
Causal-Consistent Debugging and
Replay in Core Erlang

Ivan Lanese
Focus research group

Computer Science and Engineering Department
University of Bologna/INRIA

Bologna, Italy

Joint work with Adrian Palacios, German Vidal
and Naoki Nishida

Roadmap

 Causal-consistent reversible debugging
 Causal-consistent replay
 Demo (by German)
 Formal specification
 Future directions

Reversible debugging of actor systems

 Debugging is the central topic of the DCore project
 In particular, debugging for actor systems
 Actor systems are concurrent

– Misbehaviors may depend on the scheduling
– Bugs may be in a different process than the one

showing the misbehavior
 In Dcore, we would like to build on the work we did on

CauDEr to tackle the project objectives
 CauDEr is a causal-consistent reversible and replay

debugger targeting Erlang

Why Erlang can be good for this project

 German has already presented Erlang and its semantics
 Real language with a simple functional core

– Let us look at an hello world example
– Close to Scala + Akka
– Much simpler than Java + Akka

 Its semantics has already been deeply studied
 CauDEr is a nice starting point
 Potential risk: the DCore proposal had more emphasis

on Akka than on Erlang, ANR may complain

CauDEr: an overview

 A causal-consistent reversible debugger for Core Erlang
 Supports the fragment of Core Erlang presented by

German
 Written in Erlang
 Includes a tracer to log a concurrent computation in the

real execution environment and replay it inside the
debugger

 Supported by a formal specification at the level of
operational semantics

CauDEr: where to find further information

 CauDEr available at https://github.com/mistupv/cauder
 Tracer available at https://github.com/mistupv/tracer
 Described in a series of papers by (subsets of) Lanese,

Nishida, Palacios & Vidal
– LOPSTR 2016: reversible semantics of Erlang,

preliminary version
– JLAMP 2018: reversible semantics of Erlang
– FLOPS 2018: CauDEr
– FORTE 2019: tracer and replay

https://github.com/mistupv/cauder
https://github.com/mistupv/tracer

Causal-consistent reversibility

 Causal-consistent reversibility [Danos & Krivine,
CONCUR 2004] is the main notion of reversibility for
concurrent systems
– Any action can be undone, provided that its consequences (if

any) are undone beforehand
– Concurrent actions can be undone in any order, but causal-

dependent actions are undone in reverse order

Reversible debugging

 Extends classical debugging with the ability to explore
an execution not only forward but also backward

 Supported for instance by GDB
 Operators such as “execute n steps backward”
 Avoids the classical “Oh no, I put the breakpoint too

late” exclamation
– Just execute backward from where the program

stopped

Reversible debugging for concurrent systems

 In concurrent systems, one should select which process
should go back (or forward)

– Manually, or by providing a scheduler
 The selected process may not be able to go back n steps

unless some other process also goes back

– E.g., cannot undo a send unless the process that
received the message undoes the receive

– In this case the “go back n steps” command of
CauDEr just stops

Reversible debugging and causality

 Causal-consistency relates backward computations with
causality

 Debugging amounts to find the bug that caused a given
misbehavior

 CauDEr supports the following debugging strategy:
follow causality links backward from misbehavior to
bug

– Causal-consistent reversible debugging
– Originally proposed in [Giachino, Lanese &

Mezzina, FASE 2014]
– Supported by the roll primitive

The roll primitive

 Causal-consistent debugging based on roll n pid
 Undoes the last n steps of process pid...
 ... in a causal-consistent way

– Before undoing an action one has to undo all (and only) its
consequences

– The debugger automatically finds and undoes the
consequences

 A single roll may cause undoing steps in many
processes

 We can provide different interfaces for roll helping the
user to select suitable n and pid
– one for each kind of misbehavior in the language

Different interfaces for roll

 One interface for each possible misbehavior
 In Erlang:

– Wrong value in a variable: roll var id goes to the
state just before the variable id has been created

– Unexpected message: roll send msgId goes to the
state where the message msgId has been sent

– Wrong message received: roll rec msgId goes to the
state where msgId has been received

– Unexpected process: roll spawn pid goes to the state
where process pid has been created

Using roll-like primitives

 The programmer can follow causality links backward
 The procedure can be iterated till the bug is found
 E.g, at some point, in process p, x = 5 while we were

expecting x = 10
– Roll var x goes back to where x has been created
– E.g., x taken from a message with msgId 23
– If the message has the wrong value, use Roll send 23

to explore further backward
– If a wrong message has been taken due to a wrong

pattern, then the bug has been found

Properties of roll-like primitives

 Only relevant steps are undone
– Thanks to causal consistency we undo only consequences of

the target action
 No need for the programmer to know which process or

expression originated the misbehavior
– The primitives find them automatically

 Looking at which processes are involved in a roll
execution may give useful information
– The involvement of an unexpected process means that an

interference has happened

The need for replay

 CauDEr allows the user to go back in the execution
looking for the causes of a given misbehavior but…

 If the misbehavior occurs in an actual execution in
production environment it is difficult to reproduce it
inside the debugger

– Common problem in debugging of concurrent
systems

– Due to nondeterminism
 If during debugging one goes too much backward, it

would be good to be able to go forward again with the
guarantee to replay the same misbehaviors

 Causal-consistent replay solves both these problems

Causal-consistent rollback

 It allows one to undo any action, provided that its
consequences (if any) are undone beforehand

 Concurrent actions can be undone in any order, but
causal-dependent actions are undone in reverse order

Causal-consistent replay

 It allows one to redo any action, provided that its
causes (if any) are redone beforehand

 Concurrent actions can be redone in any order, but
causal-dependent actions are redone in original order

Causal-consistent replay

 It allows one to redo any action, provided that its
causes (if any) are redone beforehand

 Concurrent actions can be redone in any order, but
causal-dependent actions are redone in original order

 It is the dual of causal-consistent rollback
 It allows one to redo actions which are in the future

w.r.t. the current state of the computation
 The choice of the future action to redo depends on the

(mis)behavior we want to replay
 How do we know the relevant future actions?

Logging

 Future actions are taken from real executions
 We built a tracer that instruments an Erlang program

and produces a log for each process
 We log only concurrency-related actions
 Unique identifiers are attached to messages to match

sends with receives
 The log has the form

{73,spawn,74}
{73,send,5}
{75,receive,7}
 …

 Can also be seen as one log per process

pid

unique message identifier

Replay in CauDEr

 CauDEr can now take a log and allow the user to
explore the logged execution

– undo selected past actions (and their consequences)
– redo selected future actions (and their causes)

 We always replay a computation causal equivalent to the
original one

– That is, equal up to swap of concurrent actions
– The log should contain enough information to allow

one to do this
 This is enough to replay the (mis)behaviors of the

original computation

Demo, by German

Log semantics

 The log of a computation is obtained by adding labels to
relevant rules of the system semantics of Erlang

 The sequence of the labels corresponds to the log

Formal specification of replay and rollback

 Both replay and rollback are specified in two steps
 Uncontrolled semantics: which forward/backward steps

are legal at any given point
– It allows to replay any computation causal

equivalent to the original one
– Equal up to swap of concurrent actions and of

introduction/removal of pairs do/undo or undo/redo
 Controlled semantics: which forward/backward steps

are needed to replay/undo a selected future/past action

Replay uncontrolled semantics

 The syntax of processes also includes their log
 Fresh message/process identifiers are taken from logs
 Only steps compatible with the log are allowed

– In receive we can only take the expected message

Rollback uncontrolled semantics

 We need history information to go back
– Each process has its own history

 Much more detailed than the log
 E.g., at each step we store the previous expression and

state, and for some actions also further information
– Ok, this could be optimized a lot...

 All the information needed to recover the past
configuration

 History is computed going forward, and consumed
going backward

Computing history

Exploiting history

 Send and spawn can only be undone if dependencies are
undone too

– Send requires the sent message to be available in Γ
– Spawn requires the target process to be in the initial

state

Controlled semantics

 Rollback and replay are sequences of uncontrolled steps
 We use a recursive algorithm (modeled as a stack

machine) to select the steps
 To rollback an action A in process p

– Start undoing actions in p
– If A is undone then stop
– If it is not possible to undo an action due to a

dependency on action A1 in p1 then rollback A1 in
p1, then continue undoing A

 Replay is analogous

Properties of the uncontrolled semantics

 Uncontrolled semantics satisfies the classical properties
of reversible calculi

 Loop lemma: each step can be undone
 Parabolic lemma: each computation is causal equivalent

to a backward one followed by a forward one
– Hence, no new states are introduced by reversibility

 Causal consistency theorem: two coinitial computations
are cofinal iff they are causal equivalent

Properties of the controlled semantics

 Controlled rollback/replay are minimal sequences of
uncontrolled steps undoing/redoing the target action

 Allows one to leverage results from the uncontrolled
semantics

– E.g., no new states are introduced by reversibility

Usefulness for debugging

 All computations in the debugger are causal equivalent
to the logged one

 A local error is visible in the debugger iff it is visible in
the original computation

– Local errors are errors that involve a single process
or message

Future directions

 Support Erlang instead of Core Erlang
– Not technically difficult, but time consuming

 Support a larger subset of the language
– Distribution, constructs for fault tolerance, ...

 Improve efficiency
– In particular, we are currently working on reducing

the time overhead due to logging
– Particularly critical since logging needs to be done

in production environment

Finally

Thanks!

Questions?

	Diapositiva 1
	Roadmap
	Why debugging?
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Causal-consistent reversible debugging
	Different interfaces for roll
	Diapositiva 9
	Debugging and causality
	The roll primitive
	Diapositiva 12
	Using roll-like primitives
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24
	Diapositiva 25
	Diapositiva 26
	Diapositiva 27
	Diapositiva 28
	Diapositiva 29
	Diapositiva 30
	Diapositiva 31
	Future work
	Finally

