-driven development

Quoting W3C:

"[..] a contract [...] of the common ordering conditions and constraints under which messages are exchanged [...] from a global viewpoint [...]
Each party can then use the global definition to build and test solutions [...]
global specification is in turn realised by combination of the resulting local systems"

well-formedness
specs, not code

- Act I -

[Choreography Automata]

Our global \& local specs

Choreography automata: Interaction, globally

Our global \& local specs

Intermediate automata: from interactions to communications

Communicating finite-state machines: Communication, locally

$$
\operatorname{proj}(M, \text { vendor })=\longrightarrow Q_{4} \longrightarrow Q_{5} \longrightarrow Q_{\text {c v?reject }}^{\text {wv?loginOK }}
$$

Internal step: $S \xrightarrow{\leftrightharpoons} S$ \qquad

Intermal step: $S \stackrel{s}{\rightarrow} S$ \qquad

Projections preserve semantics

Theorem. Choreography automata are bisimilar to their projections
\Longrightarrow traces equivalence

Flexibility by example

Selective participation in OLW

Flexibility by example

Selective participation in OLW

- at q_{2} wallet and customer aware from the very beginning

Flexibility by example

Selective participation in OLW

- at q_{2} wallet and customer aware from the very beginning
- vendor involved on one branch only, but that's fine: wallet is aware

Flexibility by example

Selective participation in OLW

- at q_{2} wallet and customer aware from the very beginning
- vendor involved on one branch only, but that's fine: wallet is aware
- at q_{6} wallet and customer aware from the very beginning

Flexibility by example

Selective participation in OLW

- at q_{2} wallet and customer aware from the very beginning
- vendor involved on one branch only, but that's fine: wallet is aware
- at q_{6} wallet and customer aware from the very beginning
- vendor eventually informed by customer on each branch

Theorems

Correctness by construction

Theorem. Projections of well-formed choreography automata are deadlock-free

Theorem. Projections of well-formed choreography automata are lock-free

- Act II -

[Asserted Choreography Automata]

DbC vs. choreography automata

Asserting (an excerpt of) OLW

DbC vs. choreography automata

Asserting (an excerpt of) OLW

Consistency

- history senesitiveness: in $q \underset{\mathrm{~A}}{\vec{\lambda}} q^{\prime}$, A predicates on known variables
- temporal satisfiability: the conjunction of the predicates on a path is satisfiable
- well-formedness of the underlying choreography automaton

Theorems

Projections are a bit more complicated than for choreography automata

On consistent asserted choreography automata

Theorem. Asserted choreography automata are weakly bisimilar to their projections
\Longrightarrow trace equivalence

Theorem. Projections of well-formed asserted choreography automata are deadlock-free

- Act III -

[CAScr]

Architecture of CAScr

Architecture of CAScr

Architecture of CAScr

Multiparty global types

Syntax
$G \quad::=\sum_{i \in I} \mathrm{p} \rightarrow \mathrm{q}_{\mathrm{i}}: \mathrm{m}_{\mathrm{i}} ; G_{i} \quad \mu \mathrm{r} . G \quad \mathrm{r} \quad$ end
Semantics

$$
\sum_{i \in I} \mathrm{p} \rightarrow \mathrm{q}_{\mathrm{i}}: \mathrm{m}_{\mathrm{i}} ; G_{i} \xrightarrow{\mathrm{p} \rightarrow \mathrm{q}_{\mathrm{j}}: \mathrm{m}_{\mathrm{j}}} G_{j}(j \in I)
$$

$$
\frac{G[\mu \mathrm{r} \cdot G / \mathrm{r}] \stackrel{\alpha}{\longrightarrow} G^{\prime}}{\mu \mathrm{r} \cdot G \stackrel{\alpha}{\longrightarrow} G^{\prime}}
$$

From global types to choreography automata

CAScr

- computes the mapping above
- checks well-formedness of the resulting choreography automaton
- generates the TypeScript API of each participant

$$
\begin{gathered}
\text { - Epilogue - } \\
{[\ldots]}
\end{gathered}
$$

Summing up

Choreography Automata (with assertions)

A theory of choreographies

- with increased expressiveness
- supporting DbC
- providing a basis for (enhanced) tool support for TypeScript web programming

Plans

- Consider asynchronous communications
- Applications:
- inferring a (local) models from APIs and
- checking their conformance against projections of a global spec
[Thank you!]

